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However, the spontaneous Hall coefficient is dif-
ferent from 0 up to the point R/R, = 0. 78, and H/Ni
=0.85. It means that in the region of the atomic
ratio 0. 6 & H/Ni & 0. 85 weak ferromagnetism exists
(A, &0). This fact corresponds to the x-ray data
of Majchrzak, ' on the basis of which the existence
of the ferromagnetic a phase up to H/Ni= 0. 85 was
proven. Figures 5 and 6 show relative values of
Ao and A, as functions of the atomic ratios H/Ni.
The atomic ratios were taken from Ref. 3. The
ordinary Hall coefficient's dependence on the atomic
ratio H/Ni is similar to the earlier observed de-
pendence in the Pd-H system, but the interpretation

of this situation in the present case is more com-
plicated. In the Ni-H system the ordinary Hall co-
efficient rapidly decreases at the atomic ratio
H/Ni=0. 3, whereas this decrease is observed in
the Pd-H system for H/Pd= 0.83."

The measurements of Hall coefficients for pure
Ni under high hydrostatic pressure (up to 20 kbar)
using gasoline as a pressure medium have not shown
changes of the ordinary Hall coefficient Ap exceeding
+ 2%%u(), the extraordinary Hall coefficient A& decreases
about 7%%up. The changes of spontaneous magnetiza-
tion observed in our experiments will be discussed
elsewhere.
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The numerical accuracy of the plane-wave-Gaussian (PWG) mixed-basis method of calcu-
lating crystalline energy bands is displayed for Nb. Atomic studies involving the Gaussian
basis and crystalline studies involving the PWG mixed basis are systematically developed to
establish the dependence of the energy eigenvalues upon the number of Gaussians, the number
of plane waves, and the Gaussian overlap parameter. Use of the Nb crystalline potential of
Deegan and Twose allows comparison with their results.

I. INTRODUCTION

The purpose of this payer is to establish the
quantitative validity of the plane-wave-Gaussian
(PWG) mixed-basis set for crystalline electron
energy-band and wave-function calculations. To
do this, the results of systematic studies are pre-
sented in order to establish the dependence of the
energy eigenvalues upon the number of Gaussians,
the number of plane waves, and the Gaussian over-
lap parameter in wave-function and potential ex-
pansions. The use of Deegan and Twose's muffin-
tin potential also allows comparison of PWG re-
sults with their results.

An earlier paper, ' which introduced the PWG
mixed basis, focused upon the excellent plane-wave
convergence properties of this particular mixed-

basis set. A future payer will present the self-
consistent PWG formalism in which the crystalline
PWG wave functions are used to calculate a new
crystalline charge density, which, in turn, yields
a new crystalline potential. This self-consistent
formalism is simple, and the early computational
results are very promising. How successful this
particular mixed basis will be for total-energy cal-
culations is not yet known, however.

The background of the PWG mixed-basis method
is briefly as follows. Of the best-known techniques
for mathematically describing crystalline electron
wave functions, only the linear combination of
atomic orbitals (LCAO) and the orthogonalized-
plane-wave (OPW) methods are not oriented toward
muffin-tin potentials. The most successful LCAO
calculations involve overlapping Gaussians cen-
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tered upon the various atom sites. This pure Gaus-
sian basis set is extremely efficient, and the
method is very powerful. However, the extensive
overlap of wave functions and potential from one
atom site to the next results in a complicated for-
malism and in complex computer coding. The tra-
ditional OPW method' artificially divides electron
states into "nonoverlapping" core states (whose
wave functions are numerically tabulated over ra-
dial atomic meshes) and into valence and conduc-
tion states expressed in terms of plane waves or-
thogonalized to the core states. Plane-wave con-
vergence can be poor'; the OPW method fails com-
pletely for crystals such as C, ZnO, Cu, and Nb.
The rapid variations of the valence and conduction
wave functions near atom sites are not adequately
represented in the OPW basis until a prohibitively
large number of plane-wave terms are included.
By that time, overlap of the core states usually
destroys the calculation anyway. Consequently,
various mixed-basis set formalisms have been in-
troduced which augment the OPW basis with suit-
ably chosen nonoverlapping corelike functions.
These new functions were previously obtained by
numerically integrating Schrodinger's equation over
an atomic radial mesh, and then altering the large-
~ behavior of the function so as to avoid overlap
with functions on neighboring sites. The mixed-
basis method has been very successful.

The PWG method uses an analytic mixed basis
for wave-function and potential expansions. The
basis turns out to be so efficient that no distinction
need be made between core, valence, and conduc-
tion states. As in the Kunz mixed-basis formalism,
all electron energies are obtained from the same
secular equation. In the Deegan-Twose mixed-
basis formalism, core energies and wave functions
were obtained from numerical mesh calculations,
and valence and conduction energies and wave func-
tions were obtained from an OPW-like secular
equation. The PWG basis consists of plane waves
and of almost nonoverlapping LCAO functions, each
of which is expressed as a sum of Gaussians. The
coefficient of each Gaussian can be determined by
least-squares fitting atomielike functions defined
numerically over a radial mesh. Or, alternative-
ly for the wave functions, one can use a Gaussian
basis to minimize the energy in a spherically sym-
metrized potential. In both cases both interior and
overlapping Gaussians should be used in determin-
ing the coefficients. The appreciably overlapping
Gaussians are then discarded, leaving almost non-
overlapping analytic functions which correctly ex-
press the wave function or potential behavior near
atom sites. The plane-wave part of the basis must
then describe the longer-wavelength behavior. The
plane-wave convergence of the basis is good. The
analytic character of the basis functions is highly

convenient and leads to a very simple formalism
and to simple computer coding. The numerical
accuracy of the PWG method is the subject of this
paper.

In Sec. II the PWG formalism is presented to
establish the concepts and working equations. Sec-
tion III studies pure Gaussian expansions in the Nb
atom. First a numerically tabulated potential is
used. The wave functions are expanded in a Gaus-
sian basis to study the energy eigenvalue depen-
dence upon the number of Gaussians in the wave
function basis. Then the potential is also expanded
in a Gaussian basis to study the effect of this ap-
proximation upon the atomic eigenvalues. Having
established the requirements upon the Gaussian
basis for wave functions and potential, Sec. IV then
examines the PWG mixed basis in the Nb crystal.
The dependence of the crystalline energy eigenval-
ues upon the number of plane waves in the potential
expansion is shown first. Eigenvalue convergence
with respect to the number of plane waves in the
wave-function basis is next displayed and compared
to the results of Deegan and Twose. Finally, the
influence on the eigenvalues of neglect of near-
neighbor Gaussian wave-function overlap is ex-
amined. Section V then briefly summarizes the re-
sults of the payer.

II. PWG FORMALISM

Since Nb has one atom per crystalline unit cell,
the present formalism will be presented for that
case. The more general formalism is a trivial
extension. '

The crystal potential is written

V(r)=g, V'Q, e "o&+Q&((& V((e '"' (1)

where atom sites are at A„and the K sum is over
reciprocal-lattice vectors.

The crystalline wave functions are written

2
&i&a ( r) —Q Qa [Q e( o' a Q pa e-a($-Ra&

&(ir —R,
i

' i'(r —R,)]

+g ~ [e((EP+K) r)

where the PWG basis functions are in brackets, JL(,

labels the particular electron state at ko in the
Brillouin zone, and nlrb are the usual atomic quan-
tum numbers. Variational freedom is given to the
B and C coefficients. The A„, are predetermined
from some spherically symmetrized atomlike prob-
lem.

It is very convenient to choose the set of a so
that the Gaussians are even tempered'.

(~ /~ )((-1&/ (s-1&
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-ag(R /2) 2
(4)

where v is called the overlap parameter and R„is
the nearest-neighbor distance. Gaussians with a
standard deviation smaller than g, will be called
interior Gaussians. Ones with a larger standard
deviation will be called overlapping Gaussians.

The construction and solution of the secular equa-
tion

Hg=XUg,

&@= (A ~ +9'i) ~ (5)

Ujf —(pi |pj)

where the y, are the basis functions, is routine.
All matrix elements of H and U reduce to simple
analytic functions in the PUG formalism.

The Gaussian coefficients V and A„, can be
chosen by least-squares fitting numerically tabu-
lated atomlike functions with a Gaussian series.
Merely choose D to minimize

s+t 22
s= f r dv(f(r) —Z De,.

t -"1
(6)

where s interior and t overlapping Gaussians are
used. Enough overlapping Gaussians should be
used to adequately represent variations in the outer
regions of f. Minimization of S with respect to the

The more physical Gaussian standard deviations
cr&, where

Qg = 1/2gg,

are then also even tempered. This relationship
corresponds closely to the familiar logarithmic
radial mesh in atomic calculations.

The fattest "nonoverlapping" Gaussian n, is chos-
en from the negligible overlap condition:

D, results in the usual linear equations:

(r'y'(8, y)e &Q (i= 1, s+i) . (6)

The A„', are the eigenvectors of Eq. (5). Again,
enough overlapping Gaussians must be used to span
the outer region of V. The overlapping Gaussians
are then dropped from the crystalline basis.

This prescription for choosing the LCAO non»er-
lapping corelike functions is simple and easy to
apply to unfamiliar atoms. No "operator interven-
tion" is necessary in the very fast computer pro-
gram that adjusts n, to minimize S [Eq. (6)]. The
dropping of the overlapping Gaussians modifies the
wave functions everywhere (small and large x), but
the fat dropped Gaussians are easily simulated by
the plane-wave part of the basis. This prescrip-
tion is in contrast to that used by earlier mixed-
basis methods in which the radial Schrodinger's
equation is numerically integrated outward and
joined continuously with continuous first derivative
to an analytic polynomial or sine function which
vanishes at half the nearest-neighbor distance. In
that case, the plane-wave part of the crystal wave
function must do no work in the small-y region, but
must do substantial work in the large-r region. It
is not clear a pylori which prescription is best.
Computer convergence studies must settle the

f r f(r)e t" Ch=+)D) f r e 'i' &'" dr. (7)

If n& is not chosen by other considerations, it can
be adjusted to minimize S [Eq. (6)] with the D, de-
termined by Eq. (7).

The other convenient method of determining the

A„, involves spherically symmetrizing the crystal
potential about a lattice site and solving the secular
equation (5) using the Gaussian basis

TABLE I. Atomic Nb Slater eigenvalues are given in Ry for a wave-function basis consisting of z interior Gaussians
and t overlapping Gaussians. Integrals involving V~ were evaluated numerically over the Herman-Skillman radial mesh.
The standard deviation of the smallest Gaussian 0& (given in a.u. ) was adjusted for the best over-all fit. The Gaussian
overlap parameter 7 is 0.003. Herman-Skillman eigenvalues resulting from numerically integrating Schr'odinger's equa-
tion with their SCHEO subroutine are given in the column headed HS.

lg
2g

2p
3s
3p
3d
4s
4p
4d
5s

(HS)

—1359.843
—188.971
—174.351
—32.037
—26. 353
—15.838
-4.377
—2.769
—0.394
—0.327

16
5
0.002

—1359.744
—188.961
—174.351
—32.035
—26. 352
—15.838
—4. 376
—2. 769
—0.394
—0.327

12
5
0.008

—1354.011
—188.377
—174.350
—31.932
—26.352
—15.838
-4.359
—2.769
—0.394
—0.325

8

0.018

-1305.486
—183.307
—174.264
—31.015
—26.303
—15.817
—4.196
—2.754
—0.391
-0.311
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(HS)

—1358.538
—187.652
—173.031
—30.716
—25.032
—14.517
—3.091
—1.498

~+mead

—1358.436
—187.641
-173.031
—30.715
—25. 032
—14.517
—3.091
—1.498

21
10
0.0011

—1358.436
—187.641
—173.031
—30.714
—25. 032
—14.517
—3.091
—1.498

16
5
0.0009

—1358.419
—187.639
—173.031
—30.717
—25.033
—14.518
—3.094
—1.500

11
5
0.0009

—1358.462
—187.606
—172.992
—30.593
—24. 943
—14.490
—3.110
—1.500

9
5
0.0009

—1358.133
—187.711
—173.069
—30.490
—24. 829
—14.387
—2.996
—1.415
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TABLE III. The Fourier transforms of the Deegan-
Twose crystal potential V(K), of the Gaussian portion
[see Eq. (1)j V&(K), and of the remaining plane-wave por-
tion g V(K) are shown as a function of the total number of
plane waves up to that point in the plane-wave expansion.
For the Gaussian fit, 21 interior Gaussians were used
with a potential overlap parameter of 0.001 and a smallest
Gaussian standard deviation of 0.0011 a.u. The rows do
not always add up perfectly because of rounding errors.

N PW V(K) vg(K)

FIG. 3. Solid function shows rV(r) for the Deegan-Twose
muffin-tin potential. The numeri cal tabulation of Deegan
and Twose coincides on the scale of the figure with the 21-
interior (and 10-overlapping) Gaussian fit. The dashed
function shows the sum over only the 21 interior Gaussians.
This function is the Gaussian contribution to Eq. (1). The
horizontal axis shows the radial distance with small hash
marks every 0.2 a.u. Half the nearest-neighbor distance
is 2.70 a.u.

from 12 and 16 interior Gaussians cannot be dis-
tinguished on the figure from the Herman-Skillman
functions. The agreement is excellent from the
very tightly bound 1s state to the very loosely
bound 5s state. The even temper (3) allows the
Gaussians to effectively span this large range. In
further studies in this paper, 16 interior Gaussians
will be used for wave-function expansions. One can
expect a numerical uncertainty of less than 0. 001
Ry with this expansion.

Figure 2 shows the free-atom (Slater-exchange)
wave functions multiplied by r along with the func-
tions obtained by dropping the overlapping Gaus-
sians. These last functions will be the LCAO basis
functions in the PWG calculations. Only the 4s
through the 5sfunctions are shown since the contribu-
tion of the overlapping Gaussians to the lower
states is too small to be seen on the figures. The
5s basis function has lost its outer node, but the
behavior close to the nucleus is still strongly 5s-

1
13
19
43
55
79
87

135
141
177
201
225
249
321
369
381
429
459

—1.6934
—1.1082
—0.7768
—0. 3884
—0.4782
—0.4098
—0.3632
—0.3283
—0.3000
—0.2760
—0.2553
—0. 2374
—0.2219
—0. 2085
—0.1870
—0. 1782
—0. 1704
—0.1632

—0.8072
—0.6862
—0. 5901
—0. 5133
—0.4515
—0.4014
—0.3604
—0.3266
—0. 2984
—0.2747
—0. 2546
—0. 2373
—0. 2224
—0. 2094
—0. 1878
—0. 1787
—0. 1705
—0.1630

-0.8862
—0.4220
-0.1867
—0.0751
—0.0267
-0.0084
—0.0028
-0.0017
—0.0016
—0.0013
—0.0007
-0.0000

0.0006
0.0009
0.0008
0.0004
0.0001

—0.0002

like. The other basis functions also retain their
atomic character around the nucleus, but they are
modified at larger distances.

We have thus established that 16 interior Gaus-
sians are adequate for the wave-function basis.
We can now use this wave-function basis to examine
Gaussian fits to the Deegan- Twose potential for Nb.
This study is especially interesting because the
even-tempered Gaussian series must try to simu-
late the 1/r singularity in the potential. How well
can this be done? To answer this question, eigen-
values will be obtained in three ways: The most

TABLE IV. Nb crystalline I'-point eigenvalues in Ry are given where various numbers of plane waves (N pw) are used
in the Gaussian plane-wave expansion of the Deegan-Twose potential [Eq. (1)]. The states are labeled by their degeneracy
(Deg. ). The potential Gaussian fit involved 21 interior Gaussians with a potential overlap parameter of 0.001 and a
smallest Gaussian standard deviation of 0.0011 a.u. The wave-function basis consisted of 55 plane waves and 16 interior
Gaussians with a wave-function overlap parameter of 0. 003 and a smallest Gaussian standard deviation of 0.002 a.u.
The Slater atomic potential was used for the determination of the wave-function Gaussian basis. The ten lowest states,
1s through 5s, were used in the basis.

Deg.
N pw

—3.107
-1.457

0.322
0.761
0.932
1.812

369

—3.107
—1.457

0.322
0.761
0.932
1.812

321

—3.107
—1.458

0.322
0.760
0.931
1.812

177

-3.107
—1.459

0.322
0.759
0.929
1.812

135

—3.109
-1.460

0.322
0.758
0.932
1.812

—3.112
—1.463

0.323
0. 759
0.928
1.812

-3.111
—l. 466

0.328
0.744
0.939
l. 814
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TABLE V. Plane-wave convergence of Nb crystalline eigenvalues (in Ry) at I' (0, 0, 0), H (1, 0, 0), and P (2, 2, 2)
in the Brillouin zone. Columns are headed by the number of plane waves included in the wave-fucntion basis. The
column headed DT gives the best values obtained by Deegan and Twose. The DT number in parenthesis was estimated
from a figure rather than from a Table. The crystalline potential was expressed by 459 plane-wave terms and 21 interior
Gaussians with a potential overlap parameter of 0.001 and a smallest Gaussian standard deviation of 0.0011 a.u. The
wave-function Gaussian basis was derived from the Slater atomic potential lg thru 5g states. Sixteen interior Gaussians
were used, with a wave-function overlap parameter of 0.003 and a smallest Gaussian standard deviation of 0.002 a.u.
States are labeled by their crystalline degeneracy (Deg. ). The column headed 79-16 gives eigenvalues when the potential
consisted of 459 plane waves and 16 interior Gaussians with a potential overlap of 0.001 and a smallest Gaussian standard
deviation of 0.0009 a.u. Seventy-nine plane waves were used in the wave-function basis.

Deg. DT

—3.106
(-1.46)

0.318
0.758
0.932

79

—3.107
—1.457

0.322
0.760
0.931

55

-3.107
—l.457

0.322
0.761
0.932

43

—3.107
—1.456

0.322
0.765
0.934

19

—3.106
—1.452

0.322
0.788
0.951

—3.104
—1.441

0.322
0.788
1.032

-3.072
—1.286

0.338
1.486
1.487

79-16

—3.106
-1.456

0.322
0.760
0.931

Deg.

Deg.

DT

—1.517
0.434
1.106
1.406

DT

—1.502
0.645
0.998

1.563

68

-3.073
—1.519

0.433
1.102
1.420

80

—3.085
—1.504

0.640
0.998
1.509
1.567

38

—3.073
—1.518

0.435
1.105
1.426

68

-3.085
—1.504

0.640
0.998
l.511
l. 568

14

—3.072
—1.504

0.469
1.162
1.433

P
44

-3.085
—1.504

0.641
1.001
1.515
1.573

—3.064
—1.470

0.469
1.486
1.491

28

—3.085
—1.502

0.645
1.013
1.519
1.579

16

—3.083
—1.492

0.665
1.031
1.521
1.615

—3.071
—1.427

0. 778
1.487
1.610
1.869

accurate method is to use the Herman-Skillman
differential equation subroutine scHEQ on the numer-
ically tabulated Deegan-Twose Nb potential (nu-
merical wave function —numerical potential}. One
can also use the Gaussian wave-function basis (8}
in Eq. (5) and obtain potential matrix elements by
numerical integration (Gaussian wave function
-numerical potential). Or, finally, one can least-
squares fit the potential with an even-tempered
Gaussian series. The combined use of a Gaussian
wave-function basis and a Gaussian representation
for the potential (Gaussian wave function —Gaussian
potential) results in analytic matrix elements in
Eq. (5). Comparison of the resulting eigenvalues
should then show up relative inadequacies in Gaus-
sian representations for wave functions and for
potentials. In the Gaussian fit to the potential, the
potential overlap parameter r [Eq. (4)] was chosen
to be 0. 001. The standard deviation of the smallest
Gaussian was adjusted in each case to minimize
S IEq. (5)].

The resulting Nb eigenvalues are given in Table
II. It can be seen that all eigenvalue differences
(to 0. 001 Ry) between the Gaussian potential and

the numerically tabulated potential have disap-
peared when 21 interior Gaussians are used in the
potential expansion. Differences are very small
when 16 interior Gaussians are used. Comparison
of the first three columns shows that once a Gaus-
sian wave-function basis is introduced no further
harm is done by using a Gaussian representation
for the potential. The 1/r singularity can be ade-
quately simulated by an even-tempered Gaussian
series comprised of 21 interior Gaussians.

The function rVnr(r) is plotted in Fig. 3 together
with the function obtained by dropping the overlap-
ping Gaussians. The latter function is the one used
in Eq. (1). The sum of interior and overlapping
Gaussians lies directly on top of the numeric func-
tion, except very close to the nucleus where large
oscillations occur. We have seen that these oscil-
lations do not appreciably affect the energy eigen-
values when a Gaussian wave-function basis is used.

IV. CRYSTALLINE PWG CALCULATIONS

The crystalline calculations will use the same
lattice constant as Deegan and Twose, namely, the
bcc lattice constant is taken to be 3. 3(L4.
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TABLE VI. Plane-wave convergence of Nb crystalline eigenvalues at I' when the Gaussian wave-function basis is de-
rived from the 13 atomic states lg through 6g. Sixteen interior Gaussians are used with an overlap parameter of 0.003 and
a smallest Gaussian standard deviation of 0.002 a.u. The crystal potential consisted of 459 plane-wave terms with 21
interior Gaussians. The potential overlap is 0.001 and the smallest Gaussian standard deviation is 0.0011 a.u. The
column headings give the number of plane waves in the wave-function basis. For the subtable labeled VDT, the atomic
potential used in the Gaussian wave-function determination was the Deegen-Twose muffin tin, while the subtable headed
V» used the Slater atomic potential. The column headed Deg. gives the degeneracy of the crystalline states.

Deg. 79 55 43
VDT

Deg.

—3.108
—1.460

0.322
0.760
0.930

79

—3.108
—1.458

0.322
0.760
0.930

—3.108
—1.458

0.322
0.761
0.930

55

—3.108
—1.457

0.322
0.761
0. 930

—3.108
—1.458

0.322
0.763
0.931

Vs(

—3.108
—1.457

0.322
0.763
0.931

—3.108
—1.457

0.322
0.769
0.935

—3.108
—1.457

0.322
0.769
0.935

—3.107
—l. 454

0.322
0.769
0.967

-3.107
—1.453

0.322
0.769
0.967

—3.092
—1.392

0.331
1.267
1.268

—3.092
—1.381

0.331
1.268
l. 268

Taking the 21-interior-Gaussian fit to the Deeg-
an- Twose muffin-tin potential, we can determine
the plane-wave coefficients of the potential expan-
sion [Eq. (1)]. The total Fourier potential coeffi-
cient (evaluated by numerical integration), the
Gaussian contribution (evaluated analytically), and
the remaining plane-wave contribution are all tab-
ulated in Table III. The basic idea behind the
plane-wave-Gaussian mixed basis is strikingly il-
lustrated. The plane-wave contribution is relative-
ly large at low-K values, but the Gaussian terms
completely dominate the higher-K small-wave-
length region.

The first question to be studied concerns the
number of plane-wave terms that must be kept in
the potential expansion [Eq. (I)]. Table IV shows
I' point valence- and conduction-band eigenvalues
as a function of the number of plane-wave terms
in the potential expansion. Although the rest of
our calculations will be done with 459 plane-wave
terms, little would be lost (0. 002 Ry) if only 177
plane waves were used.

Table V shows I', H, and P valence- and conduc-
tion-band eigenvalues for various numbers of plane
waves in the wave-function expansion [Eq. (2)).
The best Deegan-Twose energies are also included
for comparison. The agreement between the PW'G
eigenvalues computed with 79 plane waves in the
wave-function basis and the Deegan-Twose ener-
gies computed with about 180 plane waves is very
good. Plane-wave-Gaussian plane-wave conver-
gence of the eigenvalues is, on the whole, more
rapid than that of Deegan-Twose for Nb. It is not
known if the PWG prescription for picking pseudo-
core basis functions is generally better thm that of

other mixed-basis methods.
Table V also shows PW'G eigenvalues when only

16 interior Gaussians, rather than 21, are used in
the potential expansion. Clearly the differences
(0. 001 Ry) are negligible.

One of the advantages of solving the secular
equation (5) with the atomic Gaussian basis (8) to
obtain the contracted Gaussian coefficients A„, is
that positive energy wave functions can be obtained.
Thus the contracted Gaussian basis set can simu-
late correctly the small-r behavior of states which
are empty in the isolated atom. Plane-wave-Gaus-
sian eigenvalue convergence is presented in Table
VI for the case where 5P-, 5d-, and 6s-like basis
functions are added to the basis set. Plane-wave
convergence is seen to be slightly improved, with
the functions obtained from the Deegan-Twose
atomic potential slightly superior to those obtained
from the Slater potential. Since the crystal poten-
tial is comprised of Deegan-Twose muffin tins, this
is not unexpected.

The last numerical study examines the effect of
neglecting Gaussian overlap from site to site.
Does this overlap have a strong influence on the
PWG eigenvalues? To examine this question, the
wave-function overlap parameter was stepped from
0. 003 to 0. 01. The resulting I' point eigenvalues
are shown in Table VII. The most striking effect
is that the determinant of the orthogonality matrix
U [Eq. (5)] goes negative at a smaller and smaller
number of plane waves as the overlap parameter
becomes larger. Of course, if the determinant of
U were correctly calculated from Eq. (5), taking
overlap into account, the determinant would re-
main positive definite. The neglect of near-neigh-
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TABLE VII. Convergence of Nb crystalline I'-point eigenvalues in Ry for several values of the wave-function Gaussian
overlap parameter 7. Ten Gaussian basis functions derived from atomic states lg through 5s weredetermined from Slater's
atomic potential. Sixteen interior Gaussians were used with a smallest Gaussian standard deviation of 0.0038 a. u. The
potential is represented by 459 plane-wave terms and 21 interior Gaussians with a overlap of 0.001 and a smallest Gaus-
sian standard deviation of 0.0011 a. u. The entry )U) &0 means that the determinent of the orthogonality matrix U [Eq.
(5)] is negative. The column headed Deg. labels the degeneracy of the crystalline states.

Deg.

Deg.

Deg.

Deg.

IUl &0

55

tUt&0

43

IU)&0

IUJ &0

55

—3.106
—1.459

0.323
0.764
0. 930

—3.105
—1.460

0.323
0.769
0. 929

19

—3.104
—l. 462

0. 324
0.778
0. 931

19

—3.104
—1.463

0.324
0.779
0.929

T =0.005
43

—3.106
—l.458

0.323
0.766
0.931

7 =0.007
19

—3.105
—1.460

0.323
0.778
0.935

T =0.009
13

-3.104
—1.460

0.324
0.778
0.963

7'=0. 01
13

—3.103
—1.461

0.324
0.779
0.958

19

—3.106
—l. 457

0.323
0.780
0.941

13

—3.104
—1.456

0.323
0.778
0.977

—3.097
—1.401

0.329
1.252
1.252

—3.097
—1.409

0.329
l. 232
1.232

—3.104
—1,451

0.323
0.780
0.997

-3.094
—1.380

0.330
1.301
1.302

—3.088
—1.346

0.332
1.371
1.372

bor overlap of the Gaussians leads to an incorrect
evaluation of Eq. (5), which leads to the negative
determinant. The same negative determinant was
encountered earlier in OPW calculations and was
there traced to neglect of the very small overlap
of the OPW core states. It occurred in OPW
calculations between roughly 400 and 1000 plane
waves. It occurs much earlier in PWG. Thus the
neglect of Gaussian overlap from atom site to atom
site has catastrophic consequences if too many
plane waves are used. However, immediately be-
fore the catastrophe, the PWG eigenvalues are still
reasonable, as can be seen in Table VII. OPW ex-
perience also confirms the fact that the eigenvalues
level off at reasonable values as more and more
plane waves are added to the wave-function basis,
and then abrup'. ly plunge as the determinant of U
goes negative. One must simply stay well away
from the edge to obtain very reliable results. The
overlap parameter must, however, be kept in mind

when doing PWG calculations.

V. CONCLUSIONS

Gaussian basis sets do a very good job both for
wave-function expansions and for potential expan-
sions for all but the deepest core states. For Nb,
"very good" means an eigenvalue accuracy of 0. 001
Ry. Sixteen interior Gaussians for the wave-func-
tion expansion and 21 interior Gaussians for the
potential produce high-quality results.

The even-tempered Gaussian series coupled with
the plane-wave series form a very effective mixed-
basis set for crystalline wave functions and poten-
tials. This effectiveness is most vividly illustrated
quantitatively in Table III and pictorally in Fig. 2.

The resulting Nb eigenvalues converge rapidly
at a small number of plane waves. They are rela-
tively insensitive to the neglect of Gaussian over-
lap from site to site. They are in remarkably
close agreement with the results of Deegan and
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Twose.
We thus conclude that high-precision crystalline

calculations are feasible with the PWG method of
calculating energy bands.
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The formalism of the method of lattice statics is applied to obtain an expression for the vol-
ume change associated with a noncubic point defect in a monatomic lattice, assuming that the
defect exerts no shear stress. This expression is used to calculate the volume changes asso-
ciated with the octahedral and tetrahedral carbon interstitials in &-iron.

One of the physically interesting changes in the
properties of a crystal brought about by the intro-
duction of a point defect into the lattice is the
volume change, or dilatation induced by the relaxa-
tion of the atoms of the host crystal to new equilib-
rium conditions. Currently, the most common
method of calculating the dilatation associated with
a given defect is to treat a portion of the crystal
as an elastic continuum and obtain the strength pa-
rameter of the defect by somehow matching the
displacements of host atoms in a discrete "core"
region near the defect to the displacements of the
atoms along the boundary between the discrete re-
gion and continuum region of the crystal.

More recently, a completely atomistic approach
has been applied to the problem of determining the
properties of point defects' in crystals. This
technique, known as the method of lattice statics,
is unique in that the equations of elasticity theory
can be obtained directly from the corresponding
lattice-statics equations for points in the lattice
far away from the defect. Hardy' has shown that
this natural transition from lattice theory to elas-
ticity theory can be used to obtain a consistent ex-

pression for the lattice-strength tensor G, , which
is used to represent the point defect as a singularity
in the body force on the elastic medium:

—F, = —Z G;, 5(r),

where i and j are Cartesian-coordinate indices. In
terms of the force F' exerted by the defect on its
lth neighboring atom and the position vector 8' of
the lth atom in the perfect lattice, the strength ten-
sor is

G;, =5 F,R,' .

In the case of a cubic point defect, G, , =0 for
i&j and all of the diagonal elements, G, , are equal
to the same constant G. Hardy' has shown that for
this case the dilatation hv produced by the defect
is

K K
G Ii,'. A,'.

1

where K is the bulk modulus of the host crystal.
The derivation given by Hardy can be extended


