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Starting from an expression for the dielectric function earlier derived, we calculate explicitly
the ~ dependence of the G(k, (d) function which describes correlation and exchange effects.
The full frequency dependence of this function is found to be rather significant; in particular
it improves the accuracy with which the f sum rule is satisfied, which confirms the goodness
of the approximations involved in the calculation of the dielectric function.

I. INTRODUCTION

In a previous paper, ' hereafter referred to as I,
a formula for the wave-vector- and frequency-de-
pendent dielectric function was obtained by a mo-
ment-conserving decoupling procedure which had
the effect of enforcing the f sum rule on e(k, (p).
The e(k, &u) obtained was of the Hubbard form

Qp(k, (p)
1 —G(k, (d) Qp(k, (d)

'

where Qp(k, (p) is the usual Lindhard function and

G(k, (d) is a function which includes electron self-
energy and exchange effects. It is apparent that
a complete knowledge of G(k, u) is required for a
complete knowledge of the properties of the sys-
tem. In this note we extend I by calculating the
(d dependence of G(k, (d), which was previously
neglected ("static limit" ), and we show, in fact,
that the ~ dependence is rather strong and has im-
portant effects.

II. CALCULATIONS

We start from Eq. (3. 5) of I, noticing that the
function Pp(k, (p) defined there can be written as

Pp(k, (d) = 3(nr, /vk ) (2v) T(k, (d), (2. 1)

where n = (4/9v)'~', r, is the usual parameter
related to the density of the electron gas, k is in
units of the Fermi wave vector (kr), the frequencies
are in units of the Fermi frequency, and

for the case of the completely degenerate electron
gas under consideration is the unit-step function.

The summation over q& is easily performed
analytically to give

1 F (q+k, k}-F (q, k)
T(k, (d}=

(2 )p Q (nr„t —nq) '( ~)
Q

(2. 3)

with

p ~ k 1+p (1-p ) 1-p
p' 4 Sp 1+p

(2. 4)

Exploiting the symmetry properties of F(p, k) and

&(pi k)i

F(pi k) = -F(-pi k),

cu(p, k) = —(p( —p —k, k),
(2. 5)

we easily see that Eq. (2. 3) may be rewritten as

T(k, (d) =
( z Q nv [E (q+k, k) —F (q, k)]

Q

X(1 1

tq ~ ( q, k( ~ (q — (q, ic) ~ 'q)

(2. 6)

At this point we change the sum into an integral
and make use of the relation

T(k ) g„(,) — (,k)
'i 'P (d —(P(qq qk)+f5 1 = P — —iv5 (x)x+i5 x

(2 7)

x (n~, k
—n~ ) (n~ —n; .t) q (2. 2)

with (d(q, k) = (q+k) —q and v;; =1/Iqq —qpI .
Also, n~ is the Fermi distribution function, which,

to separate T(k, (d) into its real and imaginary
parts T,(k, (d) and Tz(k, (d). The symbol P implies
a principal-value integration of the Cauchy type.

We first consider the real part

1
1 1 1

T&(k, )=(i (, q dq d d(tq+k, k(
( (

—
( ()
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(2. 8)

where

x = (q+ k). E/ ~q+ k k or x = q. k/qk ~

Changing the variables of integration in the first term on the right-hand side of Eq. (2. 8) to

P=(q +k +2qkx), z= —(k+qx)/(q +k +2qkx) ~ (2. 9)

and noticing that this corresponds to q+k= -p we can write

1 1
P dpdzF p, k —,, 2. 10

((( —((( prk (d+(d p~k)

where the domain of integration D is defined by the following conditions:

k&1,

k&1

0&p&1 —k,

1 -k &p& 1+k,
k —1&p&k+1,

—1&z &1,
—1&z & (1-p —k )/2pk;
—1 &z & (1 -p —k )/2pk .

The x and z integrations can now be performed analytically to give finally

) 1+y[
2 2 2 21 1 —( q —k) w —k 1 —q —(» (»+ k 2qk —(» —k

(2rr)',
r ( qk 2rrlr 2qlr+ —rr' 2qrr r —q'+

1

1-ae (1-a &

with ranges of the integration variable x:
1 1+q (q —1) 1 —q
2 4 8q 1+q (2. 13) (d —k2

2k
&x&1 k &&k +2k, any k;

and where 8(1 -k) is the step function.
Let us now consider the imaginary part of

T(k, (»). From Eq. (2. 6), we obtain

1 1
(p(q, k, x)

Tz(k, M)=(2 )
dx q dq

X 5 q — —5 q+

k&2,0&~&k,
—1&x&

2k
k —2k & (g) & k k & 2;

while the second 5 function contributes only when

k—1 & x &—,0 & (» & 2k —k k & 2 . (2. 17)2k

where

Q(q, k, x) = F(q+k, k) —E(q, k),

(2. 14)
III. RESULTS AND CONCLUSIONS

The integrals (2. 12) and (2. 14) were carried out
numerically and the function G(k, (») was obtained'
using the relation

with x=q ~ k/qk. The integration over q is easily
performed if one notes that, due to the finite do-
main of integration, each 5 function will contribute
only under particular conditions. More exactly,
the first 5 function contributes for the following

G(k, (») = Po(k, (»)/Qo(k, (») .
A useful check on the calculations was based on
comparing values of G(k, 0) calculated in two in-
dependent ways. G(k, 0) as calculated here agrees
to within 1% with the values previously obtained and
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FIG. 3. Imaginary part of the dielectric function for
r =3, k =kg.

FIG. 1. G~(k, v) and G&(k, v) vs cu for k=k~. G~(k, cu)

remains flat for values of cu larger than 6.

published in I for k&2, while for large k, G(k, 0) aP-
proaches the asymptotic value 3. The discrepancies
are attributable, of course, to the fact that in I the
values of G (k, 0) were obtained by numerical evalua-

tion of a fourfold integral, while in the present paper
only one-dimensional integrals are calculated
numerically. In Fig. 1 the real and imaginary
parts of G(k, ~) are shown as functions of ~ for k
= kz. As may be seen, the co dependence is rather
large, particularly at small ~ values. The de-
crease in G&(k, &u) from its static value, together
with a nonzero G2(k, &o), has the effect of decreasing
the values of e,(k, &o) and e2(k, &u) from the values
obtained by approximating G(k, ~) by G(k, 0) in
Eq. (1.1). In Figs. 2 and 3, e,(k, z) and e2(k, &u)

including the full & dependence are compared with
the functions obtained using G(k, 0) [e'(k, &u)] and
with the random-phase-approximation results
[a "(k, &g)], again at k=kz. It will be noted that
the maximum in ez(k, ~) is shifted to a lower cu

value than it has in the RPA. This effect, however,
is not peculiar to the presently assumed & depen-
dence; it can be easily seen, in fact, that any di-
electric function in which self-energy and corre-
lation effects are included using the Hubbard form
(1. 1) exhibits that effect.

Finally, as Eq. (3. 5) of I was obtained by impos-
ing the f sum rule, in our notation

f S (k, (g) &u d(u = Nk (3 2)

0
0

FIG. 2. Real part of the dielectric function for r~=3,
k =kg.

we have checked our calculations and approxima-
tions by calculating the integral in Eq. (3. 2). We
find that, neglecting the & dependence, the sum
rule is satisfied with an accuracy of 10, while
with the full co dependence the accuracy is improved
to a value varying between 10 and 10 ', thus con-
firming the goodness of the approximations used in
deriving Eq. (3. 5) of I, particularly the decoupling
of the expectation value of a product of four Fermi
operators according to
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—( a, a, ) ( a, a, ), (3. 3}

and the neglecting of term (A5) of I. We can, in

fact, claim that the effects neglected will give a
contribution to the integral in Eq. (3. 2) not larger
than one part in 10 . It must, however, be men-
tioned that if one wants to calculate the Pauli or spin
paramagnetic susceptibility using the same
Green's-function decoupling method used in I, not

only must one take into account term (A5) of I, but

one also has to improve upon the Hartree-Fock
decoupling (3. 3); in the contrary case one finds for
the spin susceptibility the Hartree-Fock result,
which implies a ferromagnetic instability in the
electron gas at r, = 6 which has never been ob-
served.
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The methodsusedby Schotte and Schotte to study Mahan's x-ray edge problem are extended
to the case of finite hole mass. The singular behavior is expected to continue down to a dis-
tance &~~1/Mg above the absoprtion edge for attractive electron-hole interactions.

I. INTRODUCTION

When an infinitely heavy hole interacts with an
electron gas, the absorption and emission spectra
due, respectively, to the creation and annihilation
of the hole change their shape. In the absence of
electron-hole interactions, the spectra have the
usual threshold edge 8(~- ~o), but in the presence
of this interaction, the threshold acquires a
(~ —&0}

' singularity (see Fig. I}.
This behavior was first surmised by Mahan, '

and can be calculated exactly using the path-inte-
gral approach due to Nozieres and De Dominicis,
or that due to Schotte and Schotte. ~

If the hole mass is now allowed to be finite, the
problem becomes more complicated, and it no
longer seems possible to use the methods of Ref.
2. See Refs. 4-6 for some approaches to the
problem.

In this article we shall extend the method of
Ref. 3 to the case of finite hole mass. In this
method, the electron Fermi gas is replaced by the
Bose gas of its density oscillations; this allows us
to use the path-integral theory of a system inter-

acting with an ensemble of independent harmonic
oscillators. In the one-dimensional gas of S elec-
trons (the only ones that can interact with a sta-
tionary hole via a Dirac's 5 function interaction),
Schotte and Schotte, following Tomonaga, ' define
density-wave operators

1
Pk Z ~~ ak) akk

it)-kg~ }t

E(k, ) —E(kk) = kvF,

where N is the number of electrons and ko is the
momentum at the top of the conduction band. To
within a good approximation (see Tomonaga}, the
p„obey boson commutation relations, and have the
dispersion law

Eq= kv~,

where vz is the Fermi velocity.
Schotte and Schotte also transform the electron

creation and annihilation operators appearing in
the problem into boson operators. If an electron
is created at the originat time t= 0, and annihilated
there at time to, these two fermion operators can


