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Dynamics of Localized Moments in Metals. III. Exchange

Vertex Corrections and the Bloch Equation Parameters*
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The exchange vertex correction to the dynamic uniform transverse conduction-electron
susceptibility X ~ (cu) is calculated in a dilute magnetic alloy. The relation between the mag-
netic resonance linewidth 1/T2 and the longitudinal relaxation rate 1/T&, as calculated by Over-
hauser, is carefully examined. It is shown that 1/T2 equals the sum of the imaginary parts of
the "up" and "down" conduction-electron self-energies plus the vertex correction. The latter
equals in magnitude the frequency-modulation contribution to 1/T2 and its inclusion results in
an equality of TI and T2, guaranteeing rotational invariance. An additional feature of our re-
sults is that the form of y~ '(cu) is that appropriate to exchange relaxation to the instantaneous
local field.

I. INTRODUCTION

The conduction-electron self-energy in a dilute
magnetic alloy has been computed by a number of
authors. ' In order to calculate the magnetic reso-
nance properties, one must calculate the dynamic
transverse susceptibility, using linear response
theory, in terms of the two-particle propagator.
Orbach and Spencer (to be referred to as SO I and
OS II) employed a decoupling procedure to compute
the full coupled dynamic transverse susceptibility
for such a system. However, there exists an un-
fortunate numerical error' in OS II. Upon its cor-
rection, one discovers that the QS II resonance
linewidth is not equal to the sum of the imaginary
parts of the one-electron self-energies. The de-
coupling procedure does allow for a distinction be-
tween the various contributions to the resonance
linewidth. However, tc display the origin of this
difference, it is more transparent to use diagram-
matic perturbation theory, utilizing the one-elec-
tron propagators. We shall demonstrate that when
vertex corrections to the susceptibility bubble are
properly taken into account, an additional term
enters the resonance denominator which adds to
the one-electron self-energies and yields a reso-
nance linewidth equal to the corrected OS II result.
These corrections are evaluated by solving the in-
tegral Bethe-Salpeter equation for the vertex func-
tion. The form of the susceptibility is appropriate
to relaxation towards the instantaneous local field.
This result derives naturally from the finite-tem-
perature diagrammatic methods" and is not
"forced" as in the molecular field method.

In Sec. II we shall carry through the perturbation
theory for the conduction-electron transverse dy-
namic susceptibility to second order in the localized
conduction-electron exchange coupling.

In Sec. III we shall analyze our results in terms
of standard magnetic resonance notation, and dis-

play explicitly the character of the vertex correc-
tion. Our treatment is appropriate to high tem-
peratures compared to the measuring or Zeeman
frequencies.

We wish to emphasize that the purpose of this
paper is to make clear the physical character of
the many contributions to the conduction-electron
resonance linewidth in a dilute magnetic alloy. We
shall therefore take the localized spins to be in
thermal equilibrium. In an actual magnetic reso-
nance experiment, this is most definitely not the
case. One must compute the full coupled suscep-
tibility (OS II, for example) to obtain the full re-
sponse function. Our analysis of the conduction-
electron component alone is for the purpose of
displaying the physics lying behind the linewidth
appropriate to that component. We find it interest-
ing that even in the lowest (second) order, where a
contribution to the linewidth is obtained for an ex-
change coupling, two electron effects are essential
to an understanding of the resonance properties.
Without their inclusion, as we show in Sec. III, de-
tailed balance is not satisfied, nor does the line-
width parameter 1/T2 agree with the spin-lattice
relaxation rate 1/T, as computed by Overhauser.

II. CALCULATION OF DYNAMIC TRANSVERSE
SUSCEPTIBILITY FOR CONDUCTION ELECTRONS

We shall compute in this section the transverse
dynamic susceptibility for conduction electrons in
a dilute alloy. Because the localized spins obey
neither Bose nor fermion statistics, we must re-
sort to a special method in order to treat their dy-
namics properly. We shall make use here of the
"drone-fermion" representation developed for this
problem by Spencer though we should like to re-
mark that we have obtained identical results using
the method of Abrikosov or of Brenig and Gotze.

Before we begin the actual computation, we
should like to outline our procedure. We shall use
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standard finite-temperature perturbation diagram-
matic methods for the calculation of the response
function. ' The vertex corrections are calculated
using the usual Bethe-Salpeter self-consistency
equation for the vertex function A. Evaluating A,
we perform summations over the imaginary fre-
quency variables in such a way that ~ will be given
by an expression of exactly the same form as one-
electron self-energies, in particular, their longi-
tudinal part. Both the vertex corrections and self-
energies are calculated to order J, where J is the
(assumed) isotropic exchange integral between the
localized and conduction-electron spins. Spatial
averages are performed over an ensemble of ran-
dom impurities. We adopt a constant density-of-
states model for the conduction electrons for math-
ematical simplicity. We also restrict ourselves
to the high-temperature regime, where kT is
greater than either the measuring or Zeeman en-
ergies. This condition results in relaxation rates
which are demonstrably not explicit functions of
frequency. The form of our result is appropriate
to relaxation to the instantaneous local field, a
result which follows immediately from the pertur-

K=K0+Kg ~ (2)

where Xp is the unperturbed Hamiltonian for the
conduction and localized electrons in an external
magnetic field h',

Kp = Q $ y)) Qg ay)t+ 4)~ Sg

y, A,

(3)

where ~ = a 1, $ ~ = ( ~
—p, + ~ &w„(d, = g, )L(,& h', and

(d, = g, p, ~ h'. The interaction Hamiltonian 3C& is
appropriate to an isotropic local exchange coupling
and can be written as

bation diagrammatic method. '
To establish notation, we introduce the drone-

fermion operators of Spencer for the localized spin
Sj= ~ at site j:

C t 1 + tSjCjCjp&SjCj(t)jpfjdj+dj
where both the c and d operators are fermions.
Their respective propagators will be labeled by C
and D. The reader is referred to Spencer's paper
for further background concerning the use of these
operators. The total Hamiltonian is

-$ifj ~ R ~ ~Q e jSj'0'q=-
6~j

( y-y') tc, )&a;, ay, + Q& c;a;, a;, + a &ic~c; —&) a@,ay
jyyyp

(4)

The zero-order propagators appropriate to the
localized spins operators, and to the conduction
electrons (denoted by G;„' '), are

C"'( v ) = 1j(~, —i v),

D"' ( v ) = 2/i v,

Gt, „"'(v) = ll($;„—i v),
where v= (2v+ 1)~kT, with v taking all integer val-
ues. For completeness, we recompute below the
first- and second-order self-energies for the con-
duction electrons appropriate to (4) computed first
by Spencer :

V„' '( v) =chT(S'),

I„g2,—. ~ G;, „(v')D(v")C(v+v" —v') 8 —f'f'($g „)+f f(fv ),)
p =C—~N y. $p „—iv+~

(6a)

(6b)

(2„g~, Gq. „(v') C(v")C(v" —v'+ v) c ~ f f
y v.- ( —is)' $y„—i v (6c)

Here,

f =(1+e "3), f'=1 f, 6=(kT) ', -
and c is the fractional atomic concentration. The
results have been obtained by converting the sum-
mations over v', v" to contour integrals. We have
used the relations

&(x+ y) =f(x)f(y)flf '(y) -f(x)j,
where X(x) and f(x) are Bose and Fermi distribu-

tion functions, respectively, and

f'(x) = lim = f'(x)f(x) . —f(x+ 0) f(x)-
5 0

The superscripts in (6) label both the order of
the seU-energy in powers of (4), and also the char-
acter of the process. Figure 1 displays the dia-
grammatic equivalents to (6). Thus, (6a) refers
to the first order, ,or Knight shift, of the reso-
nance. Expression (6b) refers to the mutual local-
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(a)

FIG. 1. Conauction-electron self-energies: (a) first-
order contributions-V' ~; (b) second-order contribu-
tion —y'; (c) second-order contribution —V' . The
solid lines represent conduction-electron propagators,
the wavy lines C, and the dashed D propagators.

ized conduction-electron (hence, transverse) spin-
flip process, while (6c) refers to the s-s term of
(4) (hence longitudinal). This distinction will be of
some importance later in our analysis, for it will
turn out that the lowest-order vertex correction
will arise only from the latter process. The self-
energies obey the relations

V „(—x+f5) = —V„(x+iEi) .
It is not difficult to carry out the integrations in
(6) using a constant density-of-states model for the
conduction electrons [p(E)=p, —D~E &D]. ' We
restrict our attention to high temperatures
(&u„&u„o)«kT) and note that for S =-,' the fermion
factors in (6) can be regrouped into localized spin
functions. Then (6) reduces to

The conduction-electron uniform magnetization is

~e ~e&9 ~g
The diagrammatic representation for the transform
$«(vo) is displayed in Fig. 2, using dressed one-
electron propagators and again the drone-fermion
representation for the localized spins. The two-
particle propagator, to order J, is given by

&«(vo)= —s&s ge & Gt, (v+vo)s ( —i) — (s)—
—sP

xGI, "'(v) A(v, v+ v()), (~)

where G~„' ' are the dressed propagators, with
self-energies appropriate to (8), A is the vertex
function, v=(2»+ l)skT, and vo=2voskT, with v

and vo taking all integer values. The integral equa-
tion for the vertex function will contain C-on prop-
agator bubble f(v, v+ vo) pictured in .ig. 2(b). In

precisely the same manner that V ' was computed,
we find

f(v, v+ vo)=Q&(1/ii) e ' ~'6 ~

x ~.C(o)(v" + v' —() C(o)(v")

V "'= cm(S')
= —ctVPf f'5o, () 5s. p, . (10)

Re V„' = 2chl p (S') ln (skT/2yD),

Rey &'» = 0

'=2scpZ f f'=27tcpZ [((S') ) —(S') ],
ImV„' "=t(c~f f'= ncpJ [((S') ) -(S')s],

(8)

Using this quantity, we can write an integral Bethe-
Salpeter equation for the vertex function, depicted
in Fig. 2(c):

where y is Euler's constant= 0. 58. The sum of all
the terms in (8), which appear in the denominator
of the second-order "dressed" Green's function
Gs„', will be denoted by V„' ' ' (x si5) = X VaiI', .
It is seen from (8) that V and I', are functions of
temperature only, and quite independent of fre-
quency. This would not be true in the low-tempera-
ture limit, and would greatly complicate the anal-
ysis which follows.

The dynamic transverse susceptibility for the con-
duction electrons Z«(&u) is equal to the Fourier
transform of the function

X« '(t) =is(t) ([m,(t), m', (0)]).
It is obtained from analytic continuation above the
real ~ axis of the transform of the two-particle
propagator

6'„'(u) = —,
' ( Tm, (u) m', (0)).

Thusy

x G~, ' '(v'+ vo) G;:,' '(v') I (v, v+ vo) tt(v', v'+ vo)

FIG. 2. (a) Dynamic transverse susceptibility ~e '(( ).
(b} The irreducible C-on propagators bubble I(v, v + vo) .

The same I enters into a diagram represent-
ing V' ' contribution to the self-energy. (c} Bethe-
Salpeter equation for the vertex function A.
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2cJ /-/+
N

&& Gy, ~'(v+ v, ) G~ „u' (v) A (v, v+ vo) .

Solving (11) for A(v, v+ vo), and separating the prod-
uct of the Green's functions by using partial frac-
tions, one obtains

(cJ /N)f'f - 1 I
'v —(u + V ""'(v+ v ) —V, ""(v) -~ $ -., —i( v + v, ) —V, ""(v+ ) t;,, —z v —V, ""( )

(12)

The product of (c J /N) f f ' with the two terms which are summed over p' can be identified immediately
with V„as defined by (6c}. This results in remarkable simplification, for we can write the vertex func-
tion entirely in terms of the self-energies:

i v, —(u, + V, ""(v+ v, ) —V, ""(v) i vo —(u, + V, (v+ vo) —0', (v)
~

~

(13)

where we have written

V„( v) = V "' '( v)+ V„' "(v)

Appearing in the denominator of the vertex func-
tion is the sum of the imaginary parts of the 0 and
t conduction-electron self-energies [see Eq. (8)]
together with the sum of the purely imaginary term
V~' "(v) which arises from the integral equation
determining the vertex function. This latter term
happens to be exactly equal to the longitudinal part
of the conduction-electron self-energy. We shall
be able to identify in Sec. III each of these terms

with appropriate parameters in the Bloch equations.
Now that we have determined the vertex function,

we may return to (9} to obtain the dynamic conduc-
tion-electron transverse susceptibility from the
relation y„'(zv) = F„'(~+z0'). In (9), we convert
the summation over i v to a contour integration in
the complex a' plane, the contour C going immedi-
ately below and above each of the cuts Im~' = 0,
im(~u'+ i vo) = 0. Changing variables when integrat-
ing along the latter cut from ~'- ~' —i vo, ensuring
analytic continuation of the integrand, and letting
finally i vo- ~+ i5, we arrive at

X„'(~)= —,'(Zz~g, )'(z/2zz) Q; f du)'f((u') Gg, "'((u'+ i vo) G;, "'(~') A(~', ~'+ z vp)

= —
(Zz& g ) (z/2zz) Q f zf~ (A (rg, ~ + ~) [f(&d ) f((d + (d)] Gf, -((d + (d + z'5) Gy ((d —z5)

—A"((u', (u'+ (u)f(e') Gy, '((u'+ (a+i5) G;, z '((u'+z5)

+ A (~' zv'+ ~)f(~'+ ~) G., +&(~'+ ~ z&) GI„~'(u —z5) } (14)

Here, the ~"~"~ are the analytically continued func-
tions A(v, v+ vo) in (13):

1 z((d
q (d + (d) —A((d + LT)z6q (d + (d + zziz6)

Their only discontinuities in the u' plane lie along
the lines Im~'=0, and Im(zv'+ivo)=0. Separating
the product of the Green's functions by again using
partial fractions, and using analytically continued
(13), we can write for (14) the expression

f (~') f(~'+~)-
&u, —&u —V,(u'+&u+i5)+ V, (&u' —i5) u' —$~, + V,

' ' '(w' —i5)

f (~')
—u —V, (up'+ a+ z5)+ $', (u'+ i5)

1 1 f ((d + (d)
m' —$~+ V, '" '(&u'+ i5} u'+ e —t'y, + V, (u'+ &u+z5) &u, —u& —V, (v'+ &@ —i5)+ V, (&u —z5)
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(15)

Under the assumption that 1",«kT, we can make
the approximation that

I/(x ~ ir) = I'(I/x) + iv6 (x)

in (15). In order to make our final result more
transparent, we also rewrite V„(x+i5) according
to our earlier definition

V„(x~f5)= ~V~i(r, + r, "&) . (16)

The last term in (16) is simply the longitudinal part
of the conduction-electron self-energy and, as

t

stated above, it arises from the vertex correction
to the conduction-electron susceptibility bubble.
The fact that r,~» adds to I, in (16) is of interest,
for a cancellation would obtain for simple potential
scattering. The opposite sign of the bubble vertices
[see Fig. 2(b)] caused by the spin-dependent char-
acter of the interaction Hamiltonian is responsible
for this important (indeed, crucial) difference.

Converting the sum over p to an integration over
energy, we obtain the final expression for the dy-
namic transverse conduction-electron susceptibility
to be discussed in detail in Sec. III:

X.. '(~) =(-,'& sg.)
f((~ —-~ —v)+f (h. —v) f(h. +-v)+f (hs, + ~+ v)

~-~,+2V+2i(r, +r,"'')

f( (—2 — ) 2f( 222) f(2-, —2) ft( 2) )-
(d —(o, + 2V

2 —(d, + 2 V+ 2i(I", + I', ")
='("'g') P ~-u, +2V+2i(r, +r,~»)

III. ANALYSIS OF x +(~) IN TERMS OF BLOCH

EQUATION PARAMETERS

Overhauser has computed the spin-lattice re-
laxation rate 1/T, for conduction electrons scatter-
ing off of localized impurities in a metal via a
scalar spin coupling. If we designate the one-elec-
tron contributions to the linewidth [the term 2r,
in (1V)] by the symbol 1/T2, a comparison with
Overhauser's results yields

so that the sum 1/T2+ 1/T &= I/Tz, the resonance
linewidth, equals 1/T, . Returning to (17) we see
that inclusion of the vertex correction, representing
a two-electron contribution to the magnetic reso-
nance linewidth, adds an imaginary term to the reso-
nance denominator equal to the frequency-modula-
self-energies, 2 Im V„". Noting that this term
equals in magnitude —,'(2 Im V„~&& = I/2T&) we have
immediately the required result that the full line-
width in (17) is given by the expression

1/ Tg = vcp J' [( (S*)) —( S*) ] 1/T2 ——1/Tq + 1/4T& ——I/T& . (19)

(1/T&) ~ (18)

To carry our analysis further, we note that 1/T2
itself is composed of two parts: 2 Im V„""and
2Im V„". We make the usual magnetic resonance
identification: 1/T', is the spin-flip part of the
linewidth; 1/T 2 is the longitudinal or frequency
modulation part of the linewidth. Then we see im-
mediately that 1/T', = 2imv„~2&= 1/2T„but that if
we identify 1/T2 with 2 Im V„(», we should obtain
the incorrect result that 1/T &= 1/2T

&

——1/4T&.
Very general theorems require that, at high tem-
peratures, isotropic systems, and in the short
correlation time limit, all relevant to the system
we are treating, 1/T,' must equal 1/T,' = 1/2T„

Hence, the contribution of the vertex correction,
acting through the frequency-modulation channel,
has restored rotational invariance to the magnetic
resonance system: The transverse relaxation time
T& equals the longitudinal relaxation time T&. We
find it interesting that one must properly include
two-electron effects to recover the result (19).

Another feature of (IV) which is important is its
form. The presence in the numerator of both the
width and renormalized resonance frequency is
indicative of a susceptibility where relaxation to
the instantaneous local field has been required.
Indeed, the results of OS I have exactly the struc-
ture of (IV), and a detailed discussion of the con-
sequences is contained in their paper. Remember-
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ing that (17) applies to exchange scattering, we see
that it is permissible in an equation-of-motion ap-
roach to require exchange relaxation to the instan-
taneous local field, as was, in fact, done by the
"Geneva grouy" using molecular field theory, and
by Langreth et al. using Green's functions. We
also see that their use of 1/T, for the magnitude of
the exchange relaxation rate for their line-shape
calculation is correct, because, in fact, at high
temperatures 1/T2 equals 1/T~ from (19). This is
not a trivial point, for the physical justification of
detailed balance is on the basis of "loss" of mag-
netization, i. e. , on a longitudinal relaxation basis.
However, the resonance equations display a reso-
nance linewidth ayyropriate to a transverse relaxa-
tion rate 1/T2. The equality of these two rates at
high temperatures allows for their procedure.
Note, however, that at low temperatures, where
the frequency dependence of the self-energies be-
come important, one cannot even define a trans-
verse relaxation rate 1/Tz. '

IV. CONCLUSION

We have demonstrated that the two-particle char-
acter of the transverse dynamic conduction-electron

susceptibility X„'(&u) necessitates inclusion of the
vertex correction to establish rotational invariance
[equivalence of the transverse (1/Tz) and longitudi-
nal (1/T, ) relaxation rates]. The vertex correction
itself is obtained by solving the Bethe-Salpeter in-
tegral equation. It arises from longitudinal fluc-
tuations of the localized spin, and is equal in mag-
nitude to the sum of the imaginary parts of the con-
duction-electron self-energies arising from those
fluctuations. The perturbation methods result in
a form for y„(u) which is characteristic of re-
laxation to the instantaneous local field, guarantee-
ing positive-definite resonance absorption and cor-
rect zero frequency behavior.
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