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Bonham corrections to the Wailer-Hartree theory.
As can be seen in Table I, the difference be-

tween the Wailer-Hartree theory even with the cor-
rections by Bonham can be large [for example, at
(sin8)/~= 0. 1 A for Ge]. It is obviously desirable
to have measurements to evaluate the two theories.
A more complete set of tables of total Compton

TABLE I. The total Compton cross sections dg/dQ in
electron units for Li and Ge in the Wailer-Hartree theory,
the Bonham corrections Q& [Eq. (20)] and P2 [Eq. (21)] to
the Wailer-Hartree theory (Mo Ka), and the total cross
section obtained from an integration of the Compton pro-
files in the impulse approximation.

cross sections are available from one of the authors
(R. J.W. ).

IV. CONCLUSION

The most important point suggested by our re-
sults is that the impulse approximation for core
electrons provides a convenient scheme for sub-
tracting their contributions from the observed
Compton profiles. Since the valence electron con-
tribution is only sizable near the Compton peak,
the error in separating the valence electron profile
from the core can probably be kept to a few per-
cent.

The total cross sections as calculated in the
Wailer-Hartree approximation and the impulse ap-
proximation can differ greatly but not at the large
values of (sin8)/& employed in Compton profile
measurements. Thus, absolute normalization of
the profiles can be done to within a few percent
when conditions are chosen such that (sin8)/X & l. 0
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Self-Consistent Electronic Structure of Titanium. II
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The band structure, Fermi surface, and density of states from an augmented-plane-wave
calculation of titanium are presented and compared with previously reported results. The
present calculation differs from the earlier work in that the potential is a self-consistent
muffin-tin form and further in that the coefficient of the Slater exchange term is g instead of 1.

1. 1NTRODUCTION

The aims of the present calculation are (i) to ob-
tain the self-consistent-potential energy bands and
Fermi surface of titanium within the muffin-tin

one-electron potential-energy form for comparison
with a previous "one-shot" calculation, 2 (ii) to de-
termine the effect on the self-consistent energy
eigenvalues at the I' point for various choices of
the parameter o. in the Xn-method exchange poten-
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tial, (iii) to predict de Haas-van Alphen periods
for the conduction electrons in titanium, and (iv)
to obtain a set of crystal wave functions which can
be used as a starting set for determining a non-
spherical "true" crystal potential for titanium.

The calculation is performed using the augmented-
plane-wave (APW) method of Slater' since rapid
convergence is obtained for the 3d transition
metals using this method. Group theory is used to
reduce the size of the secular determinant and
self-consistency is acquired only with respect to
a charge density determined by a sampling of
136 high-symmetry points in the Brillouin zone
(BZ). In Sec. II, we describe how the self-con-
sistent muffin-tin charge density and potential are
determined, and we discuss the group theory for
the nonsymmorphic space group of the hcp crystal
structure. In Sec. III, we present energy conver-
gence studies with respect to truncation of the
angular momentum quantum number l which appears
in the APW matrix elements and the iterated crys-
tal charge density, and we present our reasons for
iterating only the charge density produced by the
original 3d 4s atomic states with all lower-energy
charge densities being assumed "frozen. " Next,
we study the convergence of the self-consistent
energy eigenvalues at the I' point for three choices
of n, a=1, +6, and 4, and we calculate the energy
bands and Fermi surface for n=-,', a choice which
produces the most physically reasonable results.
Finally, we compute a density-of -states histogram
for comparison with the experimental photoemis-
sion work of Eastman' and the density of states
found by Compton scattering, and we calculate an
electron specific-heat coefficient to compare with
the specific-heat measurements of Daunt and
Gschneider. 8

In Sec. IV, we compare the present energy bands
and Fermi surface with those obtained by the
authors in a previous calculation, hereafter re-
ferred to as HW (I). Also, where possible, we
contrast this work with the results of Altmann and
Bradley (AB), which they obtained using a modified
form of the cellular method suggested by Slater
and developed by Altmann. " Finally, we discuss
possible orbital periods of conduction electrons for
comparison with de Haas —van Alphen measure-
ments of the Fermi surface. Since no experimental
data are available, we compare these periods with
those predicted in HW (I).

The radial function R, (p, E') satisfies the equation

where V"(p) is the spherically symmetric part of
the muffin-tin potential. The coefficients A, are
chosen to make the APW's continuous across the
APW sphere boundary defined by radius S„. This
requires that

A, (k„E )=4ve' ~ "i F~ (k, )jq(k~S„)/R~(S„, E ) .
The wave vector k =ko+ g determines the trans-

formation properties of the eigenfunction being cal-
culated. The component ko is the reduced wave
vector in the first BZ, and g is one of the set of
reciprocal-lattice vectors for the crystal. The
eigenfunction gr" is made up of all APW's which be-
long to the koth representation. Hence, we have

gf = $I = Qg CIT +g Xko~lt ~

where the expansion coefficients Cr, ~ are de-
termined using the variational principle.

Schlosser and Marcus have obtained an appro-
priate variational expression for E which is valid
for wave functions exhibiting continuity in value but
discontinuity in slope over a spherical surface,

Qy+ Qg g

|Jj*gdV= $*HgdV
Qg+Qyy

to the one-electron Schrodinger equation for a crys-
tal potential usually chosen to be of a muffin-tin
form. This approximation to the true crystal po-
tential is one in which a sphere (called an APW
sphere) is constructed about each atomic site such
that no overlapping of spheres occurs. The poten-
tial is assumed to be spherically symmetric within
each APW sphere and to be constant in the region
between spheres. The wave function is expanded
in terms of products of radial functions and
spherical harmonics inside each sphere and is rep-
resented by a Fourier series of plane waves in the
region between spheres. The APW's thus have the
form

R, (p, E') y, (p) inside APW sphere
), m

™

II. THEORETICAL ANALYSIS

A. APW Method

The APW method has been discussed at length in
the literature. We review the method briefly and
refer the reader elsewhere' for a more detailed
discussion. The method yields the best solution

sphere

The surface term takes the discontinuity of slope
into account. 0& is the volume within the APW
spheres and 0&& is the volume outside. Substituting
(2) into this expression and minimizing E with re-
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spect to the coefficients Cg.w
lead to a set of linearp+

equations for each wave vector kp as given by

Zg (Hp +S;~ —En@, ) C@,g. = 0 for all g .
The eigenvalues E are found by solving the de-
terminantal equation

det IH r + S„—Eras' I

= 0 .

Within the muffin-tin approximation, the charge
density is made up of two parts: There is the
spherically averaged density inside the APW sphere
given by

p„(r)=,— ~
I ),.I

sine de d4,
kp

The matrix elements in the determinant are given
b 1P.

with

&1&„(r)= Q Cf .; Z A& R&(r)Y, (8, 4t&), r &S„.
2

(Hyp + Sgg —E&gg ) = Q„» (k~ —E) 5gg.

where

4 g S2 &( if4'&&'FpG44
77 v re v

I 4&0

G-"- =(k k, -E)" = " —Q (2f+i)

x P, (k~
' kr )j,(kgS„)j,(k~. S„) ' " . (4)R, (S„,E)

Ri S„,E

This form of the matrix elements is acquired by
setting the trial energy E' equal to the eigenenergy
E, thus eliminating the term in the matrix element
depending on E' —E (the term involving the portion
of the integral extending throughout only the spher-
ical regions). The APW functions and matrix ele-
ments depend implicitly on the eigenenergy in this
procedure. One chooses values of E, computes the
matrix elements, and then computes the de terminant.
When the proper values are acquired, the determin-
ant vanishes.

For each eigenvalue computed, the corresponding
expansion coefficients Cg .; can be determined by
a matrix inversion technique. The coefficients so
determined yield an appropriate expansion for the
eigenfunction given by (2) above.

where the sum on ko is over all occupied Bloch
states. The potential for the next iteration is ob-
tained by solving Poisson's equation (in atomic
units)

V V(r)= —8»p(r) .

B. Self-Consistent Muffin-Tin Potential

The starting point of an APW calculation is the
determination of a, muffin-tin potential. A method
for constructing this form of crystal potential using
atomic potentials obtained from Hartree-Fock-Sla-
ter self-consistent-field (SCF) calculations is de-
scribed by Mattheiss. " Once the potential has been
obtained, the electronic structure is calculated as
described in Sec. II A. Using the eigenvalues from
this calculation, a new crystal charge density is
calculated using the expression

p(r ) =z
I

&)&f.
I

=z ~~ cl +g cj 4&44x104i xf 4&v

k gg'

Using the expressions for the A, , the spherically
averaged density can be written

p„(r) = —E Cf, g Cg,p ~ 4&&
l ~~ 4 v R,'(r)

g v

x (2l + l)j, (k S„)j,(k& S„)P, (k k, ) . (5)

Next, there is the constant density in the region
outside the APW spheres. This is given by the
volume average over the region outside

p, „,= — 5~
I

&)&,„, I
r dr sin8d0d4&,
2,

p4 kp
Ap

where flo is the volume of the region outside given
by 0„»—$„3»S„and where

e & ( t04g &
~ r

Carrying out the integration over the entire cell
volume and then subtracting off the contribution of
the sphere volume gives

Pout- —~ ~ Cr.gC~.p
p k gp 0 p

„{, , 4. &&;-"-;.&,ti4-4'iS, &

)

The normalization integral for these averaged
charge densities can now be performed. It is given
by

f Sv-
H, =P,„,a, +4,5 „j "p„(r)r'dr .

Since there are two electrons for each Bloch state,
Np can be chosen so that the state represents either
one or two electrons per unit cell. Typically it is
chosen to give one electron per unit cell, and the
multiplication by two is performed later.

With p„(r) and p,„, determined as described, the
problem of finding the potential is straightforward.
Rudge' has given a complete development for the
calculation of the Coulomb and exchange potential
energies in the case of a, crystalline potential en-
ergy of a general kind, i.e. , one involving non-
sphericity. His approach utilizes a decomposition
of a crystalline charge density into three parts.
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Three separate problems are then solved: (i) a
Fourier series problem, (ii) a zero multiple-mo-
ment problem, and (iii) a generalized Ewald poten-
tial problem. Within the muffin-tin approximation
the problems become extremely simple. The
Fourier series problem involves only the g =0 co-
efficient defined by p(g= 0) = p,„,. The zero mul-
tiple-moment problem involves only an array of
monopoles and a spherical density, namely,
Z„—Q and p„(r) —p,„, where Q is chosen to give a
zero monopole moment for each sphere,

Z„-Q —j " [p„(r) —p.„,] 4''dr = 0 .
0

(7)

Finally the generalized Ewald potential problem
involves an array of monopoles + Q and a constant
negative charge density p, = p,„,. The monopoles
are placed at the center of each APW sphere and

are of strength

p,„,D„„=5~„(+Q). (8)

The magnitude of the monopole (- Q) in (7) is iden-
tical to that of the monopole (+ Q) in (8).

Our final expressions for the muffin-tin poten-
tial-energy solutions to the above problems (in-
cluding the g & exchange potential) are

V (r) = — "+— p„(r)r dr2Z„ Sm

0

'Sv 1/3
+ Sv p„(~)r dr —6ot

8 p„(r) (9)

inside the APW sphere, and

@out 4 tt'~v Pout g 2 b 87t'

g
1/3

in the region outside. For hcp crystal structure,
we determine the constant b in (10) to be

2
4 s /4s

~cell ~ + ~cell gA)

erfce(F)
I
5'I /a

This expression is independent of E which is a con-
vergence factor. The quantity a is the "principal"
lattice constant (in the case of the hcp crysta, l struc-
ture there are two lattice constants). The expres-
sion for b takes into account the nonsymmorphic
nature of the space group for the hcp crystal struc-
ture by including the phase factor e" in the third
term, a factor which is equal to unity for crystals
having symmorphic space groups.

These expressions for the potential energy are

written such that the constant terms which are found

in V"(r) are shifted to appear in V'"'. Also, the
calculation is performed by setting the average
background potential equal to zero in the process
of solving the generalized Ewald potential problem,
a trick which can be done within the muffin-tin
approximation.

The new muffin-tin potential obtained above is
averaged with the muffin-tin potential used in the
previous iteration in order to speed convergence.
The weighting is determined by trial iterations since
no clear-cut analytical procedure exists for de-
termining an optimum value for the averaging.
Typically only four or five iterations are required
to achieve self-consistency, once an optimum
weighted average is found.

C. Group Theoretical Analysis

The number of reciprocal-lattice vectors required
to obtain reasonably convergent eigenvalues for
titanium (to within 0. 0025 Ry) produces a rather
large secular determinant, typically of the order of
at least 30&& 30. At high-symmetry points and along
high-symmetry directions, the determinant can be
reduced to a set of appreciably smaller determinants
if one uses symmetrized functions which transform
irreducibly under the group of the wave vector for
the point in question. The crystal structure for
titanium is characterized by the D4~ nonsymmorphic
space group, so that the problem of finding the ir-
reducible representations of the space group is
somewhat more complicated. It is no longer pos-
sible to deal with representations of the translational
group and point group separately.

The operators of the space group are of the form
(RI v„+F~'f, where r„ is a primitive lattice transla-
tion and vR is equal either to 0 or 7 depending on
whether or not a nonprimitive translation is neces-
sary after the operation R. The point group G0
therefore is no longer a subgroup of the space group

G because of the necessity of translating by v after
some of the point group operations.

The problem of finding the irreducible represen-
tations of the space group is the same as that for
symmorphic space groups in that one seeks the ir-
reducible representations of the group of the wave
vector G(Q). However, these representations now
satisfy

r, ((E
1

t )) = e "o'"R r,((Z
I t„}),

where t= t„+tR. Furthermore, the effect of op-
erating on a Bloch function P; (r ), using Slater's"
notation, is

(R~t)y- (r)=e'"o'"n'z 8' ' zy gf (r)

The projection operators" used to form sym-
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metrized basis functions are of the form

Q r,*({Rlt})„{Rlt},
&ziti

(12)

Z(OO. I)

C Axis

where p is the dimension of the pth irreducible
representation, g(ks) is the order of the group
G(ks), and the summation is over all operations in
the group G(ka), including the translations. Be-
cause of the differences between representations
(and operators) of symmorphic and nonsymmorphic
space groups, the projection operator (12) for a
nonsymmorphic space group becomes

I

I

I

I

I

I

I

I

I

I

I

ap
= Y(OI.O)

P„= ~ }
2 I'& ({Rlt„})„{Rlt}, (13)

where the summation no longer includestheprimitive
translations. Just as in the case for symmorphic
space groups, the factor e' & ~ due to {Rit}is can-
celled by the phase factor of the complex conjugate
of the representation matrix, I'~ ({Rit}).

A suitable set of symmetrized APW's for reducing
the size of the secular determinant therefore is

(IO.O)
X (2I O)

Z (OO. I)

2 + CAxis

I',*({Rlt.}}-e'"'" xa-&I (r),

s=l, . . . l, (14)

where p ranges over the set of irreducible repre-
sentations of G(g}. Slater s has listed the matrix
elements of the irreducible representations for all
high-symmetry points and directions of the D6„
space group. One has only to compute the phase
factor e""o"' & for each transformed APW,
Za-~f (r) in order to produce a correctly sym-
metrized APW basis function using Slater's matrix
elements. Once the functions (14) have been found,
they are used in (2) to represent 4I (r ).

p
Using the set (14) in the expansion (2), the large

original determinant (3) is reduced to a product of
smaller determinants

I
L

I
=n, rr. ID(p, s)

I ~

where

ID(p, .) I
=detl(4';. , ff4';. ) &;.-8(4-', 4f.) I.

The largest reduced determinant occurring in the
calculation using 43 reciprocal-lattice vectors is
12&&12 with the typical determinant being of the
order of 6~6.

III. DETAILS AND RESULTS OF CALCULATION

Titanium is a transition metal with an open d-
shell atomic configuration of either 3d 4s or
3d 4s, and it has the hcp crystal structure. The
unit cell and BZ are shown in Fig. 1. The basis
vectors of the direct and reciprocal lattice are
given by

(Io.o)

2n~b,

X (21 0)

Y(OI.O)

L S' H

FIG. l. Unit cell and half of the BZ for the hcp crystal
structure with the 24 zone and crystal synnnetry direc-
tions shown.

bq = (2/+3a) x, bs ——(I/v 3a) x+ (1/a) y, bs = (1/c) z .
The lattice constants are a= 5.576897 a.u. and
c=8.885227 a.u. , giving a ratio of c/a = l. 58731
as compared to the perfect hcp crystal structure
for which c/a = (y} ~ = l. 632 SS. The basic dimen-
sions of the BZ therefore are I'A= 0. 650 (a. u. )
re=0. 751 (a. u. )-', rM =0. 650 (a.u. )-', and
MK = 0. 376 (a.u. ) . The reciprocal-lattice vec-
tors used in the APW expansion are designated by

&(ip+II} f

t(kp&C/Snab)

(15)

The constant b was calculated using an optimum

g = (nz, ns, ns) = 2v(n& b& + ns bs+ ns b3)

For our choice of unit cell, the nonprimitive trans-
lation is T=-,'cz and the phase factor which occurs
in the symmetrized APW's is given by
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TABLE II. High symmetry used in the iteration
process.
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FIG. 3. Slow convergence of energy eigenvalues at
the I' point in the iteration procedure using P= —.', and

A=4 ~
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1/3'
2/3 3

9

4
9

9

4
9
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were used (see Fig. 1 and Table II) to obtain a.

muffin-tin charge density: I", 4, A, K, M, I. , and 8,
a sampling equivalent to 14 points in the BZ.
Also, they were performed using —,

' of the Slater
exchange potential (a value ultimately used in the
final calculation).

Figure 2 shows the results of the first four itera. —

tions with no averaging (P= 1) for succeeding itera-
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05—

1

6

12

12

12

04

v) 03-

O
r4-

cF 02-
cn I+r~
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to speed convergence, the potential (rather than the
charge density) was averaged from one iteration to
the next. The averaged potential is expressed —OI

r4-

V.„=pV'+(I-p) V, O& p&1. (16)

Here V is the potential from a given iteration and
V is that from the previous iteration. An example
of the effect on the eigenvalues at the I" point of the
choice of P is shown in Figs. 2 and 3. For both
these cases, the following high-symmetry points

-0.2
0

Iterations

FIG. 4. Energy convergence to self-consistency in the
iteration procedure using P= 2 and o =1 which gives flip-
ping of g and d bands.
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tions. Convergence is extremely slow as evidenced

by the strong oscillation in eigenvalues from one
iteration to the next. Figure 3 shows the results
for the first four iterations using equal weighting
(p= —,') between the new and old potentials. Con-
vergence is also slow for this case since the eigen-
values continue to change monotonically by a sig-
nificant percentage from one iteration to the next.
Ultimately a value of I3= 0. 65 was found to give
optimum convergence to self-consistency for
titanium.

I.P

7-

gl

.5

L

C
LLI

I I & ~ ~ I 1 I [ (

I

I I

I

D
I E

I I

I

C. Choice of Exchange Approximation

Next, a study was made to determine the effect
of various choices of n in the gn approximation to
the exchange potential. Figure 4 shows the results
of seven iterations for a potential using full (n = 1)
Slater exchange and p =-,' averaging. The first four
iterations labeled A were performed using the seven
high-symmetry points listed above. The fifth itera-
tion labeled B included two additional points, T
and Z, while the last two iterations labeled C were
performed using the first twelve high-symmetry
points listed in Table II. Including points R, P,
and U to those already mentioned gave a sampling
of the BZ at 56 points. The eigenvalues have con-
verged with the d band shifted below the s band, a
result which most likely is nonphysical. Also, the
bandwidth is considerably narrower than in our
previously reported results.

A second choice, n = +6, P = 0.7, gave the results

0.8

0.7—

0.6

0.5

OA

0.3

0.2

O. I

I I

2 3

Iterations

FIG. 5. Energy convergence at the I' point in the
iteration procedure using P =0.7 and 0. =+6 which gives
flipping of g and d bands.

0 I I i I I I I I

0 I 2 3 4 5 6 7 8 9 10 11

Iterations

FIG. 6. Energy convergence to self-consistency at
the I' point in the iteration procedure using p=0. 65 and

Q =g.=3

shown in Fig. 5. Once again the flipping of the s
and d bands and the narrowing of the bandwidth oc-
curs. This calculation was not carried to self-
consistency since the pattern established indicated
results similar to those for the full Slater ex-
change.

Finally, a, convergence study for the choice
n= —,', /=0. 65 was made at the I' point with the re-
sults shown in Fig. 6. The first two iterations
labeled A included only the I' point charge density
and used the entire new potential (P = l). The third
through the eleventh iterations were performed
using I3= 0.65. The third and fourth iteration
labeled B include the first seven high-symmetry
points listed in Table II. The fifth through eighth
iteration labeled C use the first twelve high-sym-
metry points. Relative convergence has been ob-
tained. As a check, the next three high-symmetry
points were added and a ninth iteration labeled D
was performed. Enough change occurred that two
more iterations labeled E were carried out using
the 22 high-symmetry points marked with asterisks
in Table II, a set of points equivalent to a 136-point
sampling of the BZ.

This study was made to determine convergence
with respect to the size of the sampling mesh as
well as convergence to a set of results indicative
of the choice of the Slater exchange. Very little
relative change in the eigenvalues occurred between
the eighth and eleventh iterations in which 80 ad-
ditional high-symmetry points have been added to
the sampling used to determine the muffin-tin
charge density. For this choice of n, the ordering
of the s and d bands is unchanged and the bandwidth
is essentially the same as that obtained in HW (I).
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4 "Zone

Zone
3 Zofls

FIG. 8. Intersections of the Fermi surface with the
symmetry planes of the ~24 double-zone wedge for the
third and fourth zone.

D. Band Structure and Fermi Surface

Using the self -consistent muffin-tin potentia, l
calculated with the choice n = —,', the energy bands
and Fermi surface were calculated in the same
manner as described in HW (I). The computations
were carried out over a discrete mesh equivalent
to 3024 points in the BZ. The eigenvalues were
found at 126 general points in the ~ zone shown in
Fig. 1 using the scheme described in HW (I); and
they were computed for all high-symmetry points
and along high-symmetry directions. The Fermi
energy was found by arranging in increasing value
the 126 sets of eigenvalues in the ~ zone. Since
there are four valence electrons per atom and two
atoms per unit cell (see Fig. 1), there are eight
electrons per unit cell to be accommodated. Each
band can accommodate two electrons per cell (spin
up and spin down) so that there exist four full
bands on the average. Thus, (8 —: 2)&&128 = 504
lowest-energy eigenstates are occupied, and the
Ferini energy accurate to one part in 504 is given

6t" Zone

St"Zone

FIG. 10. Basic Fermi-surface portions for the third
and fourth zone. Some of the possible electron orbits
are labeled with lower case Roman letters.

by that of the highest occupied energy state. The
highest occupied state was found to have E~= 0. 230
Ry. The energy of the lowest state at I' was
0.077 Ry, which gives an occupied bandwidth of
0.153 Ry. This is smaller than the value 0. 211 Ry
found in HW (I), and it suggests that a smaller ex-
change contribution (say n &-,') may be more ap-
propriate. Since no experimental data exist,
to which a reasonable fit can be made, the question
of a choice of a remains open.

The energy bands along high-symmetry direc-
tions are shown in Fig. 7. Once again, the double-
zone scheme is used to display connections of the
Fermi surface in the third and fourth as well as
fifth and sixth zones. The intersection of the Fermi
surface with the ~ zone wedge for the third and
fourth zone is shown in Fig. 8 and that for the fifth
and sixth zone is shown in Fig. 9. Each figure
actually displays intersections with the double-zone
wedge with the triangle showing intersection with
the ALH symmetry plane. The shaded parts of both
figures are electron occupied. The Fermi surface
in the double-zone scheme is shown in Figs. 10 and
11.

E. Density of States

FIG. 9. Intersections of the Fermi surface with the
symmetry planes of the 24 double-zone wedge for the
fifth and sixth zone.

The determination of the Fermi energy provides
a means of constructing a density-of-states histo-
gram. The results of the counting scheme are
shown in Fig. 12. The typical density-of-states
curve for hcp metals is exhibited in this case.
There are two peaks due to the narrow d bands with
the Fermi energy occurring on the high-energy side
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FIG. 11. Basic Fermi-surface portion for the fifth
and sixth zone. Possible electron orbits are labeled
with lower case Roman letters.

IV. DISCUSSION

A. Comparison with Other Papers

of the second peak. At the Fermi energy, the den-
sity of states is 22. 0 electrons per atom per Ry,
which gives an electronic specific-heat coefficient
of y=4. 31 mJmole 'deg 2 (9.13x10 ~ calmole '
deg 2). This compares well with the result
11.8&10 4 calmole 'deg obtained in HW(I).
Experimental results are 8.0 && 10 cal mole 'deg
obtained by Dauntv and 3.41+0.10 mJmole 'deg
quoted by Gschneider. Once again, our result most
likely is high because of the course determination
of the Fermi energy and the density of states at the
Fermi energy.

Our density-of-states histogram indicates a
d-band width at half-maximum of -0.08 Ry or
-1.1 eV. Like the results for occupied bandwidth,
this is narrower than the va, lue predicted in HW (I).
A recent photoemission study of titanium by East-
man shows that the width at half-maximum is- 2.0 eV. %eisss has determined the density of
states by Compton scattering, and his outer limit
for the d-band width is -4 eV. Both of these re-
sults are considerably larger than our prediction,
thus suggesting that our choice of exchange param-
eter (n = —,') is too large.
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question of continuity of the energy solutions as we
trace them out from one high-symmetry point to
another. This was not done in HW (I). The low-
energy symmetry band Tj between I'~' and Kz is
now shown to cross the Fermi level, and the struc-
ture along I'MK is more clearly defined than in
HW (I). The fifth band no longer dips below the
Fermi level along KM or along I'K so that the
structure in the fifth and sixth zone is significantly
altered. The same general features along AHLA
occur as in HW (I) except that the third and fourth
bands cross the Fermi level along AH and the fifth
and sixth bands no longer dip below the Fermi level
along AH. The structure along I'A is essentially
the same except for slight differences for the struc-
ture above the Fermi level. Along KH however,
the structure is quite different from that in HW (I),
and the symmetry band P& is now observed to cross
the Fermi level. The structure along ML, close to
M, is somewhat different from that in HW (I), but
it retains the same number of crossings of the
Fermi level.

The Fermi surfaces provide for a more definitive
comparison among the calculations. The third-
and fourth-zone surfaces (see Figs. 8 and 10) along
I'AI' are quite similar to those of HW (I) except that
the minimum in the third zone now occurs at about
0.75I"A rather than in the AHL plane, and the struc-
ture near I in the fourth zone is much smoother.
The indentations in the surface at I' shown in
HW (I) are quite likely due to ambiguities in as-
signing band labels to the results. The fourth-zone
surfaces around the point M are essentially the

The energy bands shown in Fig. 7 are almost
identical with those obtained in HW (I), but with
some notable differences. They are similar to the
Ti' structure of AB but with too many notable dif-
ferences to make a meaningful comparison. With
the use of group theory we were able to label each
state according to symmetry and thus resolve the

0
I

.05
I ( I )

.IO .15 .20 .25

Energy, Rydbergs

I I

.30 .35

FIG. 12. Histogram of the density of states with the
Fermi energy indicated by a dashed line. The dotted
curve is from the free-electron model.
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same as those of HW (I), except that the electron
pocket is considerably smaller. The notable ex-
ceptions are the three pockets of holes along I'K,
AH, and KH which are not present in the work of
AB or in HW(I). A comparison with the calculations
of AB shows that the gradual evolution of their
model with increased valency could produce our
third- and fourth-zone results if they had increased
the potential even more.

The fifth- and sixth-zone surface shows more
similarities than differences when compared to that
of HW (I), and it bears little resemblance to the
results of AB. The multiply connected electron
surface, shown in Figs. 9 and 11, differs from that
of HW (I) only in the following respects: (i) The
present results indicate no electron structure in
the sixth zone at all and, in particular, no surface
extending into the sixth zone along AIi; (ii) the sur-
face does not contact the I"KM plane or the I'AHK
plane along I'K in the fifth zone; and (iii) the surface
contacts the KHLM plane without intersecting the
line KM. In spite of these differences, the major
features are preserved. The intersections of the
electron surface with the I'ALM, I'AHK, and
KHLM planes still occur, and the multiply con-
nected toruslike surfaces around the vertical axes
I'A and KH are present.

TABLE III. Periods of the orbits labeled in Figs.
10 and 11.

Direction

[00.1]

Orbit

Third and
g (hole)

fourth bands
b (hole)
c(hole)
d(hole

Period
[10 (GHz) j

1.4
10.0
4, 1
6. 0

[01.0] Fifth and
sixth bands

g(elec. )
h(elec. )

56. 5
74, 0

[11.0] Fifth and
sixth bands

e(elec. )

f (elec. )
i (elec. )

J (elec. )

27. 0
10. 8
32. 5
5.4

B. de Haas-van Alphen Periods

The third- and fourth-zone surface along I'AI"
clearly gives four extremal cross sections normal
to the c axis or [00.1]direction. We again use the
dot notation [a& am. c] discussed in HW (I), but we
point out that the labeling in HW (I) should have been
[ama, ~ c]. Portions of the corresponding orbits are
labeled a, b, c, and d in Fig. 10. The periods, in
units of 10 8(GHz) ', are given in Table III. The four
easily observable periods of these four orbits will
vary with angle and eventually become unmeasurable
for angles above approximately 30'.

The fourth-zone hole and electron surfaces at M
give two sets of periods which are essentially the
same for the applied field along the directions
[00.1], [10.0], and [11.0] [i.e. , along I'A, I'K
(or MK), and I'M, respectively]. The cross sec-
tions centered on M give the following periods for
holes:

direction period [10 '(GHz) ']

M:(hole)
[00.1]
[10.0]
[Il.o]

1.87
3.15
1.50

and the following periods for electrons:

direction period [10 '(GHz) ']
[00.1]

M:(electron) [10.0]
[11.0]

83. 5
74. 0
67.0

The electron orbits, with their very long periods,
are excellent candidates for low-field study pro-
vided pure enough crystals are available.

The pockets of holes along I'K, AH, and KH pro-
duce periods as follows:

direction period [10~(GHz) '
]

[00.1]
I'K:(hole) [10.0]

[11.0]

18.5

44. 5
14. 2

[00.1]
AH:(hole) [10.0]

[11.0]

24. 2
57.0
22. 3

[00.1]
KH:(hole) [10.0)

[11.0]

43.0
18.0
17.1

These surfaces (like the electron surface at M) have
large periods which would be difficult to measure
unless reasonably pure single crystals were avail-
able. The I"K and AH surfaces have periods which
change rapidly with angular variation about the [10.0]
direction, whereas the KH surface has periods
which change rapidly with angular variations about
the [00.1]direction.

The periods for orbits associated with the mul-
tiply connected fifth-zone electron surface are
listed in Table III. The orbits labeled e,f,g, h and
i are closed orbits within the *double-zone wedge.
In contrast, the orbit labeled j is displayed only in
part (see Fig. 11). The diagram shows that all of
these orbits are extremely sensitive to angular
variation due to the topography of the Fermi sur-
face. Also, most all have periods which are quite
large so that once again pure single crystals are
required.
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V. CONCLUSIONS

The fact that no experimental Fermi-surface data
exists leaves doubt as to the theoretical predictions
given by AB and by the authors here and in HW (I).
The choice of the exchange potential parameter
used in the present calculation is smaller than the
value a = +~ used by Snow in his best calculation of
the electronic structure of copper. We find a shift-
ing of the d band below the s band for both the e = 1
and n = $ Slater-exchange potential, a feature not
given by Snow's calculation. Copper of course is a
closed d-shell nearly-free-electron-like metal
whereas, titanium is an open d-shell transition
metal. We realize that the nonspherical atomiclike
flavor of the d-band orbitals is not accounted for by
the muffin-tin charge density and potential approx-
imation. Also, in a case such as this, the choice
of the same exchange potential parameter for all
bands may not be the best choice.

We find the same narrowing of the bands and
density-of-states histogram for the large values
of n as did Snow. We felt that the value ~ =-,' con-
stituted a reasonable choice for a titanium energy
band calculation, ~ but the results suggest that it

is too large. The choice e = 3 typically has given
incorrect fits for band calculations ' even though it
is shown to be correct~2~ for an interacting elec-
tron gas. Thus, a value between —,

' and -,'is most
likely the best. It would be of interest to see
whether or not the other transition metals in this
period (e.g. , zirconium) also display this sensitivity
to choice of the exchange potential. In particular,
it would be of interest to know whether or not the
flipping of the s and d bands is physically correct
for the open d-shell metals in this region of the
Periodic Table.

ACKNOWLEDGMENTS

The authors wouM like to thank Dr. David A.
Liberman for providing his Hartree-Fock-Slater
SCF atomic calculations for titanium. Special thanks
are due Miss B. Schwenn for long hours spent
plotting the energy bands and drawing the figures.
One of us (E. H. H. ) is particularly grateful to
Dr. Karlheinz Schwartz for an encouraging dis-
cussion concerning the choices of exchange poten-
tial for band calculations.

~Supported by National Science Foundation Grant No.
GP-11215.

*Based in part on a thesis submitted to the Physics
Department, University of Utah in partial fulfillment of
the requirements for a Ph. D. degree.

~Present address: Department of Geophysics, Univer-
sity of Utah, Salt Lake City, Utah 84112.

'L. F. Mattheiss, Phys. Rev. 133, A1399 (1964).
E. H. Hygh and Ronald M. Welch, Phys. Rev. B ~1

2424 (1970).
J. C. Slater, T. M. Wilson, and H. H. Wood, Phys.

Rev. 179, 28 (1969).
J. C. Slater, Phys. Rev. 51, 846 (1937).
D. E. Eastman, Solid State Commun. 7, 1697 (1969).
R. J. Weiss, Phys. Rev. Letters 24, 883 (1970).

7J. G. Daunt, Progress in Loam Temperature Physics
(North-Holland, Amsterdam, 1955).

K. A. Gschneider, Solid State Phys. 16, 275 (1964).
S. L. Altmann and C. J. Bradley, Proc. Phys. Soc.

(London) 92, 764 (1967); Phys. Rev. 135, A1253 (1964).
J. C. Slater, Phys. Rev. 45, 794 (1934).

fi S. L. Altmann, Proc. Roy. Soc. (London) A244,
141 (1958); A244, 153 (1958).

T. L. Loucks, Augmented Plane 8'ave Method
(Benjamin, New York, 1967).

' H. Schlosser and P. M. Marcus, Phys. Rev. 131,
2529 (1963).

L. F. Mattheiss, Phys. Rev. 134, A970 (1964).
William E. Rudge, Phys. Rev. 181, 1020 (1969);

181, 1024 (1969); 181,1033 (1969).
J. C. Slater, Quantum Theory of Molecules and

Solids (McGraw-Hill, New York, 1965), Vol. 2, Chap.
2.

"J. C. Cornwell, Group Theory and Electronic Energy
Bands in Solids (Wiley, New York, 1969).

18J. W. D. Connolly, Ph. D. thesis (University of
Florida, 1967) (unpublished).

'9David A. Liberman Phys. Rev. 159, 415 (1967).
Karlheinz Schwarz, University of Florida, Quantum

Theory Project, Report No. 208, 1970 (unpublished);
and private communication.

E. C. Snow, Phys. Rev. 171, 785 (1968).
R. Gaspar, Acta Phys. Acad. Sci. Hung. 3, 385

(1954).
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133

(1965).


