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Because the Auger neutralization of an ion at a solid surface involves two electrons, the ki-
netic-energy distribution of electrons ejected in the process is related to the convolution of two
transition-density functions involving electronic-state—density and transition-probability factors.
This fact interrelates the physics and the mathematics of the problem in an important and inter-
esting way. Knowledge of how the physics puts limitations on the functions involved which make
deconvolution mathematically tractable and how the mathematical procedures provide informa-
tion concerning the physics is absolutely essential to the successful operation of the ion-neu-
tralization spectroscopy. The nature of possible spurious structure introduced by the mathe-

matics has led to the devising of tests for such features.

It is shown that these test procedures

are entirely adequate for the ‘peaked” functions encountered. Some discussion of inversion pro-

cedures is provided in the appendices.

I. INTRODUCTION

We discuss in this paper one of the central ques-
tions concerning the feasibility of the ion-neutrali-
zation spectroscopy (INS), the development and
use of which has been reported in other papers.~*
INS is an electron spectroscopy based on a two-
electron Auger-type ejection process. The method
determines from the measured electron-energy dis-
tribution a so-called transition-density function
which is essentially the local density of states
in the surface region of the solid upon which the
slowly moving ions are incident. Because two elec-
trons are involved in the Auger neutralization pro-
cess, the energy distribution of the ejected elec-
trons will, in the one-electron statement of the
problem, have the form of the convolution product

g(x)=foxv(x—t)w(t) dt=v*w 1)

of the transition densities v(x) and w(x) of the par-
ticipating electrons. Each transition density is
the product of initial-state—density and transition-
probability factors which, in general, could be
different for the two electrons. It is evident that
if we must consider the electron kinetic-energy
distribution to have the form of Eq. (1), the deter-
mination of v and w, which is the goal of INS, is
impossible given g alone. In the work which we
have done we have treated g(x) as though it were a
convolution square

S0 = JF ule = Du( di=uxu=u® @

which can be inverted accurately to obtain u from
f by a simple digital sequential procedure. It is

a primary purpose of this paper to discuss the
physical and mathematical justifications for this
assumption. We shall show how the local density
of states at the surface of a solid limits us to a
class of functions which makes the replacement of
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Eq. (1) with Eq. (2) possible. The u function ob-
tained from Eq. (2) is an average of the v and w
functions of Eq. (1) having the same peaked struc-
tures due to surface electron resonances as are
present with possibly different magnitudes in both
v and w. We also discuss the mathematics of de-
convolution of this class of function sufficiently to
indicate the nature of possible errors which could
be introduced in the inversion procedure and de-
vise tests for the identification of such errors if
present. We show how errors in u introduced by
errors in finding the origin of f, obscured by phys-
ical broadening, can be removed by the application
of a simple origin-shifting procedure.

After a brief discussion in Sec. II of INS and its
assumptions we state in Sec. III the deconvolution
procedure used in this work. Other sequential pro-
cedures we have investigated are mentioned in Ap-
pendix A. The relative merits of sequential-vs-
global-inversion methods for the INS problem are
discussed briefly in Appendix B. Functional limi-
tations imposed by the physics of the problem are
discussed in Sec. IV. The fold and unfold charac-
teristics of the physical functions we determine ex-
perimentally are investigated in Sec. V and the
problems encountered in treating the convolution
product g as though it were a convolution square are
discussed in Sec. VI. Tests devised for the gen-
uineness of peaked features inthe convolution square
root are presented in Sec. VII. Effects of ampli-
tude distortions of f are presented in Sec. VIII, and
the effects of origin error, tests for its presence,
and means for its elimination, in Sec. IX.

It is evident that the material of this paper is
central to the successful execution of the method of
INS and the demonstration of its viability. This is
both a physical and a mathematical problem. We
think it particularly interesting how the physics of
a two-electron transition process is so inextricably
interrelated to the mathematics of the convolution
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integral. INS has shown itself to be an informative
tool for the study of electronic states and band struc
ture, particularly at the surfaces of solids. We are
particularly anxious to document properly the sound
physical and mathematical basis of the method.
Previous discussions of this aspect of our work have
been mentioned in earlier papers!~* but these pre-
sentations are at best fragmentary and some of the
earliest possibly misleading. This makes the ma-
terial of this present paper an essential part of the
development of the INS method.

II. INS METHOD AND ITS ASSUMPTIONS

We shall discuss briefly the method and assump-
tions of INS. INS is an Auger-type electron-emis-
sion spectroscopy based on the two-electron tran-
sition process shown in Fig. 1. In this section we
shall use the notation used in previous publications
indicating later its relation to that used elsewhere
in this paper. Two band electrons initially at en-
ergies ¢ - A and ¢ + A participate in the process.
One electron drops to the initially vacant ground
state of an ion (normally He*) presented immedi-
ately outside the solid surface. The second elec-
tron becomes, at energy E, an excited electron or
secondary which may leave the solid. The ex-
ternal-energy-distribution function X(E), which is
measured for these electrons, contains the “spec-
troscopic” information we wish to extract.

The complication in the case of a two-electron
process, in comparison with a one-electron pro-
cess such as photoemission, arises because the
final energy level at E corresponds not to a single
initial energy level in the filled band of the solid,
but to an infinity of paired levels. As can be seen
from Fig. 1, all pairs of electrons in initial levels
symmetrically disposed with respect to the level
¢, which lies halfway between the level E in ques-
tion and the ground level in the atom, will yield
an excited electron at E. If we assume transition
probability to be independent of energy ¢, then the
probability of involvement of each electron in the
process is proportional to the density of states
N(¢), the probability of the elemental process is
N(¢ - A)N(¢ +4), and the total probability for final
energy E is®

F(6)= J; N(t -a)N(z +a)da . 3)

If we change variables from ¢ to E, using the ex-
pression

E=E}(s;) -2(¢+¢) )

derived by equating the energy changes of the up
and down transitions in Fig. 1, we obtain F(E), the
distribution of excited electrons inside the solid.
The measured external distribtuion X(E) is ob-
tained by inclusion of broadening and by multiply -

ing by the escape probability P(E). Thus, the
broadened internal distribution is

F\(E)= | B(t, L)F(E -1at, ()

in which B(¢, L) is the broadening function, whose
breadth is specified by the parameter L. Finally,

X(E)=F,(E)P(E) . (6)

INS reverses the above procedure, as discussed
in detail elsewhere.! The effect of broadening is
essentially removed by extrapolating two measured
kinetic-energy distributions X, (E) and Xy, (E),
taken at two ion kinetic energies K; and K,, to a
function X,(E) on the basis that the broadening pa-
rameter L of Eq. (5) varies as the velocity of the
ion.® F(E) is then obtained as

F(E)=Xy(E)/P(E) . (7)

Change of variable via Eq. (4) gives us F(¢) which
is the function to be deconvolved.

If, in fact, transition probability was energy
independent, we see from Eq. (3) that inversion of
F,(¢) would yield N(¢), the density of states in the
solid. Inclusion of the all-important nonzero tran-
sition-probability factors means that Eq. (3) must
be rewritten as

FQ) [ | Hy |*N(g - 8) Nz + ) da . ®)
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FIG. 1. Electron-energy diagram illustrating energy
levels, electronic transitions, and distribution functions
of the two-electron process upon which INS is based.
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FIG. 2. Plots of F(¢), U(¢), and F’(¢) obtained from

data for He* ions incident on a Ni (100)c (2 x 2)Se surface
by the method of INS (Ref. 4).

The basic assumption concerning the matrix ele-
ment made in the INS procedure is that the energy
dependences of | Hy;/? are included essentially
correctly when it is written as

| Hyy | %= Hy(t - A)Hy(z + 8) (9)

the product of two factors, not necessarily equal
in magnitude, which depend on the initial energies
of the two participating electrons. If H,=H,, the
H factors may be subsumed with the state-density
factors of Eq. (8) to give F(¢) as a convolution
square,

F@Q)= [ Ut -8 Ult+8)da=UxU=U%, (10)

of a function U(Z) which we have termed the tran-
sition density. Equation (10) has formed the basis
of the INS procedure. If, however, H;#H,, as
might be expected in general, F(f) must be re-
placed by the convolution product
G(g):f_: V(E -A) ME+A)da=V* W, (1)

which cannot be inverted given G(Z) only.

Actual data obtained in the INS experiment are
presented in Figs. 2 and 3. In each figure we
show the F(£) function derived as discussed above
from measured kinetic-energy distributions of
ejected electrons. Also in each figure we show un-
fold functions U(¢) and the derivative F'(£)=dF(¢)/d¢
of the fold function. We observe, in Fig. 2 in par-
ticular, how faithfully F’ reproduces the peak
structure in U. This is the more surprising when
one recalls that whereas F’ is a local function de-
pending on F only in a local region, U is a nonlocal
function depending at given ¢ on all F values in the
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range zero to ¢. In Fig. 3, F’ and U differ in a
significant but completely understood manner.
Comparison of F’ and U is the cornerstone of our
testing for errors in U.

The symmetrical forms for F and G given in
Egs. (10) and (11) are those which arise most nat-
urally in the physical discussion of the ion-neutral-
ization process. However, we find it somewhat
more convenient to use the mathematically more
common and equivalent asymetrical forms of Egs.
(1) and (2). If u(x)=U(), f(x)=F (3¢); or if f(x)
=F(¢), u(x)=U(2¢), with similar expressions among
g G, v, V, w, and W. Since {<0 corresponds to
unoccupied states above the Fermi level, all of the
functions F, G, U, V, W are zero there and positive
definite for ¢ >0, thus meeting the conditions re-
quired of g, f, u, v, and w if Egqs. (1) and (2) are
to be valid.

IIl. DECONVOLUTION PROCEDURE USED

In our work with INS we have used a simple dig-
ital-inversion formulation based on writing g(x)

Ni (100) F’ ?

] ] | 1 VA o
12 10 8 6 4 2 o)

L(ev) FOR U, 2L (ev) FOR F AND F’

FIG. 3. Curves for F(¢), U(¢), and F’(¢) for the He*
ions incident on a clean Ni (100) surface as determined by
INS (Ref. 2). We illustrate resolutions of the F’ curve
into UyB, 2BP, and P’*P components and the U curve into
B and P components.
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TABLE 1. Step-midpoint formulas for folding and un-
folding (fy, go=0 in each case).?

(A) Convolution square

fn=h Z Un-p-1Ups nx=1
$=0, n=1
Fp=28¢ 20 Up_zp-2 Uppy n=1
p=0, n=1
(B) Convolution square root
wo= (fy/n)1/?
Uy = (1/2u0) (fg/h)
Un-1= 1 (fa _ 2. u,._,,_,u,), n=2
2ug \ h pet, n-2

Uy=(F/240)1/?
Uy = (1/2U0) (Fz/zA 4}

F,
U2n-2:_i.(_1_ 2 U2n-2p-2U2,), nz2
2U, \2A¢ p=1, n=2

(C) Convolution product

Zn=h Z VpopaiWpy n=z1
p=0, n=1

Gp=2A88 25 Voygpoa Wy, =1

$=0, n=1
(D) Convolution factor (given w, W)

vo=g1/hw,

vy=1/wy) (go/h—vwy)

v"'1:i<&—vw - Z‘ v w
wo\ h 0%n-1 b1, no2 n-p=-1%p ) »

n=2
Vo=Gy/2A0LW,
Vy=(1/Wy) (Gy/2A8 — VW)

Vzn-2=_1_<££ L VoWano = 25

Van-2p-2 Wzg) ,
WO AL p=1, n=2

n22

2The equations given here for the F and U functions of
the symmetrical formulation [Egs. (3) and (4)] differ from
those given in Ref. 1 for two reasons. First, there is the
difference in the limits of the defining integral making the
F of this paper twice that of Ref. 1. The form used here
is preferred because it is the one which transforms di-
rectly into the symmetrical convolution product, where
the limits — ¢, ¢ rather than 0, ¢ are essential, and into
the asymmetrical forms of Egs. (1) and (2). Second, we
have designated the digital U values here as U,, U,, .
Usp-2, rather than Uy, Uy, ..., Uy, as in Ref. 1,
again for ease in shifting between the asymmetrical and
symmetrical forms.

in digital form g,, n=0, m (go=0), as the Cauchy
product of the digital representations v,, =0, m,
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and w,, n=0, m. Thus,

gn=h 2

o nxl. (12)
=0, n-

Unep1 Wy

This is the form obtained by approximating v(x)
and w(x) in Eq. (1) by step functions centered on the
digital values. We have called it the “step-mid-
point” formulation to distinguish it from other pos-
sible formulations discussed in Appendix A. The
digital expressions for folds and unfolds are given
in Table I. In general, we are given an equally
spaced digital representation of a portion of a func-
tion f(x) in the range 0<x<x,. Thus we are given
fas n=0, m, at the points x=nh, n=0, m, with

X, =mh.

In Egs. (1) and (2) we have used the common
shorthand notations g=v* w and f=ux u and have
introduced f=u%’ as an alternative. We also sug-
gest the convenient forms

u=ft®, (13)
v=g/w (14)

as expressions for the convolution square root of

a convolution square and the convolution factor of a
convolution product, respectively. In this shorthand
the function obtained by inverting a convolution pro-
duct vx w as though it were a convolution square is
written (v* w)/?, For smoothly varying functions
vand w, (vxw)*’? is a sort of “convolution mean”
of v and w and we shall call it that.

IV. FUNCTIONAL LIMITATIONS IMPOSED BY PHYSICS
OF AUGER NEUTRALIZATION PROCESS

In common with many problems in physics, par-
ticularly those involving an inversion, the problem
of interpretation in INS is “incorrectly posed. ”" Ac-
cording to the definition of this term used by the
Soviet authors this is so because the experimental-
ly determined g(x), the input to Eq. (1), is distorted
due to noise, kinetic-energy analyzer characteris-
tics, and the effects of the first steps in the data-
reduction procedure in which g(x) is obtained from
the measured kinetic-energy distribution. The
most questionable of these first steps is the extrap-
olation of X(E) used to circumvent inversion of Eq.
(5).! But in addition our problem is “incorrectly
posed” because we substitute f=u*u, Eq. (1), for
g=vxw, Eq. (2), and because no inversion proce-
dure is exactly accurate except for limiting func-
tions in some cases.

It is reassuring at this point to note that we are
by no means in a unique position. Many, perhaps
most, problems in physics are incorrectly posed
in one way or another. Most theoretical formula-
tions either leave out or approximate troublesome
terms. Experimental distortion of data is well
known. But it is also true that this situation can
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be more serious, in fact at times catastrophic, in
an inverse as opposed to a direct problem in phys-
ics.”

The procedure by which a physically meaningful
answer is to be obtained in INS has three indispens-
able components. It must (i) use some a priori
knowledge of the result, (ii) provide a significant
test which is capable of detecting error in the an-
swer, and (iii) provide means for manipulating the
given data so as to remove the principal experi-
mental error. Our problem is made tractable by
the fact that the physics restricts us in many cases
to a specific class of fold and unfold functions
which can be defined with sufficient precision for
our purposes. These are functions which lie near
the limiting functions g(x)=1x, v(x)=C, w(x)=1/C
(C, a constant), x>0, or in the convolution square
formulation, f(x)=x, u(x)=1(g=f=u=v=w=0, x
<0). The departure from this functional limit which
the physics allows is, in many cases, in the direc-
tion of a specific class of », v, w functions we shall
term “peaked” functions, not unlike U(¢) in Fig.

2, consisting of a relatively smooth background
which cuts off sharply at the origin as does u(x)
=1 and upon which are superposed one or more
peaks, each of full-base width 0.1-0.3 of the total
extent of the argument 0< x< x,,.

In the case of the convolution product the v and
w functions can have smooth backgrounds and peaks
of different magnitudes but each must exhibit
peaks only at positions where peaks appear in both
functions. The smooth background of the peaked
function corresponds to the s, p bands of the bulk
solid and the peaks are “resonances” due to tight-
binding bulk bands—d bands, for example—or elec-
trons in surface orbitals. We expect that the same
peaks will appear in both the v and w functions since
they have the same physical origin in each. The
functional limitations which the physics imposes
constitute the a priori information we need to solve
the problem.

It is of significance to note that the sequential
inversion procedure of Sec. III yields an absolutely
correct answer for the limiting case f(x)=x, u(x)
=1, an advantage not possessed by other inversion
formulations. The u(x) function of the limiting set
flx)=x, ulx)=1, x>0; f=u=0, x<0 corresponds
to the Fermi function at zero absolute temperature
and thus to a transition density at this temperature
for constant density of states and constant transi-
tion probability.

We must recognize that for some solids or sur-
face preparations either the local state density or
transition-probability components of u(x) will pro-
duce deviations from our limiting function f(x)=x
and u(x) =1 by amounts which are so large as to put
u(x) outside the class of peaked functions for which
the procedures of this paper are satisfactory. A
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possible example is a semiconductor with filled
low-density surface states. This results in u(x)
having a very low value at x=0 (the Fermi level).
The methods of this paper require a “reasonable”
step in u(x) at the Fermi level. Functions not
possessing this can undoubtedly be inverted by one
means or another but then different a priori infor-
mation concerning the answer and a different testing
procedure will be needed to solve the problem. In
any event the testing procedure of this paper are
sufficient to indicate when the given function lies
outside the limits within which a correct answer
can be obtained by the methods of this paper.

At this point it would be well to emphasize the
distinction which must be made between error in-
troduced by the inversion and error introduced be-
cause the starting function f(x) is in some way or
other incorrect. If the data are smooth enough to
avoid point-by-point runaway of the sequential in-
version, that is, to avoid successive rapidly in-
creasing positive and negative deviations of the
calculated u, from the correct mean, then the rela-
tively smooth %, sequence obtained is very close to
the correct mathematical deconvolution of the given
fa- It is not necessarily the correct physical solu-
tion to the problem, however. To find and demon-
strate the correct physical solution requires the
tests and data manipulation described in this paper.

We have reduced the noise in the input f, data
by averaging 10-15 runs in a multichannel scaler.
In addition it is customary for us to smooth over
five points three times during the digital calcula-
tions which interpolate, normalize, and invert the
input data. This smoothing is the equivalent of the
smoothing inherent in a global method which uses
approximately 16 harmonics in the expansion of
the functions described by 250 digital data points.

V. CHARACTERISTICS OF FOLD OF A “PEAKED”
UNFOLD FUNCTION

In this section we shall give a brief analysis of
the structure of f(x) and f’(x) for a so-called peaked
u(x) function. It is most convenient to do this for
u(x) in which a single symmetrical peak p(x), cen-
tered at x=a of full-base width 2w, is placed on

a smoothly varying background b(x). We write
this as
u=b+p. (15)

Such a function for constant background is shown
in Fig. 4(a). Putting Eq. (15) into Eq. (2), we ob-
tain

f=bxb+2bxptpxp. (16)

The three terms in this expression are plotted as
curves 1, 2, and 3, respectively, in Fig. 4(b) for
the u of Fig. 4(a). b= b is the fold of the back-
ground over itself, bx p is the fold of the peak over
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(a) (b) (c) FIG. 4. Plots of unfold % at (a),
A 4 fold f at (b), and derivative f’ of the
' N t fold at (c) for a simple «(x) consis-
¢ tingof a constant background with a

Gaussian-like peak centered at a.
The b *b, 2b*p, and p * p components,
curves 1, 2, 3, respectively, add to

—x 10 curve 4 for fin part (b). The deriva-
tive of the p xp feature at 2a¢ in £’ is

the background, and p*p, the fold of the peak over
itself. If p is symmetrical and of full-base width
2w, p*p is also a symmetrical peak of full-base
width 4w. If b=1, the asymptotic value of 2b* p
is twice the area of the peak p, and the maximum
value of px p is the area of p.

Next we consider f’. Corresponding to Eq. (2)
we may write

F1)=ulOulo) + [ " (x = t)ult) dt 17)
or

fl=upu+u' xu. (18)
Inserting Eq. (15) into (18), we obtain

Fl=ug(b+p)+b" xu+p'*xb+p'* p. (19)

Since b is assumed smooth and featureless, b'~0,
and the b’ x u term will be dropped. The p’* b term
may be simplified by use of the equation

u' (%) % S(x) =u(x) , (20)

in which S(x) is a unit step function of the form
S(x)=1, x>0; S(x)=0, x<0. Since b(x)= byS(x),
it is clear that p’ % b= p’ x bgS(x) =uyp, assuming
po=0 and uy=by. Thus Eq. (19) reduces to

fl=ugb+2bp+p' xp . (21)

In Eq. (21) the first two terms of f' reproduce
the background b and the peak p of u, Eq. (15), but
with altered relative magnitudes. The third term
p' xp can be seen to have the same general form
as p’ but total base width 4w instead of 2w; i.e.,
it resembles p’(3x). Functions which we take to
have the same form or to resemble one another
have the same number of zeros and positive and
negative portions in the same relative positions.
That this is true for p’ + p and p’(3x) may be seen
by substituting p’ and p into Eq. (1) and observing
what the integration of the convolution produces.

f' is plotted in Fig. 4(c) for the f of Fig. 4(b).

We see that the peak at a in f’ is proportional
in magnitude to the peak at @ in u, but that the p’* p
feature in f’ at 2q is proportional to the square of
the magnitude of the peak. For p sufficiently small
with respect to b and/or sufficiently broad, it is

seen. Note that » has no feature at
2a.

possible for the p’xp term in f’ to be essentially
invisible, in which case f’ will show only features
of the form 2bp above background and will show the
same peaks as u, as is the case in Fig. 2.

In Fig. 3, on the other hand, the main peak in u
is of such strength as to produce a clearly visible
p’'*p term. Since in this case a~w, the p’ « p fea-
ture of width 4w placed at 2a will be half hidden
under the peak p itself. We have indicated in Fig.
3 approximate resolutions of U and F’ into their
component parts.

It is clear that in each of the above cases we
understand the structure of ' and can use it as a
test of the validity of the peaks to be seen in u. The
above characteristics result from the fact that our
examples lie reasonably close to the limit f(x)=x,
u=1 for which f’=u, and that the functional de-
partures from this limit are in the form of the
peaked functions described above. In the above dis-
cussion of f’ and » we have limited ourselves to a
u=>b+p with a single peak. I u=b+pi+pa+ps++-+»
it is clear that f will have p,* p, terms. f' will
then include pj* p, terms. However, f’ will have
bp,; terms at the positions of the p; peaks in u as
before and the p}* p, terms will in general be small
when the p;x p, terms are.

V1. DEPARTURE FROM f=uxu TOg=vsw

We now face up to the possibility that the function
we are given to deconvolve is actually a convolution
product g=v* w and not a true convolution square
f=uxu. As we have seen, we expect the two tran-
sition densities v and w to have the same general
form assumed for » namely, b+p,+p,+ps, etc.
We expect both v and w to have relatively smooth
backgrounds with peaks due to resonances in the
same positions but of possibly differing relative
magnitudes. This severe but reasonable restric-
tion on the class of functions v and w makes it pos-
sible to extract from g a function of the form b +p,
+p, +pg representing the convolution mean between
v and w and revealing the structure of resonances
in the electronic states of the surface of the solid
which is the goal of INS,

First, we shall dispose of trivial cases. If v=>b,
and w=b;, each convolution factor is a smooth
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background function with a step at x=0 but without
peak features. It is then easy to demonstrate that
no peak features will be generated by deconvolving
g as though it were a convolution square. g/?
will be what we have termed the convolution mean
between b; and b,. An example of this shown in
Fig. 18 of Ref. 1. It can also be shown that when
a peak is placed on different smooth backgrounds,
asin v=>by+p and w=by+p, (v+w)/? will exhibit
a peak p at the proper position on a background
equal to the mean (by* b,)'/# ., No spurious peaked
features are introduced into (v * w)‘/2 by this dif-
ference in the smooth backgrounds of v and w.
Another trivial case is that in which w= a@v. Then
g=a(vx v) is a convolution square of the function
g =gtz

We shall carry on our discussion for single-
peaked functions v and w like the u of Fig. 4(a).
The most general difference between v and w we
shall admit may be written

v=b+p, w=b+ap. (22)
Then,
g=vxw=bxb+(1+a)bxp+apxp. (23)

Rewriting (23) in a form which approximates that
of f=uxu [Eq. (16)] as closely as possible, we ob-
tain

g=bxb+2[b*x3(1+0a)p]+[4a/(1+0a)?)]

x[s(l+a)pxz(l+a)p]. (24)

This would have the form of ux u with u=b+3(1 + a)p
if the coefficient 4a/(1 + a)® were unity. This, of
course, would require a=1. We see from (24) that
g differs from a true convolution square only in the
coefficient of the p* p term. We shall term this an
amplitude inconsistency of the p*p and b p terms
in the fold function v * w.

The most general form of g=v* w which the phys-
ics of ion neutralization requires us to admit may
thus be written

g=vxW=b*xb+2bxp+kp*xp, (25)

in which £ may be greater or less than unity but is
always positive. g may also be written in the form

g=vxv+(k=1)pxp. (26)

For functions with these limitations let us now con-
sider g’ and g*/%), Taking the derivative of both
sides of Eq. (26), we obtain

g =vw+v xv+(=1)(pop+p'*p). 27)

Using po=0, b’=0, p'x b= byp as was done in de-
riving Eq. (21) we obtain

g =vb+2p)+kp'*p . (28)
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Thus g’ resembles the derivative of a true convolu-
tion square, f’ of Eq. (21), differing only in the
magnitude but not the sign of the p’ * p term. We
are interested in the form of g’ for its use in test-
ing for spurious features in g“/z) .

The really important question concerns the form
of g% = (v« w)t/?, the convolution square root
of what is really a convolution product. Our dis-
cussion continues for a single peak of full-base
width 2w placed at a where a> w. The condition
a>>w guarantees that the features of higher order
produced at na will not overlap for at least the first
several orders, making our discussion in terms of
peaked functions easier. Since g of Eq. (25) has
the form of a true convolution square in the b* b
and 2bx p terms, sequential unfolding gives b+p
out to the point 2(a — w) where the p x p feature in
g is encountered. Clearly the folding of p over p
will produce p* p, not the required kpx p, so a
new feature g, must appear in g%/% near x=2qa of
such form and magnitude as to correct px p in the
convolution product g to kp* p. Thus for x< 2(a+w),

g=8YP gV bu b2 prprp+2b* gy .

(29)
Comparison with Eq. (25) yields

b*xqp=byS(X)*qz=3(k - 1)p*p, (30)

in which we have again used the fact that, near
x=0, b= byS(x). Using Eq. (20), we obtain

a2=73 [(k = 1)/b,] (p* p)' (31)

as the form of the feature near x=2a developed in
g"/® because g is not a true convolution square.
g has breadth 4w.

Because g‘/?) differs from b by g, near x=2a it
can readily be shown that a sequence of features
g, of breadth 2nw at x = na will be produced in g*/?,
We derive the relations

gs==(p*qs) ==[3(k =1)/b ][ p* (p*p)'] (32)
and
an(0)= = [(g® =) x (g2 ~b) /b, . (33)

gn(x) may be developed sequentially using
g/ =bp+ 2 gy (34)
n =

This procedure will be an adequate representation
to the x value at which the features g, begin to over-
lap each other.

It is possible to discuss the general form of the
feature ¢,(x). As was shown for g, and ¢;, the gen-
eral expression (33) can be reduced to expressions
involving the derivatives of the convolutions of p,
i.e., (p xp) and derivatives of convolutions of
these with p, [p* (pxp)' ], etc. If we use the fact
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that for our restricted functions py=0, we can show
by Eq. (17) that (pxp) =p’xp. As we have seen
earlier p’ x p has the same form as p’(3x). By an
extension of this line of argument we see that
~[p*(pxp)' ) ==[p*(p'*p)] which will have the
form of —[p*p’ (3 x) ]’ which in turn has the form
of —p’’ (3x). In general, then, the form of the nth
spurious feature g,(x) will be

(1-k) (=1)"d™ p(x/n)

dxn-‘r

for n>2.

Examples of g“/ ) functions obtained from the
fold of a u function which has a “one-point” peak

at x=a are shown in Fig. 5.

We note that the struc-

(f)

| >

FIG. 5. Plots of a u(x) function
consisting of a uniform background
b, and a ‘one-point” peak p, at x=a
and its fold f (x) at parts (@) and (b),
respectively. When f (x) is distorted
by removal of the p xp feature, k=0,
one obtains the inversion g*/% at (c)
and the derivative of the mutilated
fold g{ at (d). When the p *p feature
in f is doubled, one obtains the unfold
2212 at (e) and the derivative g7 at
).

amples for peaked functions with peaks of magni-
tudes differing by a factor 5 are shown in Fig. 6

for two peak-to-background ratios.

In Fig."7, we

have constructed v and w functions from a sloping
background and three Gaussian peaks of 5 to 1 ra-
tio. Note that (v w)/? reproduces the peaks very
well and that only very minor spurious undulations
occur in the range x> 4.

Let us now compare terms above background in
g' and in g*/® pear x=2q. From Eq. (28) we ob-
tain in g’ the term kp’ * p which has the form of

p'(4x) as we have seen.

a/2)

The g, term in g is of

the form (1 —%) (- 1)!p’(3x) as discussed above.
Thus the corresponding terms in g’ and g/% will
have the same form if 2> 1 but one will be the nega-

tive of the other if 2<1.

tures g,(x), n22, are those predicted above. Ex- in Fig. 5.
W (vxw)“/z‘l (vaw)'
V-
WA ﬁ/;/L
a 0 3oz a ° Y3 2a a
-—X -—X -—X
(a) (b) (c)
VW (vaew)72) (vaew)'
Wi\ N
/A
—X ° -—x 0 -—X

(e)

(f)

This also is illustrated

FIG. 6. Plots illustrating spurious
features produced by magnitude incon-
sistency of the 2b xp and p *p features
for a u(x) having a Gaussian-like peak
centered at n =46 sitting on a constant
background. (a) v and w functions with
peaks differing in magnitude by a factor
of 5; () (v*w)1/?), the convolution
square root of the convolution product
of v and w shown at (@); () (* w)’,
the derivative of the convolution pro-
duct of v and w shown at (a); (d) v and
w having smaller peaks again in the
ratio 5:1; (e) (v *w)'/?, the convolu-
tion square root of the convolution
product of » and w shown at (d); (f)

(v* w)’, the derivative of the convolu-
tion product of » and w shown at (d).
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FIG. 7. Plots showing the effect of amplitude inconsis-
tency for an example which resembles what one could get
as a result from INS. The dashed lines at the top of
the figure indicate the v(x) and w(x) functions. v(x) and
w(x) are compounded of the straight line 0.2-0.02x to
which have been added } and 2 times the Gaussian-like
functions shown at the bottom of the figure, respectively.
(v *w)'1/?) is the convolution square root of the convolu-
tion product of v and w. Also shown in the middle of the
figure is (v *y)’, the derivative of the convolution pro-

duct. Note the small spurious structure developed at
x >4 in both (v *w)*/? and (v *w)’.

- X

VII. TESTS FOR GENUINENESS OF PEAKED FEATURES
IN (v % w)(”z)

We now return to our main theme. It is to de-
termine what spurious features appear when we
perform the operation g/%’ where g=v* w with
V=b+p1+pat+pa+--- and w=b+apy+PBpa+yps+-cc .
For each peak we know that g*/? will reproduce
the background and the peak itself at a but a se-
quence of features resembling higher derivatives
of the peak will appear at 2a, 3a, 4a, etc. Now it
is clear that it is prudent to restrict ourselves to
functions having only a few peaks as in Fig. 2.
Then there is definite promise that one can verify
whether a peak in g‘/? is a reproduction of a peak
in v and w or a spurious feature produced by the

4 ION-NEUTRALIZATION SPECTROSCOPY
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fact that g is really a convolution product and not
a convolution square.

It is now possible to state a procedure whereby
one can decide as to the genuineness of peaked
structures in g/® = (vxu) /2,

(i) As we proceed from the origin in the function
gV = (ux w)™/? it is evident that the first peak
cannot be spurious. For peaked functions a spuri-
ous feature is always the offspring of a bona fide
feature lying 3, 3, i, etc., of its distance from the
origin.

(ii) From the form of the first bona fide peak
p1(x), we can predict the form of the first possible
spurious feature in g®/%’, It must look like pj(zx)
and appear either directly or inverted in g’. Thus
if the second peak encountered in g‘'/% appears in
g’ but does not meet the form requirement we can
consider it as bona fide.

(iii) If all peaks in g’ also appear in g‘¥% we can
conclude that the kp’  p terms in g’ [Eq. (28)] are
too small to be observed and that, therefore, all
peaks observed in g/’ are bona fide representa-
tions of a mean function between v and w represent-
ing a mean transition density function for the up
and down electrons in the Auger process. We con-
sider this procedure to be reliable for a limited
number of peaks, possibly four or five as one pro-

ceeds away from the origin.

(iv) As indicated in the discussion of Fig. 3, a
feature can appear in g’ which does not appear in
the direct or inverted form in g‘*/?, This in gen-
eral will require, as the above analysis indicates,
that g~ f with k~ 1. Thus the feature in g’ will be
the required p’ * p term of Eq. (21) which is present
to prevent the appearance of a feature at 2a in u.

VIIl. EFFECTS OF AMPLITUDE DISTORTION OF f(x)

In this section we shall discuss the effects of
amplitude distortion of the parts of f(x) which must
be amplitude consistent with one another if f(x) is
to be a true convolution square. In terms of our
example u=b+p, f=bxb+2bxp+p*xp, we see that
such amplitude distortion will make the px p term
inconsistent in amplitude with the 25 p term. Thus
f really has become a g function like that of Egs.
(25) and (26) and the discussion of errors given
above for this case apply here as well. The tests
for spurious features produced by amplitude error
are thus the same as those listed at the end of
Sec. VII.

In Fig. 8, we give another example of the effect
of amplitude inconsistency. Here we achieve am-
plitude inconsistency of the fold function by adding
a smoothly varying function directly to a true con-
volution square before deconvolution. Curve 1 in
Fig. 8 is an unfold function constructed of the three
Gaussian-like peaks of Fig. 7 plus a linearly de-
creasing background. Curve 2 is the fold of curve
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FIG. 8. Graph showing the effect on a convolution
square root of adding a smoothly varying function, curve
3, which is zero at the origin, toatrue convolution square,
curve 2. This yields the combination function, curve 4,
whose convolution square root is curve 5. Curve 1 is the
convolution square root of curve 2. The construction of
curves 1 and 3 is discussed in the text.

1. Curve 3 is a smoothly rising function which
starts from zero at the origin. It has specific
physical interest and is derived as described be-
low. When curve 3 is added to curve 2, we obtain
curve 4 which is then deconvolved as a convolution
square to obtain curve 5. We see illustrated the
important result that the peak structure in curve

5 is the same as that in curve 1; only the level of
the smooth background of the function at larger x
has been affected.

The result of Fig. 8 is an important one for INS
because it demonstrates that the process of decon-
volution “picks out” the true self-convolution fea-
tures of the function to be deconvolved and ignores
a smoothly varying modification of the convolution
as far as peak structure is concerned. A modifica-
tion of the data similar to this could arise in INS
by virture of the use of an incorrect escape proba-
bility curve P(E), by which the data are divided at
one point. A second way that the convolution could
be modified in INS in the manner of Fig. 8 is by the
addition of either a three-electron Auger component
or the energy degradation of some of the excited
electrons by collision with other band electrons.

The problem can be set up and solved on the
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basis of the following assumptions. Suppose the
initial states of the electrons to lie at x; and x, with
X3 > x1, x being quantized to the values x=nh. We
then assume that the energy released on ion neu-
tralization is shared by two electrons such that
their energies above the Fevmi level are y, and
Ym-n» Where xn varies from 0 to m. We further
assume that all pairs of such final excited states
are equally probable. Clearly, we can achieve this
double excitation either by direct double excitation
in a three-electron Auger process or by energy
sharing between the one excited electron and a third
electron subsequent to a two-electron Auger pro-
cess. The fold function for such processes can be
written down. It is

f"= Zh E ( Z/ um-ﬁ-l up) ( ZI uk>
m=1,n-1 \ p=0,m-1 k=0, n=-m=1

(35)

This product series may be summed to give the re-
sult

fo=3(® =n)=uxuxu, (36)

plotted as curve 3 in Fig. 8. Curve 3 is normalized
by the factor 10~ before addition to curve 2. Thus
curve 4 is (uxu)+ 1073 (u* u*u), u being curve 1.

IX. EFFECTS OF ORIGIN ERROR AND MEANS FOR ITS
ELIMINATION

We discuss now a second form of degradation of
the experimental data from a true convolution
square, namely, that due to origin error. The
origin of the f(x) or F(Z) function is obscured in the
physical data by energy broadenings of the kinetic-
energy distributions of the ejected electrons, and
the procedure of INS may yield an origin which is
somewhat in error. Origin error results in a posi-
tion inconsistency between the 2b* p and the px* p
terms in f.

Although a peaked function with a “one-point”
peak like that in Figs. 5(a) and 9(a) gives a distort-
ed view of what is seen in practice, such functions
are useful pedagogically because for them spurious
features are large and remain separate and distinct
to reasonably high order. In Fig. 9, we see what
happens when the 2bx p and p* p features of u* u
are shifted to the left or right along bx . These
mutilations of g produce functions whose convolu-
tion square roots are shown at Figs. 9(b) and 9(c),
respectively. If, for example, the 2bx p feature
is moved from a to a+ 10 and its p* p feature from
2a to 2a+ 10, these terms are position inconsistent
because the px p term should lie at 2a+20. When
sequential deconvolution of such a function is at-
tempted, a spurious feature will appear at 2a+ 10
in g14? because the misplaced p* p feature is to
be found there, and another spurious feature will
appear at 2a+20 because no px p feature is present
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FIG. 9. Plots at (a) of a u(x) func-
T tion consisting of a uniform background
b, with a one-point peak p, at x=a; at
(b) of the unfold g,/ of a fold g,, ob-
ll‘ tained from f=u xu by sliding the 2b *p
| HM’J“" and p * p features of f a distance 10
o boints to larger x; at (c) of the unfold

o

g3+ of a fold g_; obtained from f
=y xu by sliding the 2b xp and p *p

there (k=0 in the analysis of Sec. IV). It can be
seen that the spurious features at 2a+ 10 and 2a+ 20
have the p’(3x) form and are the negative of each
other as Fig. 9(b) shows. Furthermore, each of
these spurious features will give rise to an infinite
sequence of spurious features of higher-derivative
form. Thus position inconsistency as a result of
origin error leads toa more complicated sequence

of spurious features than does amplitude inconsis-
tency.

Examples of errors introduced by origin error
for a broader peak are shown in Fig. 10 where the
spurious features are resolved to at least second
order. When the principal peak in u lies closer to
the origin, the increasing orders of spurious fea-
tures can coalesce into a remarkably sinusoidallike
wave as is seen in Fig. 11. Figure 11 also illus-
trates how these errors decrease in magnitude and
converge to zero when the principal peak height
above background is reduced.

It is apparent that our data must be tested by
origin shift for the presence of origin error. The
correct origin of f(x) will be that which removes the
spurious structure present when the origin is in er-
ror and yields an unfold u(x) whose structure at
larger x is minimized and agrees with that of f/(x).
This origin sensitivity emphasizes the nonlocal
character of u(x) and the power and significance of
the test comparison with the local function f’(x).

We now define what we shall mean by an origin
shift and present the method we have developed for
achieving it. We are given a function f(x), ex-
pressed digitally as f,,, which starts at f,=0 at
n=0. The corresponding x values are x=nh. We

(c) features of f a distance 7 points to
smaller x.

wish to shift the origin to the point x;=n;k, where
n; may be positive or negative but is always an in-
teger. We intend to accomplish this by replacing
the values f, from n=0 to n=n, by a new set of
values f, n=ny, nz. The point n=n, is usually
defined such that f(x) passes through its first point
of inflection between the points n=n, and np+1,
i.e., the first difference A,=f1,,, -/, is maximum
at n=n,. We require (a) that the new set of data
must leave the point at n=#»,+ 1 unchanged, i.e.,

f nge1=Fagu1, and (b) that the differences of the first
differences of the old and new data shall decrease
linearly as » increases. By definition,

Ba,= (a7 =8)=(fra=fa) = Ura=fa) - (37)

These conditions, together with the obvious require-
ment that f ;l= 0, lead to the expression for AA,,

AA,,=(n2—n+1)(AAn1)/(n2—n1+ 1), (38)
and then to the new number sequence for f(x),
Fn=fn—Tne =n+1)(ny —n+2)/(ng = ny+ 1)(ng = ny +2).

(39)

The above procedure of origin shift limits the
distortion of the given data caused by origin shift to
the initial portions near the origin and guarantees
that the new function will join smoothly onto the old
at its first point of inflection. We emphasize that
we have used this procedure in INS only for very
small origin shifts which amount at most to 0.3 eV
out of a total function extent of about 12. 0 eV and
an interval to the first point of inflection of the or-
der of 1.0 eV. When applied to a smooth background
function by picking a point n =1, (not an inflection)

FIG. 10. Plots illustrating spurious

features generated by position incon-
1 sistency of the 2b *p and p x p features
g2 for a u, sequence having a Gaussian-
. like peak centered at n =46 sitting on a
constant background. In the fold of
this u,, the 2b* p andp * p featuresare
o shifted by An=+1, — 3 points to produce

g functions whose convolution square
roots are shown at (a), (b), and (c),

1 f
4 o
/\
e~ ~—— o _/\/\‘/\,——/ | L/\/\/\ - —
3a 2a clx ° -—X 0 —X
-—X
(a) (b)

(c) respectively.
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FIG. 11. Plots of unfolds g/

I obtained from a fold in which the
9‘_';2’ origin has been shifted by three
points from that of a true convolution
square in a similar manner to that
described in connection with Fig. 9.

o Parts (@), (b), and (c) differ in the
p/b magnitude ratio and illustrate
how spurious features disappear as

(a) (b)

near the origin, it can be shown that the effect of
origin shift is limited strictly to the region near the
origin, which for small shifts is limited to two to
three times 7n,. Thus the production of spurious
features in u(x) at large x values by an incorrect

u, g(IIZ)

f'

10 8 6 4 2 0

FIG. 12. Plots showing the effect of position inconsis-
tency for the example of Fig. 7 which resembles a possi-
ble physical case. The original »(x), curve 1, is com-
pounded of a straight line and the three Gaussian-like
peaks shown in Fig. 7. After folding « to produce the
fold f a series of g functions with increasing position in-
consistency is derived from the original f by the method
of origin shift described in the text. The convolution
square roots of these g functions, g'/%, are shown shifted
vertically for clarity as curves 2—5 corresponding to
origin shifts of Ax=0.1, 0.2, 0.3, and 0. 4, respectively.
Shown below is the derivative of f, f’.

(c) this ratio is reduced.

origin is a direct result of the peaked structure of
u(x).

Illustrations of the effects of origin shift on func-
tions like those encountered in INS are given in
Figs. 12-14. In Fig. 12, the origin of a constructed
function like that of Fig. 7 is shifted to positive x
with remarkably little effect. In Fig. 13, we also
see that shift to positive x for a function with a large
peak near the origin has little effect, but that shift
to negative x produces a large effect. In Fig. 14,
we see that (when the peak lies some distance from
the origin) positive and negative origin shifts pro-
duce first-order spurious features which are the
negative of each other as expected. We conclude
that an experimental u(x) having a peak at x=a and
no features at x = 2qa demonstrates both the posses-
sion of the correct origin and the fact that g=vx w
is very close to a true convolution square f=u* u.

X. SUMMARY AND CONCLUSIONS

It is now possible to summarize in a series of
statements the nature of the interrelation of physics
and mathematics involved in the two-electron Auger
neutralization process.

(i) The general case of a two-electron Auger
ejection process involving different transition proba-
bilities for the up and down electrons requires that
X(E), the ejected electron’s kinetic -energy distri-
bution, have the form of the convolution product
g=v*w which cannot be inverted knowing g alone.

(ii) The physical limitation of » and w to so-
called peaked functions having peaks at the same
energy position (x) but of possibly differing magni-
tude, placed on relatively smooth backgrounds which
cut off rather sharply at the Fermi level, makes
possible the inversion of v* w as a convolution
square root. Peaks in (v* w)®/?’ will lie where
those in v and w are and will be averages of them.

(iii) An analysis of the fold functions g of peaked
v and w functions has led to an understanding of
possible errors in (v*w)®/# and to the devising of
tests for the genuineness of its features.

(iv) Unknown but relatively smooth variations
in electron escape probability or density of final
states are shown to have negligible effect on the
ability of the deconvolution procedure to “pick
out” the peaked structure present in the unfold func-
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FIG. 13.

Nlustration of origin shift for a function in
which the principal peak lies close to the origin. The
curves have been shifted vertically relative to each other
for clarity.

tion. Energy degradation behaves similarly. Sharp
peaklike structure in the escape probability or
final-state density will produce sharper structure
in u(x) which can be identified as discussed in Ref.
4 by comparing u(x) curves for two ions of different
neutralization energy.

(v) Energy broadening inherent in the electron
ejection process obscures the origin of the g(x)
function to be deconvolved but the correct origin
can be found using an origin-shifting procedure
which thus eliminates any possible error due to ori-
gin position. This also locates the Fermi level on
the electron energy scale which, together with work
function and contact potential information, leads
to a value for the effective neutralization energy of
the ion at the atom-solid separation at which the
Auger process occurs.

Similarly we can state a series of conclusions
concerning the viability and accuracy of the INS
method.

(a) We have satisfied ourselves that the so-
called step-midpoint sequential inversion procedure
is by far the most satisfactory among either se-
quential or global techniques for the general class
of peaked functions we encounter in this work.

(b) Comparison of the nonlocal u(x) with the local
f'(x) and an investigation of the form and position
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of deeper-lying structure with respect to structure
lying closer to the origin provide powerful and ade-
quate tests of the genuineness of u(x).

(c) Possession of an origin-shifting procedure
is essential to the proper inversion of a convolution
square by whatever method used. Origin error
is the dominant problem encountered in this work
but it is completely handleable, with the correct
origin comparatively easy to determine.

(d) All data thus far obtained and published by
the method of INS have produced u(x) functions
which either agree in peak structure with f'(x) or
differ from f’(x) in a completely understood man-
ner.

(e) Although it must be admitted that the re-
quirement to invert the basic data in INS is a com-
plication not enountered in the implementation of
a one-electron emission spectroscopy, we claim
that it is not serious or cumbersome once its char-
acteristics are understood and the means of its
execution are at hand. In many instances unfolding
could be replaced by differentiation where u(x)
~f'(x), but this is not universally valid. It should
not be too difficult to devise an on-line data-taking
and computing procedure which would perform all
the data taking, data processing, and testing in-
volved in INS.
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APPENDIX A: OTHER SEQUENTIAL-DIGITAL-UNFOLDING
FORMULATIONS

At one point in our studies of sequential digital
inversion, before we had understood the full sig-
nificance of origin error, we were led to believe
that our situation would be improved by a more
accurate sequential-digital -unfolding formulation.
This turned out not to be the case but in the course
of these investigations we derived a total of four
formulations and studied, or, more properly, ex-
perimented with, their stability properties. It
appears that a brief statement of this work and its
results might be of interest to the reader and could
correct possible misconceptions.

Sequential -digital -inversion formulations can be
derived in a straightforward and systematic way
by inverting so-called closed digital-quadrature
rules of increasing accuracy and complexity. When
this is attempted, a series of interesting facts
emerge, which we state briefly.

(i) Only one formulation, that of Table I, in-
verts without the independent calculation of the first
u point 5. This is becuase f; is expressed as a
function of ug only. Further, it is true only for
this formulation that

lim #y= lim —(ilh;fﬂ)— =[f"(0) J*3=u(0) . (A1)

a~0 h=0

(ii) The next group of three more complex for-
mulations require the independent calculation of
uy because f, depends on both u, and »;. This makes
these formulations unwieldy. Even with an accu-
rate determination of #,, obtained by passing a
high-order curve through several f, to get an ac-
curate f’(0) for use in Eq. (Al), we have found these
formulations to be much more unstable than that
of Table I.

(iii) Higher-order quadrature rules of the closed
Newton-Coates series require the independent cal-
culation of more than one initial # value and are
completely useless.

(iv) We have examined how each of the first four
formulations derived handles a one-point noise de-
viation in f,,. Only the formulation of Table I has
satisfactory features. It also has excellent char-
acteristics with respect to round-off error.
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APPENDIX B: COMPARISON OF SEQUENTIAL AND
GLOBAL METHODS OF INVERSION

We have done some experimenting with so-called
global methods for inverting the self-convolution
integral. It is illuminating to discuss them briefly,
even though none has proved to be competitive with
the step-midpoint unfold for the class of functions
to which we have limited ourselves. Any global
method we have tried to use has proved to be cum-
bersome, to require considerable amounts of com-
puter time, and, in some cases, to have difficulty
with round-off errors. All give relatively crude
answers in that they specify the answer by means
of a number of parameters which is relatively much
smaller than the number of given data points. In
general, this accounts for the stability of global
methods. We have found, however, that an amount
of smoothing of the given data which is sufficient
to stabilize the sequential inversion does not de-
grade the answer as much as does the limitation
to a practicable number of independent parameters
in the case of the global methods we have tried.

We should distinguish clearly between a true point-
by -point instability in sequential inversion and the
periodic variations which can be introduced into
u(x) if f(x) is not a true convolution square.

We discuss four types of global inversion: meth-
ods based on the Laplace or Fourier transform,

a method based on a network analogy, and two it-
erative methods.

It is well known that u(x) can be represented as
the inverse Laplace or Fourier transform of the
square root of the transform of f(x). It is not sur-
prising that digital schemes based on this equation
are possible and suggestions have been made by
Blackman,® Gentleman,® and Amelio and Scheib-
ner,10:11

Gentleman® has tried a method based on the so-
called fast Fourier transform. Two difficulties were
encountered. One relates to the way in which the
given f,data are extended to complete one cycle of
the cyclic form in which f, must be used. Thus, if
the givenf, data are putona circlefrom 0 to 7, the re-
quirement that f(x)=0 for x <0 would put zeros in
the range 0 to — 7. This amounts to an incompatible
extension of f, in the range 7—-27. Gentleman found
that his method would work if he would guess an
answer, u,, and fold it to give an initial set of f,
values for the range m—27 which were then used
with the given f, in the range 0-7. A second prob-
lem encountered in Gentleman’s attempt relates
to the ambiguity in phase angle when taking the
square root. If the data are sufficiently close to-
gether, the choice of phase angle at a given point
to be that closest to the phase angle of the preced-
ing point was satisfactory. The data interpolation
and the several steps required to produce the cor-
rect unfold mean that the method is not competitive
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in computer time or over-all simplicity with the
sequential method. The method of folding using the
fast Fourier transform, however, did provide the
excellent check of round-off error in the sequential
inversion. Gentleman found that the match error
[Eq. (B2) below] between his fold of the sequential
unfold and the given f, data was approximately 10°".

Amelio and Scheibner!® and Amelio'! have also
devised digital techniques based on the convolution
theorem. Inone method the given data are expanded
in a polynomial for which orders as high as 15 have
been used. The second method replaces f, by
straight line segments, which is equivalent to re-
placing u, by the step function on which the step-
midpoint fold is based. As many as 30 segments
have been used. In each method the basic integral
equations are transformed to a linear algebraic sys-
tem and are then solved. The method will be
tedious when pushed to the high order required if
the experimental resolution in the data is not to be
degraded by the inversion. In his latest work
Amelio!! has used the global technique as a test for
a sequentially inverted result. On the basis of this
test the given data are varied until they meet a
specific requirement. Clearly this data manipula-
tion is required because of noisy initial data due to
a weak signal. Otherwise use of the sequential
method alone would have been satisfactory.

It is also possible to make use of the electrical-
network interpretation of Eq. (2) as the basis of
a global inversion scheme. If f(x) is the unit-im-
pluse response of two identical four-terminal net-
works in tandem, then u(x) is the unit-impulse
response function of the network itself. Another
way to state it is that we wish to find a network
whose response is f(x) when its excitation function
is equal to its unit-impulse response function u(x).
Simone arranged to integrate the differential equa-
tions of a simple network repetitively on an analogue
computer and to display u(x) and f(x) on alternate
cycles. The circuit parameters could then be
varied until the observed f(x) approximated the
given data. To achieve accuracy, one would be re-
quired to employ a rather complicated network with
many adjustable parameters, and it is then not
readily apparent how to vary these in order to
achieve the desired modification of f(x). Thus the
method is instructive, but is not practical for day-
to-day use with experimental data.

Iterative methods which avoid direct inversion
are also possible. In this general class of method
a first guess at the unfold function »(x) is charac-
terized by a limited series of parameters, say,

a;, i=0, k. These could be the coefficients of a
polynomial expansion

ulx)= 2, a; P;(x)
=0,k

(B1)
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in terms of the Chebyshev polynomials, for exam-
ple. u(x) is then folded with itself to obtain a so-
called test set f}. This can be done either by fold-
ing the polynomials once and for all and digitalizing
the resulting series expansion for f(x), or by digi-
talizing u(x) and folding these values digitally, say,
by the step-midpoint fold. The first of these meth-
ods involved the tedious folding of polynomials to
high order and also turned out to have very large
round-off errors. The second method involving
digital folding provided a satisfactory subroutine
for generating f{ from the given a;, i=0, k. The
test values f! thus obtained were compared with

the given data f, and the match error

_ 5 e/ g2
® L(f,.f,.)/i Vs

i=0,k =0,k

(B2)

was calculated. A sucessiveapproximationprogram
was then used to vary the k parameters q;, i=0, &,
soastominimizethe matcherror. A method using
a least-squares steering program of Semmelman
was made to work. In many ways it proved to be
cumbersome. If k2 is large enough to give an ac-
curate representation of #(x), the successive-ap-
proximation program becomes very time consum-
ing and unwieldy.

We draw the following conclusion from a com-
parison of global and sequential techniques. It is
certainly possible that for some types of functions
a global method would work where the sequential
method would not. However, for the general class
of functions to which we limit ourselves, we con-
tend that the sequential method is far superior.

We observe that the sequential method will unfold
f(x)=Fkx with absolute accuracy whereas a global
method will have difficulties in producing the finite
step in u(x) at x=0. For the same accuracy and
resolving power, the sequential method is very
much faster and less cumbersome than global
methods, and it is possible to push the resolving
power further using the sequential method. Re-
solving power is limited in global methods by the
limitation on the maximum number of parameters
which can be varied in iterative methods, or solved
for in methods which reduce to simultaneous linear
equations, before the method becomes too tedious
or, in fact, inoperable. Resolving power is limited
in the sequential method only by the amount of data
smoothing required to keep the method stable enough
to produce a relatively smooth curve. Resolving
power using the sequential method can thus be im-
proved readily by arranging to obtain “better” ex-
perimental data using averaging of many digital
runs in a multichannel scaler. In order to take
advantage of such improvement of data quality when
using a global method, it would be necessary to in-
crease the number of parameters employed to the
point where the method could become impractical.
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Azbel’-Kaner cyclotron-resonance experiments have been carried out with two very flat mer-
cury crystals at a microwave frequency of 34.28 GHz and a temperature of 1.2°K. Cyclotron
effective masses of ten orbits were measured with an error of less than 2%. Five of the orbits
(labeled py, vy, k, Ky, and €;) were observed for the first time by Azbel’~Kaner cyclotron reso-
nance. The cyclotron masses of o orbits in the electron lenses were represented by an inter-
polation scheme which gives the mass for any field direction. This interpolation scheme showed
that the second-zone electron lens is tipped 3° out of a (100) plane of the reciprocal lattice to-
ward the [111] direction and that there is a 9% anisotropy of the mass in the (100) plane. A sim-
ilar interpolation scheme describing the frequencies of de Haas—van Alphen (dHvA) oscillations,
which correspond to the 8 arms of the first-zone hole surface, is also presented. The oscilla-
tions were caused by two effects which could notbe separated: quantum oscillations of the micro-

wave surface impedance and dHvVA torque.

Methods for accurately determining the crystal ori-

entation within the experimental apparatus, using the symmetry of the electron-lens masses
and of signal peaks arising from open-orbit induced-torque effects, are presented. Cyclotron
resonance with the magnetic field inclined to the sample surface is discussed. Several effects
indicate anomalous penetration of the electromagnetic field into the metal.

I. INTRODUCTION

The cyclotron effective mass in a metal is propor-
tional to the derivative with respect to energy of the
area of a cyclotron orbit and is greater than that
determined from the band structure because of mass
enhancements arising from electron-electron and
electron-phonon interactions.! However, contri-
butions of electron-electron interactions to the cy-
clotron mass are often partially folded into band-
structure calculations, 2 and are small and indepen-
dent of energy and temperature.® Thus, in addition
to providing information concerning Fermi-surface
topology, determinations of the cyclotron mass also
yield information about electron-phonon mass en-
hancement. This is particularly important for mer-
cury in which there is a large electron-phonon inter-
action. The cyclotron mass, the electron-phonon
mass enhancement factor 1+ A, and their variations
with temperature and energy are conveniently mea-
sured by Azbel’-Kaner cyclotron resonance.

Azbel’-Kaner cyclotron resonance (AKCR) is ob-

served by shining microwave radiation on the sur-
face of a flat metal sample in the presence of an
applied magnetic field aligned parallel to the sample
surface.* Electrons spiraling along the magnetic
field direction return an average of w,7/27 times
to the skin depth region at the sample surface.
w.=eH/m.c is the cyclotron frequency, H'is the
magnetic field, and m, and 7 are the cyclotron mass
and relaxation time, respectively. Resonance oc-
curs when electrons and the rf microwave field are
in phase for successive cyclotron revolutions. This
occurs at fields Hy = cwm,/Ne (N is an integer) for
which the microwave frequency w is equal to, or
an integral multiple of, w.. The reciprocal fields
1/Hy are periodic.

Azbel’ and Kaner have shown that, with appropri-
ate orientation of the x and y axes in the sample
surface, the surface impedance Z(H) is

Zyeryy H)= 2, 5, (0)[1 - exp (- 2miw/w, = 21/w,7)] /3
1)

for electrons of common mass, where Z(0),,,,, is



