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Anisotropy of the High-Field Conductivity in n-Type Germanium
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The anisotropy between the drift velocities in the [100], [110], and [111]directions in n-

type germanium has been calculated using the Monte Carlo approach with several variance-

reducing methods included. The calculations include the effect of the (100}valleys. The

theoretical curves are compared with experimental results. Qualitative agreement is ob-

tained.

I. INTRODUCTION

In n-type germanium, in general, the electric
current and field are not parallel at high fields. In

the [100], [110], and [111]crystallographic direc-
tions this directional anisotropy disappears. An

anisotropy still remains, however, in that at equal
fields, the currents are different':

(I[100])a~ (I[110])a-(I [111])a.

The amount of anisotropy between these three di-
rections has been the subject of a number of experi-
mental investigations. ' Unf ortunately, the results
are not very consistent. The most recent and prob-
ably most exact measurements have been reported
by Smith. ' He obtained a [110]velocity 9% below

and a [111]velocity 14/g below the [100] velocity
at a field of 3 &10' V/m and a temperature of 300
'K.

Recently, a realistic model of the band structure
and scattering mechanisms in n-type germanium,
including higher-energy minima, has been used by
Paige to explain the bulk negative differential con-
ductivity in this material. This paper is devoted
to a study of this model, trying to reproduce the
experimental curves obtained by Smith with a suit-
able choice of various scattering parameters. This
transport problem is solved by a Monte Carlo
method similar to the one used by a number of

authors, ' except for a few modifications that de-
crease the statistical error significantly.

II. BAND STRUCTURE AND SCATTERING MECHANISMS

In the conduction band of germanium there are
three sets of nonequivalent minima with assumed
physical parameters according to Table I, which
was obtained from Ref. 7. In the following calcula-
tions the (000) minimum will be neglected. The
mobility in this minimum may be quite high but the
density-of-states factor is so small that its contri-
bution to the total mobility is negligible. The re-
maining energy minima have constant energy sur-
faces that are ellipsoids of revolution. In the mod-
el they are transformed to spherical energy sur-

TABLE I. Conduction-band parameters of germanium.

Valley

Q.11}
(000}
500}

Number mr*, /m

1.577
0.037
0.90

m*,/m

0.0815
0.037
0.192

a (eV)

0.14
0.18

faces in the usual manner. " Furthermore, the

(100) minima are replaced by one suitably aver-
aged minimum. This follows from the strong inter-
valley scattering rate that will make the anisotropy
between (100) valleys very small. It was recently
pointed out by Dumke' that the nonparabolicity of

the (111) minima might be important in an explana-
tion of the conduction process in n-type germanium.
Here, this effect is neglected since it is of impor-
tance only for electrons of rather high energy. With
the inclusion of (100) valleys and a strong inter-
valley scattering rate between (100) and (111)min-

ima the distribution function will decrease rapidly
above the energy where this scattering process is
effective. This effect is well illustrated in the
case of GaAs in the paper by Fawcett, Boardman,
and Swain. ' The number of electrons in the en-
ergy range where nonparabolic effects are impor-
tant will thus be smaller when the (100) valleys
are included in the model.

A general reference for scattering processes in
germanium is Paige. ' In Table II is given a rep-
resentative set of physical parameters of relevant
scattering processes obtained from Ref. 7. The
way in which some of these parameters influence
the velocity field characteristic will be discussed
below in connection with the presentation of the nu-
merical results. In the model an approximation
of the acoustical- def ormation-potential scattering
is used. The general form of the scattering rate
for this process is very complicated. Relaxation
times can, however, be determined parallel and
at a right angle to the symmetry axes of the energy
ellipsoids. In the case of n-type germanium these
relaxation rates turn out to be almost equal (see
Conwell' ). Therefore it is quite a good approxima, —

tion to use a single isotropic and velocity random-
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TABLE II. Electron-phononon scatterin' g processes in ggermanium.

Type

Initial

Minimum

Final

Branch Phonon energy
(equiv temp )

( K) (eV)

D

(eV/ln)

Intr avalley

Equivalent
intervalley

[111]
[111]
[loo]
[100]

[111]
[100]
[100]
[loo]

[111]
[111]
[100]
[1oo]

[111]
[Too]
[100]
[010]

acoustic
optic
acoustic
optic

acoustic
optic
acoustic
acoustic

430 '

430 '

320 '
430 '
100 '
320 '

11,8

7.4
9 x lo"

~ ~ ~

fo rbidden

l. 6 x 10"
1.1 x 10~~

8. 8 x10
3.8 xlO"

Nonequivalent
intervalley

[111] [loo] acoustic 320 ' 5 x lotto
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FIG. 2. Fraction of carriers in nonequivalent mini-
ma vs electric field for E II f,100] (full curves) and

E II 1,111] (dashed curves).
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their respective population ratios. %hen intervalley
scattering is weak, as is the case in n-type germa-
nium below energies for which electrons canbe scat-
tered to (100) minima, large variances are obtained
in population ratios. This causes a large error in
the drift velocity for an electric field in the [110]
and [111]directions, when there are large diifer-
ences between drift velocities in nonequivalent (111)
valleys.

The estimate of the drift velocity may be written
as

randomizing. f, will thus be spherically symmetric
in momentum space and a function of energy only.

The random walk generates f„ that is, how many

times the particle starts out from each energy. At
the same time, estimates of drift velocities and

times of flight are obtained for particles starting
out from these energies. Equation (3) can be inter-
preted as these estimates properly weighted by the
estimate of f,. The way to improve on Eq. (3) is
to use a better estimate of the drift velocity at each
initial energy. After each collision the particle is
split up into two particles starting out with equal
energy but oppositely directed initial velocities.
The same random number is then used to generate
the time of flight of both particles. Finally, one
of the particles is chosen at random to continue
the random walk. In this way the large error due
to the spread in initial velocities is substantially re-
duced and a total variance more of the order of

v, /v'n is obtained.
The second source of error, the large variances

in population ratios, can also be significantly re-
duced. Expressed in terms of f„ the solution of
the Boltzmann equation may be written as

f- (e) =~.fo &..(e, e')f..(~') «', (4)

where the sum is over all valleys and T „(e,e') is
the distribution of initial energies c in valley m as
a function of the energy e' after the last previous
collision. If the energy axis is separated into a
number af discrete intervals, f, (e) becomes a
vector, T „(e,e') a matrix, and Eq. (4) a system
of linear equations

l 1
Q (vi + v I ) & (v f — kv) (+v j ) (3)

where v& and v, are initial and final velocities of
flight and the summations are over flights in ve-
locity space. In Eq. (3) the last form of v~ is the
most revealing. The first term is positive and has
a standard deviation of the order of v, /v'n In n.
type germanium, where the scattering frequency
increases monotonously with energy, the second
term is negative with a variance of the order of

vugh

/v n . The values of the variances follow from
the approximately exponential distribution of the
times of flight. The second term in Eq. (3) thus
contributes the major part of the variance.

The variance in the drift velocity can be signifi-
cantly reduced if the conventional Monte Carlo
method is suitably modified. These modifications
ean be most easily explained in terms of the syn-
chronous ensembles introduced by Price. ' Let f,
be the "after-scattering" distribution function, that
is, the distribution obtained if particles are ob-
served only immediately after they are scattered.
In the model used here collisions are velocity
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FIG. 3. Fraction of carriers in nonequivalent
minima for E II [110].

where k is the number of intervals in energy. From
the random walk an estimate of the matrix T'~ can
be obtained if at each collision the probabilities of
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FIG. 4. Experimental drift velocity for three orien-
tations vs electric field (Smith).
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FIG. 5. Drift velocity for three orientations vs elec-
tric field with D0 equal to 4& 10 eV/m.

transitions to various energy intervals is recorded.
Equation (5) can then be solved numerically and

since in the estimate of T'~ contributions to transi-
tion probabilities to other valleys are obtained at
each collision, the variances in population ratios
mill be reduced significantly. It is important to
note that in Eq. (5) it is not assumed that f, is con-
stant within the energy intervals chosen. In the
limit of an infinite number of collisions proper aver-
ages within the intervals are obtained of all quan-
tities that have to be recorded, like T'~ and t&, the
average time of flight of particles with initial ener-

gy in interval j. This means that the method does
not require a very large number of energy inter-
vals in order to be useful.

Finally, it can be remarked that both procedures
outlined above can be extended to cover cases with
collisions not velocity randomizing. The second
procedure can be used without modifications, while
in the first one the two particles starting out from
the same energy have to be given unequal weights.
It can also be remarked that the second synchro-

FIG. 6. Drift velocity vs coupling constant for $11)-
(100) intervalley scattering.

nous ensemble used by Price, " the "before-scat-
tering" distribution function f„can be used to give
an estimate of the first few moments of the usual
distribution function f. Since

fb = vxf,
where v is the scattering frequency, for example,
the symmetric part of f can be estimated if in each
energy interval the number of collisions is recorded
weighted by I/v.

IV. NUMERICAL RESULTS AND DISCUSSION

In Figs. 1-3 are plotted the velocity field char-
acteristic and the population ratios calculated with
the parameters given in Table II. The particle
generating the random walk was followed through
10000 collisions. For comparison, experimental
curves obtained by Smith are plotted in Fig. 4.
The theoretical and experimental results are in
qualitative agreement. However, in the theoretical
curves the amount of anisotropy is too large and

v„ the velocity of saturation, too high. The an-
isotropy can be decreased by a slight increase in

D&, the coupling constant of intervalley scattering
between (111)valleys. To decrease v„however,
seems to present more of a problem. In the (111)
valleys, the value of D„ the coupling constant to
optical phonons, is not well determined. Values of

D, in the range 4&& 10' -9x10'0 eV/m have been
reported. In Fig. 5 is plotted the velocity field
characteristic for D, equal to 4&10' eV/m and

D„ the acoustic deformation potential, adjusted
to give a low-field mobility of 0. 38 m'/V sec. The
drift velocity is decreased although in such a way
that the saturation disappears. A higher value of

D, is thus in better agreement with experiments.
Another important parameter is D„„ the coupling
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constant to nonequivalent intervalley scattering.
It is of particular importance in connection with
the Erlbach instability. ' The Monte Carlo method
described above can be generalized to give differ-
ential effects. The results of such computations'
show that the Erlbach instability can exist in n-
type germanium at 77 'K if the value of D„, is not
too small. It is possible to decrease v, both by
an increase and a decrease of D . The variation
in the drift velocity at a field of 10~ V/m with an
increase in D„, is shown in Fig. 6. A strong inter-
valley scattering rate might explain why avalanche
breakdown does not occur until at very high fields.
If &„,and the mobility in the (100) valleys are de-
creased, it is also possible to obtain a velocity of
saturation of the correct magnitude. Both alterna-
tives outlined above are not, however, consistent
with hydrostatic pressure experiments. ' It is
thus difficult to obtain a correct value of v, . This
might indicate that the nonparabolicity in the band

structure is of importance. To check the consis-
tency of the model it would be very valuable if
other transport effects could be computed. There
are a number of experiments suitable for a compar-
ison, like measurements of the frequency depen-
dence of the conductivity, ' of the Hall effect,
and of the magnetoresistance. '~ All these effects
can be studied if the Monte Carlo method is suitably
generalized. This is possible, but the labor re-
quired for the numerical programming would be
considerable.

ACKNOWLEDGMENTS

The author would like to thank Dr. H. Kroemer
for giving him the impulse to start this work. He

is grateful to the National Bureau of Standards and
the University of Colorado for their hospitality dur-
ing the time when a part of this report was pre-
pared.

J. E. Smith, Jr. , Phys. Rev. 178, 1364 (1969).
M. I. Nathan, Phys. Rev. 130, 2201 {1963).

3D. Schweitzer and K. Seeger, Z. Physik 183, 2207
(1965).

V. Dienys and J. Pozhela, Phys. Status Solidi 17,
769 (19ee).

5T. Thorvaldsen, ELAB Report No. AE-118, Nor-
wegian Institute of Technology, 1969 (unpublished).

R. Barrie and R. R. Burgess, Can. J. Phys. 40
1056 (1962) .

'E. G. S. Paige, IBM J. Res. Develop. 13 562
(1969).

T. Kurosawa, J. Phys. Soc. Japan Suppl. 21 424
(1966).

9A. D. Boardman, W. Fawcett, and H. D. Rees, Solid
State Commun. «6 305 (1968).

~ W. Fawcett, A. D. Boardman, and S. Swain, J.
Phys. Chem. Solids 31 1963 (1970).

~ C &'.erring and E. Uogt, Phys. Rev. 101, 944(1956).
~ W. P. Dumke, Phys. Rev. B 2 987 (1970).
13E. G. S. Paige, Progress in Semiconductors, Vol.

8 (Wiley, New York, 1964).
E. M. Conwell, Solid State Physics, Suppl. 9 (Aca-

demic, New York, 1967).
5P. J. Price, in Proceedings of the Ninth Internation-

al Conference on Physics of Semiconductors, Moscow
1968, p. 753 (unpublished).

E. Erlbach, Phys. Rev. 132, 1976 (1963).
'C. Hammar (unpublished).

~ A. Jayaraman and B. B. Kosicki, in Proceedings of
the Ninth International Conference on Physics of Semicon-
ductors, Moscow, 1968, p. 53 (unpublished).

A. C. Baynham, IBM J. Res. Develop. 13, 568
(1969).

E. A. Movchan, Fiz. Tekh. Poluprov. «3 494 (1969)
[Sov. Phys. Semicond. «3 420 (1969)].

E. A. Movchan and E. G. Miselyuk, Fiz. Tekh.
Poluprov. 3 671 (1969) [Sov. Phys. Semicond. 3, 571
(1969)].

B. R. Nag, H. Paria, and S. Guha, Phys. Letters
26A, 172 (1968).


