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The values we have obtained for positions of core
levels, their splittings and for conduction-band
widths are given in Table I along with values ob-
tained by other workers. Values obtained in the

analysis of different experimental runs fall within
0. 1 eV of the central values indicated, and thus
well within the quoted error limits. The quoted ex-
perimental errors result from broadening of struc-
tural features by the resolution of the energy analy-
zer, and in the case of E, and E, from the precision
with which we can set the energy scale. Ne have
assumed that positions of structural features can
normally be determined to within a fifth of the un-
certainty in the width of the distribution.

In our analysis of the data we have assumed that
the core-level energy positions are the same in the
photoexcitation and Auger recombination processes.
This implies that the final state of the Auger pro-
cess is the same as the initial state of the excita-
tion, i.e. , that it results in a lattice ion in its
"ground-state" configuration. This could not be
'true for an atom in which the Auger process leaves

the atom in an ionized state. Qur assumption im-

plies that the electron excited in the Auger process
in a metal is removed from the Fermi sea and does
not significantly change the electron environment

surrounding the ion deexcited by the Auger process.
The failure of this assumption would add additional

error to the values of E, and E~ but not to their dif-
ferences.

Error limits on values of E~ in Table I are those

imposed by the resolution of our experimental data.
Additional uncertainties in E~ may result from our
use of a very simple model in the Auger peak analysis.

Our values of the spin-orbit splitting between

P,&~ and I',&~ core levels agree with those ob-
served in optical data from singly ionized Rb and

Cs. They do not agree well with the values ob-
served in optical data from neutral Rb and Cs with
the atomic configurations nPS(n+ 1)s . This indi-
cates that any valence electron relaxation effects
that accompany the excitation of the core electrons
do not substantially change the spin-orbit splittings
from those observed in the free ion.
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We have analyzed the processes of diffuse scattering of photons and surface-plasmon creation
by photons at a rough metal surface. We have approximated the metal by an electron gas of
uniform density which is bounded by a nearly plane surface at. which the density falls abruptly
to zero. Quantum perturbation theory is used to evaluate the probability of occurrence of the
various processes at the assumed "weakly" rough surface.

I. INTRODUCTION

Collective electron polarization resonances in

solids can be excited by photons and by energetic
charged particles. These resonances may become
manifest when photons having quantum energies in
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the few eV range impinge on metal surfaces. At a
rough surface photons may excite collective electron
states which cannot be excited at a perfectly smooth
surface. The smoothest metal surfaces which can
be prepared by existing techniques have residual
roughnesses of the order of 10 A rms variation
around the mean, ' even under these conditions pho-
ton-surface-plasmon coupling may be appreciable.

The importance of this rough surface absorption
effect has become apparent through recent experi-
mental work of Jasperson and Schnatterly, Stanford
et a/. , Dobberstein et al. , Feuerbacher and
Steinmann, Beaglehole and Hunderi, and more
recently Endriz and Spicer. It now appears that
such absorption may affect markedly the values of
the complex dielectric function inferred from re-
flectance measurements on metals and perhaps on
other kinds of solids as well.

This paper gives a theoretical analysis of the ef-
fect of the collective surface mode upon the reflec-
tance of a very thick metal specimen, in the ap-
proximation that the dielectric permittivity of the
bulk metal is well approximated by that of a system
of free electrons. Since the presence of surface
roughness gives rise to diffuse scattering of an in-
cident photon, we also analyze this phenomenon by
the same method.

Fedders, Ritchie and Wilems, ' and Crowell and
Ritchie have proposed theories of the surface col-
lective mode effect on optical reflectance of metals.
The present approach includes the full transversality
of the surface plasmon, neglecting hydrodynamic
effects in the main. However, a brief approximate
treatment of the effect of hydrodynamic dispersion
on reflectance at frequencies corresponding to large
surface-plasmon momenta is given in Sec. VI be-
low. The theories of Fedders~ and Ritchie and
Wilems both neglect the effect of retardation on the
surface -plasmon field. Crowell and Ritchie' have
included retardation but employed a form of per-
turbation theory which is equivalent to the classical
field perturbation theory used by Stern' and
Kretschmann and Raether in treating the interac-
tion of light with the radiative normal surface plas-
mon in a thin plane metal slab with rough surfaces.
We argue below that the form of perturbation theory
used in the present paper should be more accurate
than that used by these workers.

Although we employ first-order time-dependent
perturbation theory in this paper, we plan to extend
the present approach to second order in a subse-
quent publication so as to be able to treat resonant
diffuse scattering through the plasmon intermediate
state. Experimental data bearing on this phenome-
non have been obtained by Hunderi and Beaglehole'
and by Stanford using Ag metal foils.

A brief account of our work has appeared else-
where. '~
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FIG. 1. Dispersion curves for the photon (curve A)
and the plasmon (curve C) in an infinite homogeneous iso-
tropic plasma system at the absolute zero of tempera-
ture. Curve B shows the dispersion curve u'=ck for pho-
ton in vacuo. Also shown schematically is the region
D in the ~-k plane in which the excitation of single elec-
tron-hole pairs is energetically possible.

II. PLASMON FIELD AND RADIATION FIELD
AT A SMOOTH SURFACE

It is well known that in an infinite homogeneous
isotropic electron gas there is a clear and complete
separation between longitudinal and transverse col-
lective modes. ' Figure 1 shows a schematic rep-
resentation of the dispersive properties of these
modes, together with an indication of the region in
the co-k plane in which single-particle interactions
are important. The upper curve, whole equation is
&u = (&u~+ c'k )' ~, might be called the plasma-shifted
light line. It is interesting that when one couples
the radiation field and the plasma in a very large
system the plasmon dispersion curve is unaffected
while the transverse field relation is strongly shifted
from the vacuum relation co=ck. Here su~ is the
plasma frequency of the electron gas.

Suppose now that the plasma is bounded by an in-
finite smooth plane surface. As is well known, new
modes appear as indicated in Fig. 2. A slow sur-
face wave splits from the continuum and is asymp-
totic to the value &u = u~/W for large wave numbers
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quencies ~ &~~ is that of real photon-volume-plas-
mon coupling by virtue of the presence of the sur-
face. This was apparently first studied in detail by
Sauter and Forstmann' for the case of plasmas at
metallic densities. It appears to be a small effect
at natural metal densities; it results in a decrease
in ref lectivity which is typically a small part of
ik' "in the geometry of interest here.

III. HAMILTONIAN OF PLANE-BOUNDED ELECTRON
GAS RADIATION FIELD SYSTEM

cK hu

FIG. 2. Frequency-wave-number space appropriate to
a semi-infinite plane-bounded electrongas. The wave
vector Tc is parallel with the bounding surface. The line
labeled "volume-plasmon dispersion line" is sketched
for the special case of a volume plasmon with zero mo-
mentum perpendicular to the surface. There is actually
a continuum of possible ~- & values lying above this line
corresponding to various volume-plasmon momenta per-
pendicular to the surface; this continuum is indicated by
the legend "region of real volume-plasmon-photon cou-
pling. " The surface-plasmon dispersion line is sketched
asymptotic to the frequency co = ~&/~2, but increases above
this value if hydrodynamic dispersion is allowed for.

in the case of the electron gas. This mode is a
special case of the Sommerfeld-Zenneck wave much
discussed in the literature of radio transmission
theory in connection with the field of dipole antennas
over a plane air-earth interface. ' It has been
studied by Stern" and others in the plasma case.
Figure 2 shows the dispersion curve of the surface
wave for the free-electron gas. The quantity z is
here the wave number of the surface plasmon par-
allel to the surface.

The presence of the surface means that momentum
perpendicular to it is not a constant of the motion.
The space eigenfunction of the photon in vacuum
bounded by the plasma is strongly modified in the
region below the line ~ = (&u~+c g )'t . The radiation
field is damped exponentially into the plasma here.
A standing wave representation for the photon is
appropriate in this situation. In the region above
this line the plasma is transparent to light in the
neglect of absorptive processes and the appropriate
spatial eigenfunctions for the photon field are inci-
dent plus reflected and transmitted waves.

The presence of the single surface modifies the
spatial form of the volume-plasmon eigenfunction
but does not change its dispersive characteristics.
An interesting phenomenon which occurs for fre-

In Refs. 8 and 9 the dynamics of the system under
consideration were described using the Bloch hydro-
dynamic equations together with Maxwell's equa-
tions. In the present paper where attenuation is
focused primarily upon "optical" resonances in
which the wavelengths of the important modes to not

greatly exceed X, =-2&c/~~, the wavelength of a photon

having the plasmon energy, it is sufficient to neglect
hydrodynamic dispersion effects. Here we write
Maxwell's equations in terms of the vector potential
X as

(
1 8'') - 4& -.

V2 ——
2 ~ ~

A( r, t) = ——j + V(V ~ X)
c ~t) ' c

d

V ~ A=4wec(n -no) .

Here j = —en(r, t) v(r, t) and n(r, t) and v(F, t) are
taken to be the electronic number density and veloc-
ity of the electron gas, respectively. no(r) is the
static density in the undisturbed electron gas. We
work in the gauge Q = 0, so that E = —(1/c) k and H

= V&& A. The equation of motion of the electrons in
the free-electron gas is taken to be

0

v = (e/m*c)A .
Integrating this equation with respect to time, set-
ting the constant of integration equal to zero, de-
fining a position-dependent "plasma frequency" by
~~(r, t) = [4m(r, t)e /m" ], and combining Eqs.
(1) and (3), one finds

g2
v —~ —2+&v~(r, t) A(r, t) = v(v ~ A), (4)

V ~ A =4vec[n(r, t) -n, (r)] .
In the above, m* may be taken as the effective mass
of an electron in the system.

The energy residing in the fields plus the kinetic
energy of the electron gas may be written

X=(8vc') ' fd'r[A'+c'(vxA)']

+ —,'m f d rn(r, t)v (r, t) . (6)

Substituting from Eq. (3) above we find
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2 1 & 2
2 I

v --f —z+~,s(z) A=O
C

(8a}

A=O (8b)

in the region z 40, where the usual conditions of
continuity of the tangential components of the fields
across the plane z =0 are to be satisfied.

To find characteristic solutions of the wave equa-
tion for the vector potential X(r, t) given in Eqs.
(8), one makes the standard ansatz

X(r, t) =Z-„X„-(z)N„-(t)z'"',

where p =xx+jy is a vector parallel to the x-y
plane, K=XK +/K„and the eigenfrequency + de-
pends on both K and the wave number of the vacuum
field in the z direction. The time-dependent ampli-
tude N„-(t) is assumed to satisfy the oscillator equa-
tion (d /dt + +)N-„=0. One finds

c
d2 d

z
—v Xz'(z) =0, z +q Ay '(z) =0, (9)

dz dz

where v =» +((v(') —uF)/c and q =&a /c —» . We
restrict attention here to the region of wave-number
space for which v &0, i.e. , to fields corresponding
to propagating waves in the region z & 0 which are
exponentially attenuated into the electron gas. The
superscripts + and —refer to the regions z &0 and

z &0, respectively.

A. s-Polarized Photons

We first consider photons polarized with E field
perpendicular to the z axis (s polarization). Basic
solutions of Eqs. (9) may be written

Xg'(z)=iAz', "(»xz)e "',

Xz '(z)=i(»xz)(A&, cosqz+Az, sinqz}, (10)

where» = »/I » I is a unit vector in the direction of
K. The three constants Aq,', A z,, and A q, are to be
determined by continuity requirements on the elec-
tromagnetic fields. The factor i has been included
to account explicitly for the reality requirement

K=(8vc )
' f d r[A +&u~(r)A +c (Vx X) ], (7)

where the time-independent position-dependent
plasma frequency &o~(r ) = 4»no(r }ez/m~ is employed
in a linearized approach to the problem.

To make the model definite we may take no(r )
=n,S(z), where 8 (z) is the unit step function. We
thus assume the electron gas to be located in the
region z &0 and to have uniform density no in that
region and zero outside of it. We then seek normal
mode solutions of the equations

X», =X*q,. If one now requires that the tangential
components of K and H derived from X to be con-
tinuous across the plane z = 0 and that V ~ X = 0
everywhere except possibly at the plane z = 0, one
finds

/x.-, =sr'.,t;;.;:,"
tt J

p
x 3 (z)e "'+s (- z) cosqz ——sin qz

(11}

where the time-dependent amplitude N~, satisfies
(d /dt + ~z,)N», = 0 and where &uzz, = c (»z+qz). It is
fairly convenient here to use a mixed representation
for the spatial variation of the vector potential; the
wave number q characterizing the z variation of the
eigenfunctions is taken to be a continuous variable
while the components of K are taken to be discrete,
e. g. , », = 2zn„/L and»„= 2»n, /L where n„and n„
are integers and the basic eigenfunction e' satis-
fies periodic boundary conditions on the planes x
=a &L and y =+ 2L.

If one substitutes Eq. (11) into the expression for
Ho given in Eq. (7) and uses the orthogonality prop-
erty of the basic eigenfunctions appearing in Eq.
(11), one finds

+= (L /16c )Q„-fdq(1+v /q )(A„-~A», +(()»~A», Af~) ~

(»)
Introducing the amplitudes b«defined by A«= n-„,

(b„,+ b -,) a-nd A„-, = i(()„-,a„-,(b—-„, - b ~„,), one c-omes

to the standard canonical form

XO=Zy fdqk(()-„bf,b„-, ,

where a-„, are normalization constants. Since this
equation is in canonical form, the fields may be
quantized immediately by letting the 5~, become
photon annihilation operators satisfying the basic
commutation relations [b~„b&.;]=5~ ~. 5(q -q').
With this normalization the vector potential may be
written in terms of these operators in the form

4@ 2 2 1/2

x 3 ( )e "' a (-*) cosq* ——" s'nq
)q

xe'" (b„,i+b „- ~)', (13)

where the superscript (1) has been added to indicate
s polarization, p, =cq/&u, and &u=c(» +q ) t .

The integral over q covers the range„from 0 to
u&~/c. A different analytical form for Xz must be
used when q & &o~/c. This region corresponds, of
course, to that in which the electron gas becomes
transparent, in which case the appropriate spatial
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eigenfunctions must describe fields transmitted into
the electron gas as well as reflected from it. Since
the region cu & ~~ will not concern„us here, we do

not need to consider the form of A appropriate to
this region.

B. p-Polarized Photons

Similar considerations for photons which are
polarized with E vector parallel to a plane containing
the z axis and the vector K yield

Aa" =Qz fdq(4''p'/L'o, l)'1'OiK —z K/v)cosqe "'8(z)

+[iKcos(qz+lI)+(zK/q)sin(qz+l))]B( —z) j
x e'"'(b„,z+ b-'„,z),-(14)

where the superscript 2 has been used to indicate p
polarization, coslI=C/(o +)l z )'1, sinl) = —p&/
(o' + p, e ), cr= (1 —E —p ), and K = 1 —(&uo/&g) .
It should be noted that the phase angle g may be
taken to lie in the interval 0 —q ——,~, since E is
negative in the range of frequencies of interest
here.

It may be shown that the current of photons of
either polarization in the incident beam at large
distances from the plane z =0 which cross an area
with unit normal n is given by j = (c/2KL )
xn ~ ( Ksin8+ zcos8), where ll = cos8 = cq/&u and sin8
= CK/&d.

The operators b„-,„satisfy the commutation rela-
tions

[b;,i, b; „,i ]=[b;„,i, b; .. .i ]=o,

[b4x i biT', q', v ] bo, pc' 5('q 1 )bx, x'

C. Surface-Plasmon Field

In the present approximation, the vector potential
operator corresponding to a wave bound to the sur-
face is obtained following the general procedure
described above. We find

A,

A, =Q-„(4vffc/L'p„)'1'[(iK —zK/v)e "'8 (z)

+ (iK+z K/vo)e"o'8(- z)]e'"' (b„+b -„), -(15)

b-„,„correspond to modes of the system which are
orthogonal to one another; thus the photon and the
surface plasmon (SP) on the perfectly smooth,
plane-bounded electron gas do not couple with one
another not only because momentum-energy condi-
tions cannot be satisfied but also because of the fact
of orthogonality.

IV. INTERACTION HAMILTOMAN DUE TO
SURFACE ROUGHNESS

To introduce the essential feature of surface
roughness into our model, we follow Fedders in
making the basic assumption that the actual surface
may be described by the single-valued function z
= f(x, y) such that for z && the system consists of an

electron gas with constant density go and that the
region z & f is empty. The function f may be de-
scribed stochastically as in the present connection,
or alternatively, may be a periodic function of posi-
tion, i.e. , a metal diffraction grating. For con-
venience, we may take (f) = 0.

In this case we may write the system Hamiltonian
as

X=(8KC ) f d r[A +B(z —t(x, y))&uoA +c (VxX) ] .
(18)

We transform coordinates to the nonorthogonal
system u, =x, u, =y, uo=z —K(x, y). Expressing the
factor A = eqAq + e&Az+ e3A3 in terms of the unit
vectors (et, ez, e,) tangential to the coordinate
curves in the (u„u„u,) system, we may write

X—Xo+Xt +X2,

where

3

3Co=(8KC )
' d'u Z [A', +8(u, )(uoA', +c'H', ] (18)

)=1

and H, = BA, /Bu, —BA, /Bu, with cyclic per mutations
of the coordinate indices. This Hamiltonian is ex-
actly that which would be appropriate if the system
(ul, uz, uo) consisted of orthogonal Cartesian coordi-
nates, i.e. , no evidence of nonorthogonality is dis-
played in this portion of the total Hamiltonian. The
Hamiltonian X& is defined to contain only terms
linear in l(ul, uo), viz. ,

where the b„- again satisfy Boson commutation rela-
tions and commute with the b„-,„. Here p„= (e —1)/e
x [- (a+ 1)] 1, a = 1 —(&uJ&u„-), and ~-„is the surface-
plasmon eigenfrequency corresponding to a surface
plasmon with wave number K. The well-known
eigenfrequency wave-number relation is K = (+/c )z/
(1+e) which may be solved explicitly for ol„in the-
electron gas case. One finds M„= g(dp+c K

—[-,'&uo+c'K']' which seems to have been given
first by Stern" for the electron gas. In Eq. (15)
v = K —((8„—(dl, )/c and v = K —~„"/c

It should be emphasized that the operators b„- and

0 0

Xq= 2 I d u DA3+3 u3 u&DA3

where

ag ag eK egD= Ag+ A2, Ii = A2 — — Ag,
~up ~u 2 ~uj uZ

(19)
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8$ 8$
G=~ H2 —

~
Hg .

&u~ &u2

The Hamiltonian X2 contains all terms involving f
to higher order than the first. It will not be written
out here since we are interested primarily in sur-
faces which are "weakly" rough.

In the present paper we will treat X& as a per-
turbation Hamiltonian, the expectation value of
which is in some sense small compared with that of
Xpy

V. FIRST-ORDER PROCESSES

We now proceed to describe the interaction of a
photon, incident upon a nonplanar interface between
an electron gas and vacuum, with the surface plas-
mon and with photons having different momenta
parallel with the average surface. This is done in
the context of first-order perturbation theory, treat-
ing X& as a small quantity and X, as negligible.

We employ normal-mode expansions for the photon
fieMs, a typical member of which consists of an
incident wave with momentum h ~ parallel with the
surface plus a reflected wave with the same mo-
mentum, accompanied by a field which is exponen-
tially attenuated into the metal. Although the final
state, in the case of elastic diffuse scattering on
the rough surface, also consists of both "incident"
and "reflected" waves, it may be shown, in the
framework of time-dependent perturbation theory,
that only that part of the wave which describes pho-
tons traveling away from the surface (the "reflected"
portion) makes a contribution to the real photon
field at large distances from the surface.

Since the "roughness parameter" f is contained
entirely in + and X2, we may treat the zero-order
fields, which are eigenfunctions of +, as expand-
able in terms of the orthogonal modes described
gy Eqs. (12)-(14). The vector potential operators
X$ and Xs'"' may now be considered to depend upon
the coordinates (uq, uz, u$) rather than (x, y, z) so
that the zero-order fields correspond to waves
propagating along the actual rough surface z = f(x, y)
—= t(p). 'Ihe coupling between these waves arises
entirely through the coordinate transformation
terms contained in X& and X,. It seems that a per-
turbation theory based upon this approach should
give better results than one which begins with fields
propagating on a smooth "fictitious" surface which
is located somewhere between the extreme excur-
sions of the actual nonplane surface. Lippman
has criticized the Rayleigh -Fano theory of dif-
fraction grating anomalies on the basis that their
zero-order fields, which are essentially tied to a
fictitious plane surface, cannot describe correctly
the real fields in the neighborhood of the grooves.
This objection does not apply to the scheme used
here. The basic conceptual indeterminacy in the

location of the fictitious smooth surface relative to
the real rough surface could conceivably be re-
moved by appealing to a variational principle to fix
its location. Some work along these lines has been
carried out~ but requires a great deal more analyti-
cal labor than the present theory, in which the cal-
culation begins with (approximate) fields which are
associated with the actual surface.

The effect on the eigenvalues and eigenfunctions
of a change in a bounding surface has been con-
sidered by many different workers in connection
with Schrodinger's equation and the wave equation
in acoustics and electromagnetic theory.

A. Photon-Plasmon Coupling

We suppose that a photon is incident on a vacuum
electron gas interface in a direction normal to the
mean surface plane. We apply first-order pertur-
bation theory to determine the transition rate from
an initial state b$, &10) to a final state b„- i0), where
the state vector !0) represents the photon-surface-
plasmon vacuum state (b„-,&IO) = b„-10)=0 for all z,
q, and A.). Since we assume normal incidence, we
take zp- 0.

The interaction Hamiltonian X& simplifies con-
siderably in this case. We may take the incident
photon to be polarized with its K field entirely in
the eq direction. Since we are interested in inter-
actions only on the energy shell, we may write for
this special case

d uL(uq, uz) Kr A» A$3
1 3 2 "(2)

47tc ~up

82
+c HR2 A@3, 0

1 3

where &u is the (common) frequency of the photon
and the plasmon field and where an integration by
parts with respect to the uq variable has been car-
ried out, assuming that limp =0 as luq l-~.

The transition rate y for the photon-surface-
plasmon conversion process is given by

y =Z„- ( 2$/h)~ ( 0~ bXg b$, $~0)
~

&(h(u„- ~
—h(u„-) (21)

according to the Fermi Golden Rule. The probabili-
ty P, for the radiation to surface-plasmon conver-
sion process is equal to X divided by c/2v, the rate
at which photons strike the entire surface of area
I, . Converting the sum over final momenta z to
an integral in the limit L —~[K —(L/2$) f d z ] and
converting to an integral over frequency, i.e. ,

r d~d z= dQ& z dvy,
p

d47ff

one finds after some algebra
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4 1 I 2

Ps = Ii & — cos QgdQg ~ f-„, 22
0

where

n(1 —n) 1 —2n
n= —,F(n) = ~,)2 1+2

(dp (1 —2n) 1 —n

and where

„= J du& f duse'"'L(p)

is the Fourier transform of the functio~ g(u„u2)
= g(p), which describes the height of the surface at
the point (u&, ua) = (x, y). The angle (t)z= cos '((('eq)
is the angle between the plasmon wave vector g and

e& coordinate axis which we have taken to be parallel
with the E field of the incident photon. We have
neglected the finite lifetime of the surface-plasmon
state in obtaining this expression.

For comparison with experimental data on metal
surfaces it is reasonable to assume that a given
surface structure is describable by some sort of
stochastic process and that one should average Eq.
(22) over an ensemble of statistically independent
surfaces; as is usual, one may assume that this
ensemble average does not differ appreciably from
the spatial average over a single surface. For
simplicity we assume that after averaging, the prob-
ability P, depends only upon the magnitude of K, not
upon its direction. If we neglect the possibility that
the surface plasmon generated may decay into a
photon, which is certainly justified if (&2) is small
enough, and set (P, ), the ensemble average of P„
equal to nR, (~), the decrease in reflectance of the
rough surface for photons of energy hen, we have

aR, ( )=&'(~) 5'( )g( '
) 2 ) . (23)

Note that &R, =O for n & -,', in which frequency
range the SP does not exist. The replacement
I- (I k„-I ) = b g(~) has been made in obtaining Eq.
(23). The mean-square surface height variation
(ts) =- b2, while g(v) may be thought of as a surface
scattering factor, the two-dimensional analog of
the x-ray scattering factor for matter. The argu-
ment of g in Eq. (23) is just the wave number of a
surface plasmon of frequency ~.

We may compare the result for DR, (&u) from Eq.
(23) above with the expression for nR((d) obtained
by Crowell and Ritchie9 in their Eq. (24) using a
different form of perturbation theory but for the
same dissipationless electron gas model used here.
The present result is larger than that of Ref. (9) by
the factor

2~2 1/2 ~ 2

1+2
1 —c

and should be more accurate for the reasons ad-
vanced above. Note that the two different results
coincide exactly at n = —,

' although the present for-
mula may predict appreciably larger reflectance
decreases at lower frequencies.

We may include line broadening effects by using
the standard quantum-mechanical theory of final-
state damping. We may use the approximation

g2 4
ykaR, ((d) =—~ F(n„-) d(d„-

27( c " " ((u —(u„-)'+ (-,' y~)'

n „(()p 1 —n (24)
c 1 —2n2

where n„= &u„- /(d~ and y„ is the total damping rate of
an SP with wave number a. We may take

(dpCtE2

1+(1—1/n )

where it is assumed that the complex dielectric
permittivity of the electron gas may be written «(&u)

= 1 —((d~/&u)'+i«, (~), where «2« I «, I, and «2(u&) may
be taken from experimental data on the metal in
question. The actual damping rate of the SP is ex-
pected to be larger than that obtained using the ex-
pression for y„- suggested above, which assumes
that a surface plasmon is damped at the same rate
in a metal as a photon of the same frequency. Addi-
tional damping will occur due to radiative coupling
through, and scattering on, the surface structure
and also because the plasmon may have considerably
shorter wavelength than a photon of the same fre-
quency and hence may excite nonvertical interband
transitions in the metal (referred to the reduced
zone scheme).

We have given elsewhere formulas equivalent to
Eqs. (23) and (24) above for the case of a general
dielectric medium characterized by the dielectric
function «((()).

B. Diffuse Scattering —s-Polarized Photons

Diffuse scattering from a rough surface removes
photons from the specularly reflected beam. The
reflectance decrease due to this process adds to
that due to photon-SP conversion in an experimental
situation unless special care is used to collect these
photons. It is thus desirable to evaluate theoretical-
ly the probability of diffuse scatter.

We suppose again that a single photon state
b„, 210) is -prepared initially. We take zo parallel
with the e~ direction and let t Kpj 0 to correspond
to normal incidence. We calculate the probability
of exciting a photon polarized with its E vector per-
pendicular to the plane of observation by first-order
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perturbation theory using the form

+j 2 d u t (ug, us) 2(u A„g A ps
(Zi) 3 2 (2) 8 {1)

4mc ~Qg

appropriate to the assumed initial state, again con-
sidering transitions to states on the energy shell.
The total transition probability

compared with the wavelength of the light.

C. Diffuse Scattering —p-Polarized Photons

The initial state is represented by the state vector
by„2!0) as before and transitions to final states
represented by b„-,zl 0) corresponding to photons
polarized with the electric field vector parallel with
the plane of observation are considered. The inter-
action Hamiltonian due to surface roughness may be
written

P'= (2~/c»~. f«-(2 /@I(oI I a.iW"'b! . 3Io) I'

x 5(g(u-„, -hw„-, ) (2S)

for scatter into all possible s-polarized photon
states may be converted into a differential angular
probability distribution by letting the sum over y

go to an integral as L -~ and then transforming
from (v, q) to (&u, 8, P) variables, where cos8
=cq/~. Thus fd ~fdq= fdgfd(cos8)fd~(&'/c'), where
we abbreviate cu = co„-, and f is the azimuthal angle
relative to the plane containing e& and e3. The in-
tegration over ~ may be done exactly; defining the
infinitesimal solid angle dQ= d&f& d(cos8), we find

dP' 6 ~', . p co
cos 8sin Qg —sin8

dO m c c (2V)

This quantity may be compared with results of the
scalar scattering theory of Davies for the total
yield of photons of both polarizations, assuming
initially unpolarized radiation. Although he has
taken a Gaussian autocorrelation function to describe
surface roughness, his result is equivalent to twice
the present result for (dP'/d A), = —,

' dP'/dQ in the
region of small 8. His formula is most accurate
for small 8 because of approximations made in the
mathematical treatment. He treats both polariza-
tion states in the scattered photon field on the same
basis and finds equal contributions to each. As will
be seen below, the present theory predicts that the
P-polarization yield should have quite a different
character from that displayed in Eq. (2V).

It is interesting that the a ' factor in Eq. (2V) is
reminiscent of the Rayleigh formula for the scatter-
ing of light on polarizable spheres of radius small

after ensemble averaging as above. The angle 8

may be interpreted as the spherical polar angle be-
tween the outward normal to the electron gas surface
and the direction of observation (see Fig. 2). Since
the aximuthal angle P is referred to the direction of
polarization of the normally incident photon, we may
obtain (dP'/dA)o, the differential probability for
diffuse scattering of initially unpolarized photons,
by averaging this expression over all Q; thus

dP 1 dP

K~ = —
2 dug(u~, u2) 2&v ARg Agg

(22) 1 2 (2) 8 (2)
4mc ~Qy

dP 6 (d ~ ~ sin 8 —ecos 8cos {IJ)
dO m c sin 8 —icos 8

2( e)1/8 2
x 1+ . 2 q~2 g —sin8, 28(sin 8 —~) c

wher« = I —(~, /&u)'. If we wish to describe un-
polarized incident radiation, we average over Q,
obtaining a factor of —,

' in place of the cos @ factor.
This result does not reduce to Davies's formula

(or one-half of it) even in the limit &o-0 where his
assumption that the surface is perfectly conducting
may be expected to be most accurate. The present

INCIDENT
PHOTON

VACUUM (z ~ o )

Eo
= X

ELECTRON GAS (z ~ o )

FIG. 3. Geometry of diffuse scattering. The incident
photon is taken to have propagation vector parallel with
the z axis and to be polarized with electric vector Xo paral-
lel with the +x direction. The scattered photon is taken
to have propagation vector in the direction of the unit vec-
tor yg which makes polar angle 8 with respect to the —z
direction and azimuthal angle p measured from the ~-z
plane. The scattered photon may be either s or p polar-
ized. The average surface coincides with the x-y plane.

2

+c IIR2
8 8 AR3

{2) ~ 2)

1 3

for this situation. As above, we calculate the tran-
sition probability between these states by Fermi
Golden Rule; converting to a differential angular
distribution, we find for normal incidence
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specularly reflected beam takes on quite a simple
form if the Gaussian autocorrelation function is
used. In our way of doing things the total decrease
in the specularly reflected beam due to diffuse elas-
tic scatter plus surface-plasmon generation may
be written

P ( ) I -der'tel)

p 1500
X,QR

8

where

DRr(~) =~/dA + + ARp(&u)
dP' dP ~

(29)

1000 . 0
X

500 0
XP

P

0 Ql Qg Q.3 Q.4 Q,5 QS Q.7 Q.a Q.g l.O

CU

FIG. 4. Specular reflectance decrease as a function of
frequency calculated for a Gaussian correlation function
assuming various correlation lengths. The upper curve
in each figure shows ~z(cu), while the lower curve gives
~~(~). To save space, the curves corresponding to

0/A& = 0.3, 0.4, and 0.5 have been displaced vertically up-
ward. For example, the zero of ~ is measured from
(X&/0-)2~ =1400 for the case g/g& —-0.3.

result predicts considerably larger scattering, i.e. ,
nine times larger for 8 close to zero and even more
as 6) - 27t. We suggest that our results should be
more accurate than those obtained from the scalar
scattering theory of Davies since we take specific
account of the character of the p-polarized photon
field in our treatment, while in the scalar theory
no distinction between s and p photons is made.

Equation (28) bears an interesting similarity to
the formula for the yield of transition radiation pho-
tons from a lossless semi-infinite electron gas
bombarded by a swift charged particle. Both for-
mulas display a "near-resonance, " i. e. , both de-
nominators vanish when 8-0 and ~- ~~. Dissipa-
tion effects, of course, prevent real photon yields
from becoming infinite in this limit. It is not sur-
prising that this similarity exists; a fast charged
particle induces radiation because polarization cur-
rents flow in response to the particle motion, while
photon scattering occurs on a rough surface because
currents flow in response to the field of the incident
photon. Since these currents are associated with
flow along a wavy surface and constitute an acceler-
ated charge distribution, they may radiate also.

The Davies formula for the total decrease in the

QPg &a)p/D2+ (pp) vrKy (30)

where vF is the Fermi speed in the electron gas,
and that the SP field may be described by Eqs. (46)
and (46) of Ref. 8. In this regime we may write
from this same reference

Kq= —(en pc/) fd re(e —g(x, y))As'. V4'~, (31)

where +& is the velocity potential operator of the
SP field. A is the vector potential operator for the
photon field. Transforming coordinates as above,
we have for p-polarized photons

82'
~I d'us(u, )g(u„u,)AR" 4, , (32)

where we use the fact that A~ ' does not depend upon

for polarized normally incident photons. For the
case of unpolarized incident photons we need only
use (dP'"'/dQ) p rather than dP'"'/d Q in Eq. (29).
The exponential dependence of Pr(~) follows from
the fact that the initial state is depleted due to tran-
sitions to final states. The present result for
Pr(u), as written, can be considered to satisfy
unitarity requirements, while the Davies results do
not appear to, in general.

The value of the function nRr(cu) clearly depends
strongly upon the function g(K) appropriate to a given
surface. To give some idea of how this function
may look, we have plotted (6/A ~)

' nRr(&u) and
(()/A ~) 'nRp(&u) from Eqs. (24) and (29), neglecting
line broadening of the SP state and assuming a
Gaussian autocorrelation function, i. e. , g(K)
= vo'e ""~P' for various values of the ratio o/X~ in
Fig. 4.

VI. HYDRODYNAMIC EFFECTS

We wish to obtain an approximate result for the
decrease in reflectance due to SP generation in the
region of large plasmon momenta, where plasma
dispersion may be important, possibly giving rise
to photon-plasmon coupling at frequencies greater
than &u~/W2, the nominal SP eigenfrequency. We
assume that in this region electromagnetic retarda-
tion may be neglected, that dispersion is linear in
g) l. e. ,



J. M. E LSON AND R. H. RITCHIE

u& for the case of normally incident photons.
After a little calculation we find, assuming a

Gaussian autocorrelation function,

~ ~s~sR, = ' exp ——((u —(u,)
mcP P

and n R,(~) = 0 when w & ru, in this approximation.
In this equation P = 5 v z, ~, = ~~/W, and o is the
correlation length. This result is valid for normal-
ly incident photons. If we use parameters appro-
priate to Al metal and take 5=18 A and a=330 A to
use figures which seem representative of experi-
mentally determined values, we find

dynamic dispersion has recently been predicted
to be weaker than that given in Eq. (30), we may
expect such spreading to be even less than that given
in Eq. (34).

Experimental work by Endriz indicates that the
surface -plasmon eigenfrequency in the large ~ limit
is somewhat larger for a rough surface than for a
smooth surface. A roughness-induced surface-
plasmon energy shift may be calculated within the
framework described in this paper. Preliminary
results which we have obtained indicate that this
shift is in reasonable agreement with that inferred
by Endriz from his data. An account of this work
will be published elsewhere.

AR, (&u) =1.384e (34)
VII. SUMMARY

where E = ken is in eV. This expression clearly de-
creases extremely rapidly as E -E, increases.
The model used is inaccurate in that it predicts
nR, =0 for E &E, and n. R,(E) &1 when E=E„how-
ever, we find that even with hydrodynamic disper-
sion present, so that w may be greater than ~„we
do not obtain an appreciable spread in the reflec-
tance decrease into the region ~ & ~,. Since hydro-

We have presented theoretical results for the in-
teraction probability of a photon with a "weakly"
rough surface, including the possibility of diffuse
scattering as well as surface-plasmon creation at
the surface. The results are appropriate to a free-
electron gas but should be useful in assessing the
magnitude of the effect for real metals.
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