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The interaction of localized magnetic moments of a magnetic impurity with the lattice causes
relaxation of the states of that localized moment. The lifetime is represented as a broadening
y of the states of the localized moment. The introduction of this broadening changes the scat-
tering of the conduction electrons by the localized moment from an elastic scattering to an inelastic
one plus negligible elastic scatterirg. Thus, the electron of the average excitation energy
above the Fermi level e ~ T may take part in all inelastic allowed scattering processes only if
q & y, i.e. , T &y. For T&p this number of processes is reduced, and it vanishes for T 0.
This effect was in fact found for the terms of the order J2 and J3 in the perturbation expansion,
and the correct temperature dependence of the Kondo resistivity was obtained for J & 0. The
resistivity for J&0 is also discussed.

Recent measurements of the Kondo resistivity of
Cu-Mn, ' Au-Mn, Ag-Mn, and Au-Fe alloys
have shown deviation from the Kondo 1 -Aln(er/T)
behavior for low temperatures. It was found that
at low temperatures the resistivity due to magnetic
impurities first increases until it reaches a max-
imum (at T„) and then decreases again and can be
described by a 1-Aln(er/T) law for T» T„. The
Kondo temperature (Tr) for the Cu-Mn, Au-Mn,
Ag-Mn systems is very low (T«0. 1 'K) and for
Au-Fe it is T„=O.24 'K. In all these cases'
T& is much smaller than T„. Since T&«T„, the
maximum in the resistivity cannot be associated
with the formation of a quasibound state of con-
duction electrons around an impurity spin for T

& T&. ' Thus a different mechanism, which sup-
presses the Kondo resistivity at T & T„, must be
looked for. Such a mechanism was suggested by
Harrison et al. They assume that the existence
of an internal local magnetic field due to Ruderman-
Kittel-Kasuya-Yosida (RKKY) impurity-impurity
interaction suppresses the Kondo resistivity.
Silverstein has considered the change of the mean
magnetic moment of the impurity spin due to the
change of the occupation of the Zeeman levels with
the change in temperature in this internal local
magnetic field. The calculated resistivity is in
quite good agreement with experiment for T around
T~. Ne, however, prefer to attribute to the
RKKY impurity-impurity interaction merely a
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broadening of the magnetic impurity spin states.
It will be shown later that it is that broadening

(y) which suffices to explain the decrease in the

resistivity below T&. This broadening causes the

scattering of the conduction electrons from the

magnetic impurities to be mainly an inelastic one.
The inelastic scattering governs the low-temper-
ature behavior of the resistivity. The special
characteristics due to the inelastic scattering
vanish gradually for high temperatures (T&v) and

are negligible for T» y. Suhl has already shown

that a Lorentzian broadening of the spin states
will somewhat suppress the resistivity for T & T„.
We have obtained the changes in the resistivity due
to the inelastic scattering for the whole tempera-
ture scale.

The Hamiltonian used in the calculation of the

Kondo resistivity by many authors is the Kondo

one, ' where the impurity spin is assumed to have
an infinite relaxation time, i.e. , y = 0. For this
system only elastic scattering of the conduction
electrons from the impurity spins is possible. We
consider an alloy where the magnetic impurity
spin state relaxes and thus has a density of states
of width y. A possible mechanism for the broad-
ening is the RKKY impurity-impurity interaction.
Another possibility is the interaction of the mag-
netic spin with nonmagnetic impurities. The
magnetic impurity is assumed to scatter the con-
duction electrons by a 0 ~ S interaction. We calcu-
late the self-energy Z of the conduction electrons
Green's function in the first and second Born ap-
proximation under the following assumptions: (i)
The impurity has spin S=-,'. The densities of
states around each spin direction are assumed to
be degenerate (i.e. , the Zeeman levels are broad-
ening but not split). This forms a band of spin

states of width y which is half-filled and hence has
a Fermi level. This Fermi level need not be equal
to the conduction electron Fermi level. (ii) y is
temperature independent. (iii) The spin band is
assumed to have a constant density of states over
the width y and to vanish elsewhere rather than

to be Lorentzian. (iv) The spin Fermi level then
lies in the middle of the spin band. '~

Abrikosov' has shown that in the calculation of
the resistivity, one should consider only ImZ(e)
of the conduction electrons possessing mean ex-
citation energy e= T above their Fermi level.
Another dependence of ImZ(e) on the temperature
is due to the distribution functions of the spin and

conduction electrons. Hence ImZ(T, t) I, r is cal-
culated. The resistivity is then

To

0&E&1

x 1 —2(1 —E), ~ E «1«

for the first Born term, and

(2)

where m is the conduction-electron effective mass,
N is the number of atoms, and e is the electron
charge. The low- temperature phonon contribution
is taken to be oT'. " First ImZ(0, c) I, r is calcu-
lated. In doing so no variation of the distribution
functions with temperature is permitted. This
expression can be evaluated analytically under the
former assumptions (i)-(iv). We call this the T= 0
approximation. The calculations give ImZ(0, E),
in terms of E-=c/y, as

A
ImZzr(0, E) = ——x

Tp

I E [21n(2cz/y)+~3—]+p~(~+2E) (I -2E) ln(1 —2E)+6 (~ —2E) (1+2E) ln(1+2E), 0«E «
~

(E E) [21n(2&~/y)++] —-E(E —fE ) lnE+ —,'(1 —5E+4E )(1—E) ln(1 —E)

+(2E —1) [ln(ez/y)+ 2]+ ~(l —2E} ln(2E —1) —~~(1+2E) ln(1+ 2E}+2Eln2, ~ «E « I,

~

in[&+/(yE)]+-', +(E --,') in[1 —1/(2E)] —(E —1) ln(1 —1/E} —(E+-,') in[1+1/(2E)],
l 1-E«a~/y (3)

for the second Born term. Tp and A are defined as

I/To mN, (0)(J——/N) S(S+1)N(/2

A =——4N, (0)J/N,

where N, (0) is the density of the conduction elec-
trons at their Fermi level, J/N is the coupling
constant, and N; is the number of impurities.

In Fig. 1 ImZ, (0, e) ~,.r and ImZ„(0, e) I,.r are
shown for y=0. 1'K and y=1'K, with &~='7 eV

I

(which applies to Cu alloys) and A = 0. 045. In Fig.
2

np(T) «c ImZ z(0, e) ~, r + (sign J) ImZ &,(0, e) ~, z,

is shown for both j «0 and J & 0, where np(T)
is defined as np(T) -=p,»„(T) —p~„,(0) —nT '.
The parameters of np(T) in Fig. 2 were chosen
to apply to the Ag-Mn system of Jha and Jerico'
(alloy No. 2), with E~= 5. 5 eV, y = 7. 4 'K, and
A=0. 05. It is seen that the general correct be-
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FIG. 1. ImZz(0 &) I6 p and ImZzz(0 e) I, z are shown
for y = 0.1'K in bold line and for y = 1'K in dashed bold
line. The dashed thin line is the continuation of the as-
symptotic ln(e~/ T) behavior to lower temperatures. B, 8'
are co.mtants.

ImZi(T e) I ~=r= 5(T/y) T«y (5a)

havior over the complete temperature scale is
revealed by the present approximation. We have
obtained the maximum at T=y a decrease in the
resistivity from the maximum towards lower tem-
peratures and a I Aln(e~/-T) behaviorfor T»y. The
decrease for T & y is interpreted as the exclusion
of part of the inelastic scattering processes when
E= T&y. However, the quantitative fit is not com-
plete, especially for T&y where the calculated
resistivity is low. This limitation in the fit is
mainly due to the T = 0 approximation. We have
also calculated analytically ImZz(T, e) I, r for
T «y and T»y by taking into account the tempera-
ture dependence of the spin distribution functions.
This has resulted in

contribution to the changes in hp(T) below T„(as
long as y» Ts). It changes hp(T) also for T & T„,
and only for T» T„does it become a constant.
(c) Since y =y(c), where c is the impurity concen-
tration, and T„=y, a relation T„=T„(c) is obtained.
In particular if yo= c, then T„~c. Furthermore,
if the relation T„=T„(c) is once known, then c
can be deduced from the value of T„(d.) &p(T)
for J& 0 will show a I Aln-(e/T) behavior only for
T»y, and practically for T~ 10y, as is seen
from Fig. 2. Therefore fitting a I -Ain(ez/T) ex-
pression to experimental results is plausible only
for T - 10T„. (e) For T & y r p(T) (J& 0) goes through
various T dependence regions: For T-0 bp(T)
~ T, for higher temperatures n.p(T)«T+B, then
Dp(T) «lnT+B', until dp(T) flattens off and reaches
the maximum. (f) Dp(T) for j& 0 also has an in-
teresting structure. It does not show a resistance
maximum, but rather a shoulder at T=y. For
T»y it increases as I+Aln(ez/T). '

(g) For hp(T)
calculated from ImZ(T, e) l, r it is interesting to
see the dependence of it on the exact shape of the
broadening. It is expected that for T«y or T
»y the exact shape of the broadening is of no
importance, but this is not so for T=y. To show
this we observe that in Fig. 2 the calculated re-
sistivity at T= T„ lies above the 1 —Aln(e~/T) line
(for the T = 0 approximation). On the other hand,
the resistivity for a Lorentzian broadening was
shown by Suhl to lie below the I Aln(es/T-) line
for T= T„, in agreement with Gainon and Heeger's"
experimental results. Thus if the T= 0 approxi-
mation does not cause the discrepancy, then it is
the shape of the broadening used. (h) The diver-
gence in the perturbation series given by Abrikosov 3

determines the Kondo temperature (Ts) This.
divergence is obtained when ImZq(e) =ImZ«(E).

ImZ«(T, e) I, r= —,'[I+y/(6T)], T»y . (5b)

The expressions obtained in Eqs. (5a) and (5b)
give a temperature dependence of S.p(T) which is
similar to the asymptotic temperature dependence
of &p(T) obtained from Eq. (2), except for the co-
efficients. In particular the low-temperature re-
sistivity (for T & T„) is increased relative to that
obtained from Eq. (2). It is expected that the
second Born term will be changed similarly. The
resistivity then obtained is shown in Fig. 2 by the
solid lines. It is seen that the quantitative fit has
improved considerably.

The following conclusions can be drawn from
our results: (a) A simple model based on assump-
tions (i)-(iv) and the T= 0 approximation gives
np(T) similar to the experiment for the entire
temperature scale. For J& 0 the decrease of
&p(T) below T„, the connection between T„and
y, and the correct 1-Aln(ez/T) law for T» y are
obtained. (b) The first Born term gives the main
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FIG. 2. aP(T) o'ImZz(0 &) I T+ (sign J) ImZxz(0 6) I -z
is shown for J&0 by the dashed line and for J &0 by the
dash-dot line. The solid lines are Ap(T) ~lmZz(T, ~) I, ~
+ImZzz(T, e) I, &(J&0) for T«y and T»y. Open circle
denotes the experimental values of bp(T) for Ag-Mn
0.332at. % from Jha and Jericho (Ref. 3 ).
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However this equality will never occur for a y big
enough, since the highest value of the second Born
term is determined by In(e~/y) [see Eq. (3) and com-
pare it with Eq. (3)], i. e. , lmZqq(e)& imZq(&).
For the weakly interacting system y is always large
enough for any practical impurity concentration.
Hence ImZ&&(e) & ImZ~(e) for any e. Then our re-
sults apply to hp(T) down to T= 0. Itus is not
always so for strongly interacting systems like
Cu-Fe. There y & T~ is possible, and the whole
perturbation series must be summed up. ' ' '~

Measuring the resistivity of the following Kondo
systems would be useful for comparison with the

present theory: (a) a weakly interacting system
like Cu-Mn, Ag-Mn, Au-Mn; (b) low impurity con-
centration, so that T ~&0.1T &„ i.e. , the exper-
imental Kondo resistivity can be obtained up to
T» v; (c) very low temperature measurements
down to T& 0. 1 T„ in order that the residual
p», „(0) can be determined and subtracted from

p~„„(T), and also that the behavior of &p(T) for
T«y can be obtained.
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