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Magnetic Properties of the Antiferromagnet DyPO+ in Applied Fields
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The magnetization and susceptibility of the Ising antiferromagnet DyPO4 have been measured
as a function of temperature and applied field for samples having demagnetization factors D
= 0. 02 and D 1.0. Also, the temperature at which peaks in the heat capacity at constant ap-
plied field occurred were measured for a number of applied fields. These results have been
compared with predictions of the molecular-field approximation and the Bethe-Peierls approx-
imation including long-range dipolar interactions. The temperature below which the antiferro-
magnetic-paramagnetic transition is first order has been obtained within the molecular-field
approximation. In addition, expressions are obtained for the magnitude of the discontinuity in
the heat capacity at the transition between the intermediate (or mixed) state and the antiferro-
magnetic or paramagnetic states for samples having nonzero demagnetization factors. These
expressions do not depend on the molecular-field or Bethe-Peierls approximations.

E. ENTRODUCTEON

Dysprosium phosphate is a good material to use
as a basis for study of three-dimensional Ising
antiferromagnets. It is highly anisotropic, having

g factors determined from EPR measurements' of
g, )

= 19.5 and g, = 0. 2.
The zero-field susceptibility, heat capacity, and

sublattice magnetization of DyPO4 have been mea-
sured and compared with both low- and high-
temperature series expansions based on a near-
neighbor-coupling-only Ising model. ' Excellent
agreement was obtained for 8 &&10 '& (T„—T)/T„
& 10 ', where T„ is the antiferromagnetic (AF) to
paramagnetic (PM) transition temperature in zero
applied field, indicating that in zero applied field
a near-neighbor-coupling-only Ising model is a
good approximation. From those measurements
of susceptibility and heat capacity over a wide range
of temperature, the antiferromagnetic nearest-
neighbor coupling J, /0 has been determined to be
1.25 + 0.02 K while the value obtained from spec-
troscopic measurements is 1.32+0.07 K.

In contrast to the zero-field results, the prop-
erties of DyPO4 in an applied magnetic field Ho are
not well approximated by only nearest-neighbor
coupling. We have found that its magnetic behavior
is qualitatively that expected of a two-sublattice
antiferromagnet in which dipolar interactions are
important. At temperatures below the Neel tem-
perature, T„=3.390 K, DyPO4 is in its AF state
for fields below its critical field which depends on
temperature. Also, the transition from the AF
state to the PM state is first order below a critical
temperature T, =0.75 K, and higher order for
higher temperatures.

DyPO4 has the zircon crystal structure which
consists of linked Dy04 and PO4 tetrahedra with
common oxygen atoms. The symmetry is tetrag-
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FIG. 1. Antiferromagnetic state of DyPO4.

onal and the space group is D'e, (f4, /amd), and the
unit-cell dimensions are ~ = 6.917 A and
eo= 6.053 A. The four magnetically equivalent
Dy

' ions per unit cell have a site symmetry DM.
A given Dy3' ion has four nearest neighbors which
lie at the apices of a flattened tetrahedron. The
magnetic crystal structure of DyPO4 can be con-
structed from two interpenetrating body-centered-
tetragonal lattices which form the two sublattices
of the antiferromagnetic state shown in Fig. 1,
where the four nearest neighbors lie on the opposite
sublattice from that of a given ion.

We have measured the magnetization of DyPO4
samples having demagnetization factors D =0.02
and D=1.0, the former to obtain the properties of
a long needle and the latter to compare with max-
ima in the heat capacity at constant applied field
for various fields. The heat capacity was measured
with a sample having a demagnetization factor
D=1.0, in order for the sample to have a volume
large enough for us to measure its heat-capacity
maxima.

In order to understand the qualitative dependence
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of the magnetization and heat-capacity maxima on

field and temperature, we have compared the ex-
perimental results with a molecular-field theory
including dipolar interactions, and a Bethe-Peierls
theory including long-range dipolar interactions.

Equations for the magnetization and heat capacity
of an antiferromagnet having near-neighbor cou-
pling and dipolar coupling are given in Sec. II using
molecular-field and Bethe- Peierls approximations.
These developments are made together so that the
reader may compare the approximations made in

the two approaches. Also, calculations of the mag-
netization and heat capacity are made using both
approximations so that each may be compared with

the measurements on DyPO4. Also in Sec. II the
molecular-field position of the critical temperature
T, as a function of the ratio of the intrasublattice
to the antiferromagnetic inter sublattice interactions
is given for all ferromagnetic values of the intra-
sublattice interaction.

Section III contains a description of the measure-
ments made on DyPO4 and of sample preparations.
Section IV contains a discussion of the measure-
ments made with D =0.02 and comparison is made
with the models developed in Sec. II.

In Sec. V a description of the intermediate or
mixed state is given, and special attention is given
to calculating the directly measured quantities such
as the heat capacity at constant applied field in the
intermediate state and for the discontinuity in heat
capacity on crossing the boundary of the inter-
mediate state. An equation for the location of the
Schottky maximum in the H-T plane is also given.

These expressions are used in Sec. VI to com-
pare the magnetization and thermal measurements
with each other and with the molecular-field and
Bethe-Peierls approximations for samples of
DyPO4 having approximate demagnetization factors
near unity.

a sum over pairs R and R+P, and S(R) takes on the
values + 1.

If we consider a large sphere centered at R and
use the fact that J». -0 faster than I R —R'

I

we have

3C= J, 5 S(R)S(R+P)

+-,' Z (J'„„,+ Jf,~, ) S(R) S(R')
&R, Rp&

+ —,
' Z J~~. S(R)S(R') —IJ. Hp Z S(R),

where the sum (R, R') contains all R' except nearest
neighbors in a large sphere centered about R and

)R, R'( contains all R' outside the sphere. This sum

may be replaced by an integral, leading to

3C = J, Z S(R)S(R+ P)
&&, 8&

+ — Z (4 „.+J' ~ )S(R)S(R')
(R,R'

&

——, p(Dp —D)M Z S(R) —pHp Z S(R),

where Do is the demagnetization factor for a sphere,
4v/3, and M is the magnetization

We can proceed by two alternate methods. We
may treat all terms in the molecular-field approxi-
mation or we may neglect the second term and treat
the first and last two terms using a modified Bethe-
Peierls method. The molecular-field method has
the advantage of including all interactions although
they are all treated in an approximate manner.
These approximations are expected to give the
largest errors when treating the relatively strong
interactions of nearest neighbors.

To use the molecular-field approximation, we
define

(4)

II. MOLECULAR-FIELD AND BETHE-PEIERLS
APPROXIMATIONS

We will now consider a two-sublattice Ising anti-
ferromagnet having both dipolar and exchange in-
teractions. We will then make molecular-field
and Bethe-Peierls approximations separately. The
Hamiltonian for such a system is

3C=Z, Z S(R)S(R+P)+ —,
' Z J~„,S(R)S(R')

&R, S& R, R'

gez. S(R)S(R') —gHp Z S(R),
R, R'

where p. =-,'gp, ~ and J, is the total antiferromag-
netic nearest-neighbor interaction, dipolar plus
exchange, J». is the dipolar interaction, J~R. is
the exchange interaction between ions at R and R',
with R and R' never nearest neighbors, and Ho= Bo
is the applied field. The notation (R, P) indicates

m'= (S(R))= = —Z S(R,)
2M' 2

Mo

where the subscript i is 1 when the sum over R'
is on the same sublattice as R, and 2 when the sub-
lattice is the opposite sublattice, again excluding
.iearest neighbors. The superscript j refers to
either exchange or dipolar interactions. For ex-
ample, H, is the dipolar field arising from all
ions on the same sublattice inside a large sphere
in the PM state at T=O, and H2 is the dipolar field
arising from all ions on the opposite sublattice
inside a large sphere excluding nearest neighbors
in the PM state at T=O. M' is the magnetization
of one suhlattice, and M=M'+M", m =-', (m'+m")
= M/Mp' and Mp is the saturation magnetization.
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The energy per spin in the molecular-field ap-
proximation is then

UMr =z {[zJ, +PHp+ pHp+ z (Dp —D)Mp]m'm"

+ 2 [pH g + PH g + ~ (Dp —D)Mp](m + m )

—gHp(m'+ m")), (6)

where z is the number of nearest neighbors of a
given ion and m' and m" are the reduced sublattice
magnetizations 2M'/Mp, 2M"/Mp, with 0 —m™1
and —1 —m" —1.

The effective fields on these individual sublattices
are then

H' = Ho —H,m" +H&m',

H" = Ho —H, m'+ Hpm",

with

H, = (z J, /4) —Hp —Hp ——,
'

(Dp D)Mp,

Hp=Hg+ Hq+z (Dp —D)Mp

(7a)

(vb)

(Sa)

(Sb)

We then find that k T~ = p.H, + p, H~, and for a long
needle H, = H, (0), the critical field at zero tem-
perature. We define

X = (1 —pH, /k T„)=, H~ /(H, + H~),

which for DyPO4 gives X =0.32+0.03. This be-
comes X=O. 34 when we make the approximations
H", =- H'„Hz= —H~. The equations for the sub-
lattice magnetization in terms of X are

(1 —X)h —(1 —X)m" + Km'
m' = tanh t

(loa)

(1-&)a —(1-X)m'+ xm"m" =tanh
t (10b)

E, = —, [ —z J, —p(Hq+H~)+ p(Hp+Hp)] . (12)

Note that the sign of all fields is such that a posi-
tive value of the field corresponds to a ferromag-
netic interaction. By equating these energies we
obtain the critical field at zero temperature

H, (0) = z J, /p —2 DpMp —H p
—H'p .

The value of the critical field at zero temperature,
H, (0), for the transition from the AF state into the

where h=Hp/H, (0) and t= T/T„. The solution in the
PM state is given by m' = m" = m = M/M .

The sum of all exchange interactions between a
given ion and all ions on the other sublattice may
be calculated from a knowledge of the critical field
at zero temperature. The energies per spin of
the PM and AF states for a long needle at T= 0 are

Ep =
g [zcl+ DpMp p(Hg+ Hg+ Ha+ Hz) 2&Hp]

PM state (often called the metamagnetic transition)
is 5.45 kG, as obtained from our magnetization
measurements. The value obtained from a near-
neighbor-coupling-only calculation is H, (0) = z J, /g
=7.67 kG, or 8.07 kG, depending on the value of
J, taken, where z is the number of nearest neigh-
bors (4) and p=-', ggz =0. 6515 K/kG. The inclusion
of long-range dipolar interactions (the Lorentz
field) only, gives H, (0) = (zZ, /p ——,'DpMp) = 5. 06 kG
or 5.46 kG again depending on the value of J, taken.
In addition, the inclusion of the dipolar interactions
leads to a first-order transition at low tempera-
tures, as is observed experimentally.

Since H, (0) = 5. 45 + 0.01 kG, and J', /k = 1.25
+ 0.02 K and H2 was obtained from a dipole sum
(see Table I), we may use Eq. (13) to determine
H2=-1. 63+0.04 kG, which differs from the result
of Ref. 3 of H~= —0.97+0.52kG which was based
on optical measurements. The value of H', given
in Table I is taken from Ref. 3 and is based on
optical measurements. We see from Table I that
H, and H', have opposite signs, as do H2 and H', .
This partial cancellation of the dipolar and exchange
interactions for other than nearest neighbors ex-
plains why a model having only near-neighbor inter-
actions (dipolar plus exchange) of J', /0 =1.25 K
describes DyPO4 so well in zero applied field. It
also indicates that a model having the same near-
neighbor interactions and long-range dipolar inter-
actions outside a sphere should be a good approxi-
mation for DyPO4. In addition, as we show in
Appendix A, the dipolar and exchange fields from
the second- through fifth-near-neighbor interac-
tions have opposite signs individually as well.

In all model calculations presented in this paper,
both molecular-field and Bethe-Peierls, we have
assumed complete cancellation of H', and H'„and
H2 with H~. Within the molecular-field model, if
we express all properties in terms of the reduced
units h = Hp/H, (0) and t = T/T» the only material-
dependent parameter is X. The molecular-field
calculations are easily corrected to include the
lattice sums by changing the value of X. The ap-
proximation we use, therefore, is one that is
strictly suited to a cubic Ising system with dipolar
interactions and nearest-neighbor exchange inter-
actions only. The only difference between this ap-
proximation and our approximation for DyPO4 is
that for DyPO4, J, is the sum of dipolar and ex-
change interactions between nearest neighbors,
while for the cubic lattice mentioned above, J, is
the exchange interaction only, since in that case
the total dipolar interaction is zero.

Let us now consider an Ising antiferromagnet in
the shape of a long needle (demagnetization factor
D = 0) in an external field applied along the direction
of alignment of the Ising system, which is also the
principal axis of the needle. For small t= T/T„,
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TABLE I. Dipolar fields at an ion on the A sublattice. H~&—-0.112 kG; H2 =1.23 kG; &=3.4585k; a=6. 917 A; H&

=-0.12 kG; Hf =-1.63 kG; y=1. 5132 A. ; c=6.053 A.. A plus sign indicates a ferromagnetic interaction.

Neighbor

1
2
3
4
5
6
7
8
9

10

Position of
one neighbor

(0, ~, V)

(o., 0, 3y)
(n, n, 2y)
(0, 0, e)
(o, a, o)

(a, &, y)

(0, 0, , c+y)
(o', a, 3y)
(o, a, c)
(a, a, 0)

Sublattice

8
8
A
A
A
8
8
8
A
A

Distance from
central ion (A)

3.775
5. 707
5. 752
6. 053
6. 917
7. 880
8.319
8. 967
9. 192
9.782

Number of
neighbors

4
4
8
2
4
8

4
8
8
4

Total dipolar
field (kG)

—3.491
+1.752
—0.645
+1.635
—1.096
—1.318
+0. 933
—0.232
+0.281
—0.387

the transition from the AF state into the PM state
in a field will be first order if there is a net ferro-
magnetic interaction between ions on the same sub-
lattice. In DyPO„ this interaction is principally
the dipolar interaction with distant neighbors. A
molecular-field calculation predicts that the first-
order transition will occur up to a temperature
t, ().) shown in Fig. 2. For 1 ——', the first-order
transition occurs between the AF and PM states and
the first-order transition becomes second order
at"' t, (A.) =+~ —1/3).. For X& 8 the first-order
transition line extends into the AF state; that is,
at some temperatures there is a first-order transi-
tion between two AF states followed by a second-
order transition into the PM state as the applied
field is increased. ' '3 In this case, the first-order
transition ends in a critical point and the tempera-

1.0
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0.2

0 i I I I 1 I I I I I I I I I I I I I I

0 O. l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.O

FIG. 2. Reduced critical temperature t, = T,/T~ as a
function of ~. The dotted line is given by t (~) =&-1/3~c 3
which is exact above X=s. The dashed line is tc(~) =~.
The solid curve is obtained numerically.
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FIG. 3. Phase diagram of DyPO4 using the molecular-
field approximation with D =0 and X=0.34. The solid
curve is the first-order transition, and the dashed curve
is the second-order transition. The dotted curve does
not represent a transition. The region near the critical
point is shown in the inset.

ture of this point is t, (X) &+~ —1/3X. A phase dia-
gram in the H- T plane is shown in Fig. 3 using the
molecular-field approximation and X =0.34. For
this value of X, corresponding to the interactions
in DyPO4, the first-order transition occurs within
the AF state over only a very narrow temperature
range.

For small X the critical point occurs at low tem-
peratures and the hyperbolic tangent may be ap-
proximated by unity in Egs. (10) for the sublattice
magnetization which is in the direction of the ap-
plied magnetic field. Thus, in the small X limit,
one sublattice magnetization is saturated and the
other sublattice magnetization is zero at the critical
point and the temperature of that critical point is
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t, (A) = X (as X-0). The critical-point temperature
approaches X from above, so that t, (X) ~ A for
X —0. For X & —,

' the approximation t, (X) =X is very
good. The whole curve of t, (X) is fairly well ap-
proximated by the greater of + —I/3X or X (see
Fig. 2).

The low-temperature (small X) approximation to
the critical point in the molecular-field approxi-
mation is interesting because of its simplicity. In
this approximation we have m'= 1, Ho= H, (0), and
m" =tanh(Xm "/t), which has two solutions corre-
sponding to the two AF states for t & X, and no solution
for t ». We note that the equation for the sub-
lattice magnetization m" is equivalent to the equa-
tion for the total magnetization m of a ferromagnet,
and the different branches of the solution for m"
(positive and negative) are achieved for applied
fields infinitesimally greater than or less than the
critical field, respectively.

While the above results are those obtained in a
molecular-field approximation, we shall suppose
that the qualitative result of a first -order transi-
tion occurring for temperatures less than a critical
temperature t, is valid for systems with AF near-
neighbor coupling and ferromagnetic long-range
dipolar coupling. ' This behavior is observed
in DyPO4.

The molecular-field prediction of a second-order
transition at applied fields higher than the first-
order transition field has not been observed, and,
in fact, comparison with two-dimensional Ising
model solutions leads one to take the inflection

(R, R,'. )
(14)

for i =1 or 2, so that

Xsp = 8, Z S(R)S(R+P)
(R, g&

—g[HO+ (D, —D)MO] E S(R), (15)

which leads to the Hamiltonian of a cluster of ions
about an ion on the a sublattice

'3C = J, E S(R)S(R+P)+pHZ S(R, +P)

point of the M-vs-00 curves at constant T as the
phase transition. This method was used to obtain
the experimental phase diagram shown as squares
in Fig. 4. The molecular-field calculation pre-
dicts that the maximum of (sM/BH)r is inside the
AF region. This maximum is closer to the actual
transition than is the predicted second-order
transition.

Since we have an Ising system we would expect
that the molecular field would provide a good ap-
proximation to the real system at low temperatures.
There are, however, only four magnetic nearest
neighbors which are strongly coupled to the central
ion, so we would expect the Bethe-Peierls approx-
imation (which for our Ising system is the same as
a constant coupling approximation) to be signif-
icantly better than the molecular-field approxima-
tion.

In order to use the Bethe-Peierls approximation
we will approximate the sum in Eq. (3):

—g[H0+ (Do —D)M]S(R) + pH" Q S(R+ a)

B0
(kG)

0
0

0
oo o 0 0 o

o

I

1.0 2.0
T (K)

0
]

3.0

E = 1/s B' (Isa)

where H' and 8" are fictitious fields to be deter-
mined self-consistently from consideration of the
cluster centered at R+ P, on the other sublattice.

If we define

y = exp( —2J, /k T),
s = exp( —2p[HO+ (Do —D)M]/kT)f,

e = exp( —2p H'/k T),
B= (e+y)/(I+qy),

and set up equations in the paramagnetic region
where the expectation value of a spin is the same
on both sublattices, we obtain '

FIG. 4. Phase diagram of DyPO4. The squares are
obtained from peaks in the susceptibility for a long needle,
D = 0. 02, and the circles are from maxima in the heat
capacity at constant applied field of a sample having D
= 1. The locus of the Schottky maximum is also shorvn.

or

B(y+sB' ')=1+syB' (IVb)

If dipolar interactions had been neglected, we
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could solve Eq. (1Va) or (1Vb) for e or B and obtain
the magnetization from the relation

m = M/M0= (1 —sB')/(1+sB') . (18)

When dipolar interactions are included, we have
the result that Eqs. (1V) depend on m so that Eqs.
(1V) and (18) must be solved simultaneously for
B and M. Eliminating B and defining
5=[(1—m)/(1+m)] ' and y=s'~*, we have

Gyp + 5' —yy5' —1 = 0, (19)

which can be solved numerically for 5 and, hence,
m as a function of applied field and temperature.

The expectation value of the energy in the con-
stant-coupling approximation is 6

—gHom —~ g(DO —D)Mom . (20)

By taking the derivative of Eq. (20) at constant ap-
plied field we can obtain the heat capacity at con-
stant applied field in the Bethe-Peierls approxima-
tion.

III. EXPERIMENTAL PROCEDURES

The crystals of DyPO4 were prepared according
to the method of Feigelson~7 by J. C. Wright of
John Hopkins University. They were good optical-
quality crystals and free of inclusions. They were
typically in the shape of parallelepipeds of approxi-
mate dimensions 1X1~4 mm with the optic axis
lying along the long direction of the crystal. At-
tempts to fashion ellipsoidal samples from the
parallelepipeds were unsuccessful since the crys-
tals are very brittle and cleave readily into needles.
As a result, we were forced to use nonellipsoidal-
shaped samples in our experiments.

The cryostat used in making the magnetization,
the differential susceptibility, and some of the
heat-capacity measurements was a top-loading He
refrigerator. The majority of the heat-capacity
measurements, however, were made in an adia-
batic-demagnetization cryostat.

Magnetization isotherms were obtained for single-
crystal specimens of DyPO4 in fields up to 22 kG
at temperatures between 0. 3 and 4. 2 K. The
isotherms were obtained quasistatically using a
continuously recording vibrating-sample magne-
tometer which utilized a piezoelectric element as
the vibrator and which was located in the cryostat.
After amplification, the signal from the pickup
coils was fed into a phase-sensitive detector, the
output of which was fed into the Y input of an X- F
recorder. The horizontal, X, axis of the recorder
was driven by a voltage directly proportional to
the applied magnetic field provided by a laboratory
electromagnet. The measurements were made on

parallelepiped-shaped single crystals whose de-
magnetization factors D were approximately 1.0
or 0.02. Since the crystals were not ellipsoidal in
shape the fields inside the crystals were not uni-
form throughout and, hence, strictly speaking,
there is not a unique demagnetizing factor. If one
assumes that the crystals approximate an ellip-
soidal shape, however, one can calculate a demag-
netization factor which should be a fairly good ap-
proximation to that of the real crystals. We find
that the experimental determination of the demag-
netization factor, determined from the slope of
the magnetization curves in the first-order region,
is in agreement with that calculated in this way.

The crystals were mounted in the magnetometer
such that the tetragonal axis, the axis of spin align-
ment, was along the direction of vibration and also
along the direction of the applied field.

During the experiments the magnetic field could
be swept at any desired rate between 0 and 104

G/min. As a practical matter it was not convenient
to sweep the field at a rate of less than 5 G/min.
At the very low temperature there was consider-
able hysteresis for the crystal with D=0. 02 even
for a sweep rate of 5 G/min. The crystal with a
demagnetization factor D=1, however, showed no
hysteresis in its magnetization curve.

Measurements of the differential susceptibility
sM/s H were obtained by an ac bridge technique,
i.e. , using an Hartshorn bridge, in fields up to
22 kG between the temperatures of 0.3 and 4. 2 K.
The secondary coil of the mutual-inductance pair
was wound as a quadrupole coil in order to mini-
mize pickup. The entire coil assembly was rather
small; its dimensions were 1.60 long and 8 mm in
diameter. The primary contained 1510 turns of
AWG 48 copper wire and the secondary contained
920 turns of AWG 48 copper wire. Measurements
were made as a function of frequency in the range
20-1000 Hz on a DyPO4 single crystal which was
mounted on a platform such that it was located at
the middle of the pickup coil and such that the te-
tragonal axis of the crystal was along the axis of
the coil. This was also the direction of the applied
field. At a given temperature the measurements
of aM/aH were made on a point-by-point basis,
rather than continuously recording SM/SH while
varying the field. In some cases measurements of
BM/sH, either point by point or continuously re-
cording the values, provide a very illuminating way
of displaying the data.

The phase diagram of DyPO4 can be obtained not
only from the magnetization at various temperatures
but also from a study of the heat capacity in a
variety of applied fields. We have made a deter-
mination of the temperatures of the maxima in the
heat capacity in a constant applied magnetic field,
which was directed along the tetragonal axis of the
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Typical measurements of magnetization as a func-
tion of applied field for temperatures ranging from
0. 50 to 4. 20 K are shown in Fig. 5 for a long needle
of DyPO4, D=0. 02. The AF-PM transition was
taken to be the position of maximum slope.

In general, with T/T„«1 one would expect, for

1,0—

M

M0

0.4

0.2

B0(kG}

I

20

FIG. 5. Magnetization as a function of applied field at
the temperatures g, 4. 20 K; b, 2. 97 K; f.-, 2. 48 K; d,
1.77 K; e, 0.498 K.

single crystal, by monitoring the temperature of
a thermometer in good thermal contact with the
crystal while heating the crystal at a uniform rate.
The thermometer was a carbon resistor which had
been previously calibrated against cerous mag-
nesium nitrate and chromic potassium alum mag-
netic thermometers, which, themselves, had been
calibrated against the liquid- He vapor pressure
scale. Corrections were made for magnetoresis-
tive effects of the carbon resistor. The thermom-
eter was varnished directly on the crystal which,
in turn, was varnished to the heater. The entire
assembly was suspended by fine cotton threads in
a vacuum jacket. A weak thermal link from the
assembly to the outside helium bath was provided
by a fine copper wire, one end of which was var-
nished to the heater and the other end soldered to
the shield which was in contact with the bath. The
bonding agent used was GE V031 varnish. 30 The
crystal of DyPO4 used for the measurements had a
demagnetization factor of D =1. Although we were
unable to obtain values of the heat capacity by this
procedure, we could readily obtain the tempera-
tures of the maxima. The locus of such maxima
gives the phase diagram in the Bo-T plane, and
the locus of Schottky maxima.

IV. DISCUSSION OF D= 0 RESULTS
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b
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d
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FIG. 6. Magnetization as a function of temperature
for different applied fields Ho. a, 6.45 kG; b, 6. 00 kG;

5.45 kG; d, 4. 90 kG; e, 4. 36 kG, giving Ho/H~(0) val-
ues of approximately 1.2, 1.1, 1.0, 0. 9, and 0. 8.

a metamagnetic system, that (BM/BH)r would be
quite small but increasing as the field is increased
until reaching a peak at a certain field, the critical
field required to cause the system to go from the
antiferromagnetic state to the paramagnetic state.
At that field the peak is very sharp and high if the
transition is of first order, as expected at low
temperatures for crystal having dipolar interactions
and whose D=O or very small. For crystals with
D finite and T/T„«1, (BM/BH)r would increase
very rapidly at the critical field and then become
constant until saturation of the magnetization is
reached where (BM/BH)r goes to zero. At higher
temperatures where the transition is greater than
first order, then (BM/BH)r would be expected to
have a sharp peak at the critical field, although its
magnitude might not be very large and mould vary
with temperature.

Although the behavior described above was ex-
pected for DyPO4 something entirely different was
in fact observed. No sharp peaks were observed
in direct measurements of the susceptibility BM/aH
in a field; only rounded shoulders were obtained
which at low temperatures became difficult to dis-
cern. In addition, the maximum value of aM/BH
began descreasing, instead of continuing to in-
crease, at approximately 1 K. At.O. V5 K, the
maximum value of aM/aH was approximately 0. 7
times that in zero applied field at 4. 2 K and it de-
creased rapidly with decreasing temperature. At
T = 0. 3 K, aM/aH was essentially zero for all fields
between 0 and 22 kG.

From the series of M-vs-Ho measurements, the
magnetization could be obtained as a function of T.
This is shown in Fig. 6 for fields above and below
the critical field evaluated at zero temperature,
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M—
0

FIG 7 Magnetization as a function
of applied field at T = 0.310 K and demag-
netization factor D = 0. 02 for different
sweep rates: z, 5 G/min; g, 10 6/min;
c, 20 G/min.

5,2 5.4

B, (kG)

5.6

H, (0). The solid curves are simply fits to the ex-
perimental points. No curve was drawn through
the points below T/T~ = 0.3 for applied fields of
H&= 5. 45 kG, because the hysteresis observed for
the long needle (D= 0.02) made determination of
the magnetization near the first-order transition
quite uncertain.

The hysteresis in the magnetization versus ap-
plied field curves observed for the D=0. 02 sample
is shown in Fig. 7 for different sweep rates. The
shape of the curve may indicate the presence of
ferrimagnetic states ' stable near H, such as those
discussed in Appendix A. The transition was ob-
served to be first order up to a temperature of
about 0. 75 K, i.e. , T, /T„=0. 22, which is smaller
than the predicted value for X =0. 32 obtained from
the molecular-field approximation (Fig. 2) of
T, /T„=0. 34 (or T, /T„=0. 375 for X=0. 34). The
three curves shown in Fig. 7 were obtained by first
sweeping the field up from 5. 0 kG and then back
down at the rates indicated. The starting field of
5.0 kG was determined from faster sweep rates,
in this case 50 G/min. At 50 G/min, the magneti-
zation on the low-field side of the transition field
remains to fairly low fields at the value shown at
5. 0 kG for the 10-G/min sweep for increasing
fields. This is probably indicative of ferrimagnetic
states in the system. After locating the range of
the transition field with the 50-G/min sweep, the
field was increased from 5.0 to 5. 6 kG and then
decreased again to 5. 0 kG at 10 G/min. The mag-
netization at 5.0 kG was then zero. We then swept
the field at 20 and 5 G/min, respectively, obtaining
the curves shown in Fig. 7. In each case, the
magnetization was zero at 5.0 kG. Note that curve
5 (10-G/min sweep rate) does not have the shoulder

0 I I I I I I
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FIG. 8. Magnetization as a function of temperature in
the molecular-field approximation for different applied
fields Ho/H~(0): a, 1.2; 5, 1.1; c, 1.0; d, 0.9; e, 0. 8.

0

that is present in curves a and c for increasing
fields, i. e. , at - 5. 55 kG .

The qualitative behavior of M(T) in the molecular-
field calculation is shown in Fig. 8 for X=O. 34.
The notch in the curve for H~= H, arises from the
molecular-field prediction of a second-order trans-
ition into the AF state as the temperature is low-
ered and then another second-order transition back
into the PM state (see Fig. 3). The magnetization
approaches saturation for H= H, (0) since H, (T)
—H, (0), where H, (T) is the temperature-dependent
first-order phase-transition field. The second-
order phase-transition field actually increases with
increasing temperature for low temperatures in
the molecular-field approximation for X &0, and
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FIG. 9. Reduced magnetization as a function of re-
duced temperature in the Bethe-Peierls approximation
(solid lines) and molecular field (dashed lines) using
J /4 = 1.25 K and MD =1.249 kG compared with experi-
mental points for Ho/H~(0) =1.20, top drawing left scale,
and Ho/H, (0) = l. 10, bottom drawing right scale.

decreases for higher temperatures, leading to the
notch discussed above. We note that the quantita-
tive agreement of DyPO4 with the molecular-field
theory is not good.

A somewhat better agreement is obtained using
the Bethe-Peierls approximation. A comparison
between this approximation (solid line) and exper-
imental points for H/H, (0) =1.1 and 1.2 is shown
in Fig. 9.

We note that the D =0 magnetization measure-
ments as well as the predictions of the molecular-
field and Bethe-Peierls approximations for D = 0
give smooth magnetization curves as a function of
temperature except for the transition between the
AF and PM states. This indicates that the heat
capacity should contain only one Schottky peak for
fields larger than the critical field and D=O.

V. SHAPE EFFECTS

In order to obtain a sufficient volume of crystal
to measure the heat capacity, samples with rea-
sonably large demagnetization factors D are usually
used. While it should be possible to reduce the
measurements to what they would have been for a
long needle, 3 ' 3 an analysis of heat capacity and
the associated magnetization on D~ 0 samples is
of interest because they are measured directly and
can be interpreted without recourse to transforma-
tions involving the other quantities such as the
isothermal susceptibility which must be experi-
mentally determined.

In Sec. II, we have set up equations in the mo-
lecular-field approximation which include shape
effects from ellipsoidal samples entering through
the demagnetization factor D.

The region of the phase diagram near the first-
order phase transition (for D= 0) must be consid-

ered in detail. At T=O, when the applied field is
small, the crystal is in the AF state with %=0 and

H„ the internal field, is equal to the applied field.
When the applied field reaches H, (0) it becomes
energetically favorable for a long needle to go into
the PM state, but not energetically favorable for
the ellipsoid, since the internal field H, = Hp —DMo
in the PM phase. We would then expect that for
H, (0) & H& H, (0)+ DMO the crystal would consist of
a mixture of AF and PM domains, the fraction of
the crystal in the PM state increasing as the field
is increased. 3 As the temperature is increased
the width of this region intermediate between the
AF and PM states decreases and is given by H, (T)
+DM, (H„T)& H&H, (T)+DM~(H„T). We shall call
this region of the H-T plane consisting of a mix-
ture of AF and PM states the intermediate state.

The properties of the intermediate state may be
obtained in a number of ways. One way is to de-
fine a pseudo-free-energy F„':

dFA = —SdT —Jl/IdH( )

I"A = F+~ DM1 2

(21)

(22)

where H, =HO DM. Th-e function F„(H„T)is the
same function of local field and temperature for
all shapes. If we consider a first-order transition,
the internal field H, = H, (T) is independent of ap-
plied field Ho within the intermediate region. The
free energy in the intermediate region is given by

F(HO, T)= F, (H, & T) —
~ DM =F,(H, &

T)—
2D

dF = SdT WHO y

(23)

(24)

S(HO, T) = S,(H„T) + D [M —M, (H„T)] BT
HO

(25)
where S, is the entropy of the antiferromagnetic
state evaluated on the boundary of the intermediate
state, and M, the corresponding magnetization.
Equation (25) holds also if a is replaced by p, with
M~ being the magnetization of the paramagnetic

where we have used the fact that in the intermediate
state the magnetization M= [Ho —H, (T)]/D The.
free energy given in Eq. (23) is shown in Fig. 10
for DMO/H, =-,' and T=O, and we can see that for
H, & H& H, +DMO the intermediate state is stable at
T=O. By taking derivatives of this free energy with
respect to the applied field and temperature one
can obtain the results that the entropy and magneti-
zation are continuous at the boundary of the inter-
mediate state; that is, the first-order transition
with D=O becomes two second-order transitions
with D+0. The entropy in the intermediate state
is given by
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(or second AF) state. In the intermediate state we
have

10—

8M dK, S~ —S,
8T H dT M —M,

(28)
0.8—

where in the last step we have used the modified
Clausius- Clapeyron equation. We should remark
that Eq. (28) and the continuity of the entropy on
the boundary of the intermediate region are suf-
ficient to obtain the entropy in the intermediate
state T. he relation (aS/aHO)r = (BM/sT)po can be
integrated over Ho when we realize that (sM/sT)H
is independent of Kp inside the intermediate state.
Using the result that S= S, when Kp= K, +DM, we
obtain Eq. (25).

By substituting Eq. (28) into Eq. (25) we may
write the magnetization and entropy as

M

Mo

0.4—

0.2—

0 0

M= nM&+(1 —n)M, ,

S= nS~+(1 —n)S, ,

(27)

(28)

and interpret n = (M- M, )/(M~ ™,) as the fraction
of the material in the paramagnetic state. If we
consider the intermediate state to be made up of
a large number of thin paramagnetic domains ap-
pearing when the applied field is large enough so
that it is energetically favorable for a long needle
to go into the paramagnetic state then Eqs. (27) and
(28) are a, natural starting point for the calculation.

We now calculate the heat capacity in the inter-
mediate state and also the discontinuity in the heat
capacity on going from the intermediate state to the
PM or AF regions. Taking the temperature deriva-
tive of Eq. (28) at constant applied field and recall-
ing that M, , M~, S„and S~ are functions of H, (T)
and T, we obtain the heat capacity at constant ap-

0
0 0.1

n I

0.2
T

TN

0.3 0.4

plied field in the intermediate state,

CH = CH +DT I —DX'r)

8 M
+DT(M —M, ) — z-

&
(29)

Hp

where C Hp is the heat capacity in the AF state, and
Xr'= (sM, /sH, )r (see Appendix B for details). At
the boundary of the intermediate state and the AF
state the heat capacity is discontinuous. The dis-
continuity is given by

FIG. 11. Magnetization as a function of temperature
for a DyPO4 sample having D = 1, for different values of
applied field Ho. g, 8 kG; 5, 7 kG; g, 6.5 kG; d, 6 kG;
e, 5. 5 kG; f, 5. 0 kG. The solid lines are fitted to the data
shown.

Fa

CHp
= DT (I-Dy:) .

(3o)

FIG. 10. Free energy at T =0 of a sample having
DMp/Hc(0) =2. Hc =Hc+2DMO H" =H +DMO. The min-
imum free energy between Hc and H,

" is the intermediate
state given by Eq. (22).

Equation (30) may be used to compare the discon-
tinuity in heat capacity with the discontinuity in
slope of magnetization as a function of temperature
(see Figs. 11 and 4). We note that Eqs. (29) and
(30) hold equally well for transitions into the second
AF region or the PM region by replacing M„
and CH with M., y~, and C„. The derivatives
(sM, /a T)~ and gr in Eqs. (29) and (30) can be ob-
tained from measurements on the sample with the
same demagnetization factor.
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In DyPO4 the critical point occurs at a relatively
low temperature and the critical field is approxi-
mately independent of temperature below the critical
point. Using this approximation,

dc. (s~)

we have C'„= C'„, = C„,, the heat capacity at con-
stant internal field in the AF and PM regions, re-
spectively, evaluated at 0; = H, . While the approxi-
mation dH, /dT-0 as T-0 must hold as required
by the third law of thermodynamics and Eq. (26),
a molecular-field model predicts a greater depen-
dence of the critical field on temperature than is
observed for DyPO, . If we approximate dH, /dT
=0, Eq. (29) becomes

)
I I I I I I I I I I I

0.6—

00 0

04-0 00
0 0

0.2—

0 0 0 00
, oo,ooo

7.5 8.0

Hc
l I I I I I I I

5.5 6.0 6.5 7.0
Hp

FIG. 12. D(BM/BHp) y as a function of applied field
(in kG) obtained from measurements of the magnetization
as a function of applied field at T = 0. 80 K.

CH =CH +DT (1 —DX'r), (31)

and Eq. (30) becomes

HACH =DT (32)

(33)

which also holds in the PM region with a replaced
by f), Eq. (31) becomes

c„.= c;, (', -;j) .

Equation (32) is then

(34)

D(x' x' ) cr D(x'r —x: )
Ho Ho 1 D &' "0 1 —D g',

Our measurements of the susceptibility for a long
needle discussed in Sec. III indicated that the
isothermal susceptibility approaches a sharp spike
at low temperatures, but the measured suscepti-
bility, while retaining the same general shape as
the isothermal susceptibility, rapidly decreased in
magnitude for T —1 K and is zero within our ac-
curacy of measurement for T —0. 3 K. This in-
dicates that the adiabatic susceptibility y, is small
at temperatures below 1 K and that our measured
susceptibility was changing from the isothermal.
susceptibility to the adiabatic susceptibility in this
temperature range. The molecular-field predic-
tion in the PM region is that g, =0. If we make the
further approximation x, =0, in addition to dH, /dT
=0, we can further simplify Eqs. (31) and (32).
Using the relation

All of the above equations hold equally well for
transitions into the PM region if a is replaced by
p. These equations may be used to relate experi-
mentally determined quantities without using a
model (such as a molecular-field approximation).

Experimentally, the boundary of the intermediate
and paramagnetic states is independent of temper-
ature within our accuracy in measuring the position
of the heat-capacity maxima (see Fig. 4). This
means that the application of Eq. (36) to the calcu-
lation of nC rrgC'z can be made by taking

Ho

(SM/dHO)r from one curve of M(T) for the sample
with D=1 and T just higher than the intermediate
to PM transition. We have used a measurement
at T=0. 8 K to plot D(aM/sHO)r in Fig. 12, and
this behavior generally corresponds to the behavior
of the heat capacity determined experimentally,
although our samples were not ellipsoidal.

In the paramagnetic state there will be a max-
imum in the heat capacity arising from the align-
ment of an individual spin in the field of its neigh-
bors plus the applied field. We shall refer to this
maximum as the Schottky maximum. Through
numerical calculation in the molecular-field ap-
proximation or the Bethe-Peierls approximation
(the same as constant coupling for the Ising model),
we see that in general in the paramagnetic region
the position of this maximum increases in temper-
ature as the applied field is increased. The peak
also becomes broader as the field, and, hence, the
temperature of the peak position, is increased.

In the molecular-field approximation, the heat
capacity at constant applied field for a long needle
in the paramagnetic state is given by

and with g, =0, we have

CH =CH Dg

(35)

(36)

(1 —X)h —(1 —2X)m (1 —m )c'„=t
0 t f+ (I —2X)(1 —m')2

(3V)
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FIG. 13, Part of phase diagram of DyP04 in the mo-
lecular-field approximation for D = 1 and ~= 0.34. The
solid line indicates the second-order transition dividing
the intermediate region {I) from the paramagnetic region
(P) and the antiferromagnetic region {AF). The dotted
line is the second-order transition dividing the AF and
PM states. The dot-dashed line is the locus of Schottky
maxima in the heat capacity, not a true phase transition.

where t= T/T„, h=HO/H„and m=M/Mo. The tem-
perature of the maximum in the heat capacity is
given by

(1 —A )h = (1 —2 P. )m + —+
(1 —2X) (1 —m')

m 2m

this maximum occurs at the same temperature
within the intermediate state independent of applied
field. This maximum is not shown in Fig. 13 be-
cause dH, /dT is not strictly zero within the mo-
lecular-field approximation and the Schottky maxi-
mum would have a temperature dependence within
the intermediate state.

The expected behavior of the heat capacity at
constant applied field is a broad Schottky maximum
within the intermediate region followed by a dis-
continuity in the heat capacity given by Eq. (30) as
the temperature is increased and the boundary of
the intermediate region is crossed. Two maxima
of this general description have been observed in
dysprosium aluminum garnet by Keen, Landau,
Schneider, and Wolf"' for an applied field in the
[111)direction. In the present experiment, how-
ever, only the positions of the maxima in heat ca-
pacity were measured, so that the nature of the
anomaly could not be determined. It seems likely
that the combination was taken as a single maxi-
mum in Fig. 3.

VI. DISCUSSION OF D = 1 RESULTS

A portion of the phase diagram for DyPO4 calcu-
lated in the molecular-field approximation with
D= 1 is shown in Fig. 13, and a plot of the magneti-
zation in the 0- T plane is shown in Fig. 14. The
values characterizing DyPO4 are X =0. 34,

0=1.249 kG.
The boundary of the intermediate state, labeled

I in Fig. 13, is a line of second-order transitions
into the PM and AF states. Associated with this
transition we would expect a discontinuity in the
derivative of the magnetization with respect to tem-
perature at constant applied field and a discon-

(1 —2X)2(1 —m~)'

2mt
(38)

For DyP04 (% =0. 34) with D=O, the curve of
Schottky maxima in the applied field is nearly lin-
ear and intersects the first-order transition into
the paramagnetic state at about t =0. 30. The linear
behavior arises primarily from the second term of
Eq. (38) and DyPO4 is fairly well approximated by
the first two terms. Equation (38) still holds in the
regions where the paramagnetic solution remains
stable when the value of X is reduced in accordance
with Eqs. (9) and (8).

We shall therefore investigate the simplification
in the theory when dH, /dT=O. We have already
seen that this implied C „=C„which is given by
Eq. (3't) with h = 1. Since we have seen that, within
the molecular-field approximation, the heat ca-
pacity has a maximum intersecting the first-order-
transiiion curve, we see that there is a Schottky
maximum within the intermediate state and that

FIG. 14. Magnetization as a function of applied field
and temperature in the molecular-field approximation
for a DyPO4 sample with D=1. We have taken A=0. 34.
Maximum values shown are H/H~(0) =1.5 and T/T&=1. 5.
Viewing angles are 8 =45 and y =200'.
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molecular-field and Bethe-Peierls approximations
in which we have included dipolar interactions ex-
plicitly. It appears that the Bethe-Peierls approxi-
mation is somewhat better than the molecular-field
approximation in representing the experimental re-
sults in the paramagnetic region.

Our measurements on samples with D = 0 in-
dicate a first-order transition below a critical
temperature T, near 0. 75 K. At higher tempera-
tures the transition is of higher order. For tem-
peratures less than T„ the critical field is indepen-
dent of temperature within our experimental ac-
curacy. Our measurements on samples with
D =1 did not transform back into the results ob-
tained on crystals with D=0 when the appropriate
transformations were made. '+ We believe that
this is because of the nonellipsoidal shape of our
samples.

We find that the molecular-field approximation,
including dipolar interactions, gives the qualitative
behavior of the heat-capacity peaks and for D=0
predicts a first-order transition below a critical
temperature as observed experimentally. Some
details of the molecular-field predictions, such as
a second-order transition for which the critical
field increases with increasing temperature at low

temperatures, have not been observed.
Our thermal and magnetization measurements on

samples with D=1 are consistent with each other,
and from the magnetization results we have been
able to calculate the observed heat-capacity maxima
as a function of applied field and temperature. We
conclude that for samples with D=1 the lower-
temperature branch of heat-capacity peaks in Fig.
4 arises from a transition from the intermediate
state to the AF or PM state for a nonellipsoidal
sample, and that the upper branch corresponds to
the Schottky peaks of a paramagnet in a field.
Measurements of the actual heat capacity in con-
stant applied field for fields above H, (0) would be
quite useful in checking these conclusions, as would
measurements of magnetic properties or heat
capacity on ellipsoidal samples. We have found it
quite difficult, however, to obtain approximately
ellipsoidal samples for large D because the crys-
tals tend to cleave.

APPENDIX A

While the partial cancellation of the dipole sum
on each sublattice with the sum of higher neighbor
exchange interactions on the same sublattice shown
in Table I is surprising, an even more surprising
result is that the exchange interaction cancels a
large part of the dipole interaction for the second
through fifth neighbors individually as well.

The dipolar fields of the first ten neighbors are
shown in Table I. The strongest dipolar interac-
tion with a single spin which is not a nearest neigh-

() ()

ik

() () 0

FIG. 17. A possible ferrimagnetic state of DyPO4.

bor is with the fourth-nearest neighbors, the field
arising from one of these neighbors being 817 G,
while the field of a single second neighbor is 438 G.
The lines observed spectroscopically in Ref. 3
were narrow enough, however, to have resolved
any interaction from a single spin as large as
200 G. The dipolar interaction with second and
fourth neighbors must be largely canceled by ex-
change, therefore.

We also notice that the interactions with the third
and fifth neighbors, which are both on the same
sublattice as the central ion, are antiferromagnetic
in sign. This suggests the possibility of ferrimag-
netic states with saturation magnetization M, = —,Mo,
consisting of planes of spine in the [001] (Fig. 17)
or the [110]or [110]directions (Fig. 16). Which
of these states is stable near H, (0) will depend on
the total interaction with third and fifth neighbors,
the larger antiferromagnetic interaction leading to
the stable state.

By combining these two states, that is, allowing
spins to oppose the applied field only on every
fourth [001] plane, and [or] on every fourth [110]
plane it is possible to obtain ferrimagnetic states
with M, =-,' M, [-,

' M,]. For DypO, at T = 0 and with
dipolar interactions only, we would have

F(0) ——H~ —H5 F(4 Mo) ——H5 ——F(2 Mo)

—+ Hs F(g Mo) Hs+ Hi- —

—F(MO),

where the argument of the state I: indicates the
magnetization of the state, and for DyPO4 H~ = 448 G
and H5 = 746 G. The stable ferrimagnetic state with
M = —,

'
Mo is the one shown in Fig. 18.

While our magnetization measurements do give
an indication of ferrimagnetic states near the crit-
ical field (see the bumps on the hysteresis curve
Fig. 6), the extent in applied field of these states,
if they do indeed exist, is less than 200 G, indicat-
ing that the third- and fifth-near-neighbor interac-
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(B2)

0

() AL

() ,)

where

aH,* dH. dM

Also,

(B4)

FIG. 18. A possible ferrimagnetic state of DyPO4.
Only 4 of the new magnetic unit cell is shown.

(as)

(a6)

tion is also largely canceled by exchange.

APPENDIX B

We shall derive Eq. (29) for the heat capacity at
constant applied field in the intermediate state
from the expression for the entropy in Eq. (25) or
Eq. (28). Taking the derivative of Eq. (25) we ob-
tain

C„(Il Tj=T(—)
Hp

Combining Eqs. (B2)-(B7)we have

(av)

(as)

0 +D ft

8 M
+ TD ™2 (M —M,"), (Bl)

H0

where we have placed a star on S, and M, to em-
phasize that they are defined only on the boundary
of the intermediate state, and the derivatives with
respect to temperature must be expressed in terms
of derivatives at constant internal field equal to
the critical field H, (T). We have

(Bl0)

aH, , eH, , BH, , (all)

and with (sH, /aHO)r = 1 —D(sM, /sHO)r we obtain

(B9)

Using the Maxwell relation (sS, /sHO)r = (BM, /sT)„&
we obtain

(B12)

(B13)

Substituting Eqs. (B12) and (B13) into Eq. (Bl) and collecting terms we obtain Eq. (29).
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Pulsed NMR hyperfine field measurements have been made on ordered Fe& „Si alloys for
0.181~z ~0.249. Using ordered compounds greatly improves the accuracy with which inter-
nal-field shifts due to the first nine neighbor shells can be measured. A number of effects
which were difficult to observe in dilute alloys are easily measurable. Dipolar structure and
saturation or shielding effects are seen for various neighbor shells. We see no damping of the
spin density oscillations with alloying. This allows the determination of a lower limit for the
mean free path of the conduction electrons in the alloys. The third-, fourth-, and sixth-
nearest-neighbor Fe atoms give positive polarizations. The measured hyperfine field shifts
are extrapolated and combined with dilute alloy data to obtain the spin-density oscillations
surrounding an Fe atom in pure Fe.

I. INTRODUCTION

In metals ferromagnetism is believed to be achieved
by the "local" atomic moments being aligned through
the intermediary of the polarized "itinerant" elec-
trons. ' Many experiments and calculations have
been carried out in recent years to investigate this
interaction. For a discussion of these see the
Introduction in the following paper, hereafter re-
ferred to as Paper II. The experiments which yield

by far the most direct information about the spin
density of the itinerant s-like conduction electrons
are Mossbauer ' and NlVlR experiments.

A properly chosen system (nameiy, an alloy sys-
tem where the solute atom has no moment and the
form factor of the Fe atoms does not change upon
alloying) can give detailed information about the
variation of the s-like conduction-electron polariza-
tion (CEP) with distance around an Fe atom.

We report on accurate measurements of the hyper-


