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The variational scheme of Gutzwiller has been reexamined so as to apply it to the case of
degenerate narrow bands. The ground-state wave function for electrons is investigated for an
arbitrary density of electrons and an arbitrary strength of interaction. The typical features
of a metal, particularly the Fermi surface, are preserved in this approach as opposed to some
other methods. The Coulomb repulsion among electrons scatters the electrons from below to
above the Fermi surface of uncorrelated bands. Under the assumption that only the intra-
atomic Coulomb interaction is important, the probability of electrons being scattered is larger
for the paramagnetic state than for the ferromagnetic state. Therefore the ferromagnetic
ground state is favored if the density of states is large at the band edges. The degenerate-
band-model Hamiltonian is spin dependent, hence the results obtained from it do not have to
obey the theorem of Lieb and Mattis.

I. INTRODUCTION

In 1936, Slater' concluded from analyzing the
properties of Ni that the origin of ferromagnetism
is in the intra-atomic interaction. The criticism
of Slater's theory by many authors that electron
correlation was not properly included in his Har-
tree-Fock calculation has stimulated much work
trying to construct a theory for the correlation ef-
fect in narrow bands.

In accord with other theories for transition met-
als, Van Vleck has described the main features
of a ground-state wave function which explicitly
takes into account this correlation effect in a d
band. His model of minimum polarity excludes the
states corresponding to higher degrees of ioniza-
tion.

The idea of minimum polarity was taken up later
and explored in some detail with the help of modern
many-body theory by Gutzwiller, ' Hubbard, Kana-
mori, ~ and others. Different approaches were used
to work on the Hamiltonian consisting of a tight-
binding band and very short-range interactions
among electrons. They obtained qualitatively dif-
ferent results concerning the occupation probability
for electrons in reciprocal space and the compari-
son of the energy for a. ferromagnetic and for a
paramagnetic ground state.

Recently Brinkman and Rice used Gutzwiller's
variational method to predict a Mott transition' in
a narrow s band. Hubbard's Green's-function de-
coupling approximation also indicated an insulator-
conductor transition due to band splitting. ' How-
ever the split subband does not contain exactly one
electron per atom. The variational method yields
a Fermi surface which contains the correct volume,
and predicts the magnetic properties of an almost
half-filled s bandin good agreementwith Nagaoka's"
exact solution. Nevertheless, in the s-band model

the magnetic properties have to be predicted with-
out considering Hund's rule. The purpose of the
present paper is to apply the variational scheme of
Gutzwiller to investigate how and to what extent the
electron correlation causes the transitions between
the paramagnetic and the ferromagnetic states in a
doubly degenerate band, which is more realistic
for transition metals.

Section II states the problem and investigates the
kinematics of an uncorrelated many-electron sys-
tem. Pseudo-wave-functions are introduced to de-
rive the conditions which are used in Sec. III to
define the correlated ground-state wave function.
This trial function contains some parameters which
specify the number of lattice sites which are oc-
cupied by more than one electron. Those param-
eters are varied in our calculation to minimize the
expectation value of the ground-state energy. In
Sec. IV we introduce the quasichemical approxima-
tion to compute the various density functions. The
results obtained in this section are good for all
electron densities. In Sec. V we derive the condi-
tion, in terms of correlation energy and band struc-
tures, under which ferromagnetism will occur. W' e
have restricted ourselves in Sec. V to the cases of
less than one or more than three electrons per atom
in order to make it mathematically manageable. In
Sec. VI we point out that our model is outside the
scope of applicability of the theorem of I.ieb and
Mattis. '

II. KINEMATICS OF ELECTRONS IN A DEGENERATE BAND

The atomic d level splits into two sublevels in a
crystal field with cubic symmetry. One sublevel is
triply degenerate and is denoted by t2, . The other
sublevel is doubly degenerate and transforms as
2z —x -y and x —y under symmetry operations.
This is usually called e,. In a simplified picture,
the d band thus consists of a triply degenerate sub-
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The coefficients C„(k) give the required mixture of

e, orbitals to yield the Bloch states.
Assume at first that there are N(a) uncorrelated

electrons with spin a, and m(l, a) of them are in the
l band. Let K(l, a) be the occupied region in the l
band with 0 spin. These regions may all differ from
one another. Their boundaries make up the Fermi
surface. The uneorrelated ground-state wave func-
tion @ is

4=II II '.4o,
t, a k

(2)

where k&K(l, o) and 4'0 is the vacuum state.
The wave function 4 describes completely de-

localized and uncorrelated electrons. In order to
describe the effect of correlation, the concept of a
"configuration" of electrons mill be used frequently.
Instead of distributing the electrons over states in
reciprocal space as in 4', consider a set G(i, a) of
M(i, a) lattice sites. At each site gof G(i, a) insert an
electron into the localized state Q„(x -g). Thus,
we get an uncorrelated configuration of electrons,
i.e. , a wave function given by

where G is the collection of four G{ia) with i = 1, 2
and a = 0, t. The index g runs through the set G(ia)
for each combination of 0 and i.

If (I) is inserted into (2), the wave function 4 of
delocalized and uncorrelated electrons is decom-
posed into uncorrelated configurations 4 . In order
to write the resulting formula, the sets K(l, a) have
to be further analyzed. Let K(a) be the region in
reciprocal space which is common to both K(I, a)

band of tz~ symmetry and a doubly degenerate sub-
band of e, symmetry. In this paper me only con-
sider those transition metals for which the f2~ sub-
band lies below the e~ subband. The lower subband
is completely filled and can therefore be ignored.
The upper subband will be approximated by two
tight-binding degenerate bands which have the e,
symmetry.

Consider N electrons in a simple lattice of I.
sites. The coordinates of the lattice sites are la-
beled by small italic letters g or k (not to be con-
fused with the subscript in e,). Four localized
(Wannier) orbitals Qi, (x -g) of e, symmetry are at-
tached to each site g. The index i =1 or 2 designates
the orbital character and 0 is the spin quantum
number.

Toro tight-binding degenerate bands are con-
structed from these localized orbitals. The Bloch
state of wave vector k and band index l is repre-
sented by ili», (x), where l = I or II. In second quan-
tized form, we have

I -I/2 Q C (k) ikg

and K(II, a). Half of the 2m(o) electrons in the
common region K(a) are found in localized states of

type 1o, the other half in localized states of type
2a. There is no such simple rule for the electrons
of K(I, o) and K(II, a) outside K(a). Therefore sub-
sets K(lia) have to be introduced which divide the
elements of K(l, a) outside K(a) into two classes.
Electrons in K(lia) belong to the subband la, but are
found in the localized states of type ia. There are
obviously many ways of choosing the subsets K(lio)
once the K(l, o) are known. 4 can now be written
as a double sum:

+ =Z D(K)Z A(K, G)C (G), (4)
K 6

where K represents a particular choice of the sub-
sets K(lia). The sum over K runs through all the
possible choices of K(lio') and the sum over C ex-
hausts all the configurations.

D(K) depends only on the band structure through
the coefficients C„(k). On the other hand, A(K, G)
are independent of the topology of the band but are
related to the geometry of the configuration G. To
illustrate this, let us introduce the operators

~ i I -1/2+ ikg i'
k j(y (5)

They generate tmo artificial uncoupled bands for
which j= 1 and 2. When coupled by C„(k) they re-
produce the bands labeled by I = I and II, as given
by {I):

a/i =+ Ci (k)a//, /

If we insert (5) and (6) into (2), it is easy to see that
the product of C, /(k) and the product of e'+ are
separated. The former is represented by D(K),
and the latter gives the A(K, G). The exact details
concerning the quantities D(K) and A(K, G) are
found in Appendix A.

Before introducing the correlation of electrons,
we would like to investigate (4) more thoroughly.
This will be vital for our later analysis. We first
define the pseudode localized wave functions. They
are constructed from the Bloch states of the un-
coupled bands as

x(Z) = II II n„'„4', ,
j,e k

where k runs through the set Z(j, o) for fixed values
of j and a. These sets J{j,o) are defined as fol-
lows: We first pick a particular K(lia), and then let
J(j, a) be the union of the three subsets K(a),
K(I, j, a), and K(II, j, a). This relation is diagram-
matically shown in Fig. 1. Note that 2(j, o) are
defined as the sets which have their images in
K(I, a)UK(II, o). To a given J(j, o), corresponds
a particular choice of K(lia) As the d.efinition of
all barred quantities, Z represents the combination
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FIG. 1. The occupied Bloch states in Koo ) and K(llo)
are divided into J(lo) and J(2o). The electrons originally
occupying the states in J(zo) are localized in the i-type
atomic orbitals.

and (4) can be rewritten as

4 =Z D(J)X(J) . (10)

The coefficients A(F, G) are the matrix elements
of a unitary transformation connecting the two bases
of a (»&«&)(„&,&)-dimensional vector space. They
satisfy the conditions

A*(F, G)A(F,G)=5-;~,
6

Z A~( GF)A(F, G ')= 5o 5. . (12)

With the expression of A(F, G) given in Appendix A,

of four J(j, cr) where j = 1 and 2, o = 0 and t.
The definition of J'(j, a) is then generalized to

define the sets 7(j, o} of the same type which do not
necessarily have images in K(I, o) U K(II, o). The
elements of every combination F of four r(j, o) label
N Bloch states in the two uncoupled bands (5). There
are („&,&}(„&,&) such sets with associated pseudo-
wave -functions

X(F)= g II c&, ,@, .
f, &y k6c(ja)

Inserting (5) into (8), it becomes

X(F)=RA(F, G)C(G),
P

(11) and (12) can be proved by direct computation.
Equations (11) and (12) are the key conditions in our
treatment of the electron correlation problem.

III. CORRELATED WAVE FUNCTIONS FOR A
DEGENERATE BAND

Since !A(K, G)I in (4) measures the probability
that the configuration G is being occupied by elec-
trons, it will be altered when the correlation of
electrons is taken into account. The main contribu-
tion to the correlation comes from the intra-atomic
Coulomb repulsion. In order to simplify the nota-
tion, let us replace the double index 14 by 1, 14 by
2, 24 by 3, and 24 by 4. Then define v, &

as the
number of sites which are simultaneously occupied
by electrons in orbitals of type i and j. Similarly
v, &

and v, & „are defined as the numbers of triply
and quadruply occupied sites.

The main point of our approach to the correlation
problem is to attach a weight to each A(K, G) ac-
cording to the number and type of multiple occupan-
cies in the corresponding configuration G. We in-
troduce the parameters &}&& (0 «&l

&&
~ 1), called the

correlation strength not to be confused with the cor-
relation energy, as the weight corresponding to a
single site doubly occupied by electrons in states
of types i and j. The correlation strength assigned
to a triply occupied site is approximated by the
product of three such parameters, each of which
corresponds to one of the three couples of double
occupancies. That is g,~

= g,~g~ g, . The same
approximation is used for the quadruply occupied
sites. The symmetry property reduces six g, &

to
three independent ones. We define them as follows:
&h is the correlation strength between two electrons
in different orbitals but with the same spin; g2 is
the correlation strength between two electrons in
different orbitals and with different spins; and g, is
the correlation strength between two electrons in
the same orbital but with different spins.

The weight given to the coefficient A(K, G) by the
intra-atomic Coulomb interaction is expressed in
the form of e(FI, v)= II& &&&&, where &} and && are the
barred quantities conventionally defined in this paper
as the combinations of the appropriate quantities q,
and v&&. p. &

is the total number of double occupations
corresponding to g& including the decomposed parts
from the triply and quadruply occupied sites. If the
correlation is so strong that the number of sites
occupied by more than two electrons is negligibly
small, we have

e( &} ~) = rp""2'&}«'"s&q",»'"34 .
The correlation effect in two configurations which

have the same feature of multiple occupancies but
are otherwise entirely different obviously cannot
be described only by the intra-atomic interaction
mentioned above. There is an interatomic correla-



MAGNETIC TRANSITIONS IN A DEGENE RATE BAND 403'7

tion which affects the dynamics of the electron sys-
tem. It depends on the over-all space density of
electrons in a particular configuration. Therefore,
an extra factor B(K, G) is introduced to correct
both the amplitude and the phase of A(K, G). The
trial function of the correlated ground state can then
be written as

)I)k=2 D(K)Z A, (K, G) 4)(G), (14)

A, (K, c)= e(&i, v )B{Z,c}A(Z, c) . (16)

Comparing (4), (9), (10), and (14), we can rewrite
(14) as

4,=Z D(Z)x, (Z), (16)

x,(z)=+A, (z, c)c(c) .

Since it is impossible to precisely determine
A, (K, G}, we impose conditions on A, (K, G) in order
to pick a physically acceptable one. When the cor-
relation is turned on we like to retain (11) by proper
choice of B(K, G). That is, A, (K, G) satisfy

(18)

~'IB«c)l'I A(K G)I'=c(v) . (21)

The approximate equation yields an exact solution
in the limit of zero bandwidth. To prove it, using
the expression of A in Appendix B, we have"

(22)

where the primed sum over G runs through the con-
figurations which have the same value of v. C(v) is
the ratio of the number of such configurations to the
total number of configurations. We have used (11)
to get the Kronecker 6 function in (20). The evalu-
ation of C(v) involves no more than counting config-
urations and this is done in Appendix B.

The reasonableness of the @CA for the s band was
discussed in considerable detail by Gutzwiller in
GIII. ' The main points presented there are also
valid for the d band. Nevertheless, in order to
make the present paper self-contained, the validity
of QCA will be investigated in the present context
following Gutzwiller's argument.

First we note that (20) implies (18) as far as the
Kronecker delta function is concerned. Hence we
only need to study

For convenience, let us rewrite (18) as

Qe'(&I, v)B'(K, c)A'(K, c)

xB(K', G)A(K', G) ~6„r. . (19)

Instead of an equals sign, a proportional sign is
used in (19). This is because very fre&IuentIy in
our later calculation we will deal with quantities
like go I B(K, G)A(Z, G) I

k. It will then be of great
advantage to work with the unnormalized O', . It is
easy to show that (19) is not unreasonable. Let the
number of sets K be 3R. Clearly % is less than
(N(, &)(k)'(, &). Since we are interested in using a vari-
ational scheme to obtain the ground-state wave func-
tion, we only need to work out the 9R equations in
(19). Nevertheless, there are („&~ )(&)&,&)(%) un-
known variables B(K, G), largely exceeding the
number of equations to be satisfied. With these ex-
tra degrees of freedom, we shall make certain addi-
tional assumptions concerning the coefficients
B(K, G) which are suggested by (19).

The resulting approximation is called the quasi-
chemical approximation (QCA), because the main
idea is similar to the quasichemical approximation
used in the theory of mixtures. ' Instead of deter-
mining the exact form of 8(Z, G), we let

The right-hand side is the product of four io deter-
minants, each corresponding to a specific choice of
i and o.. The rows and columns of the io determinant
are given by the sites in set G(io), and the elements
of the determinant are defined by the function

(g g)) f -(Q (k(aw') (22)

where ke Z(io) =K(I, i, &f)UK(II, i, o)UK(o).
For the completely degenerate case (zero band-

width), the set J(io) appea. ring in our variational
ground-state wave function can be replaced by an
ensemble average over all the possible sets & (io) in
reciprocal space. One finds with the help of a the-
orem concerning the determinants of products of
rectangular matrices" that

I -( Q &k(k k' )I }-, (24)
~

~

all k

{24) is true for arbitrary G(io). If we simply pick
IB(K, G)l =

I B(Z)l for the case of zero bandwidth,
then

& IB(K, c)I'{IA(K, c) I') = C(v)
I
B(K)

I

'. (26)

Ba(K, G)A*(K, G)B(K', G)A(Z ', G)

=C(v) Z A*(K, G)A(K', G)
all G

= C(V )6&&,K ~ (20)

This is just the same result as (21) if we let the
phase factor be such that I B(K) I

' = 1.
Since the electron correlation tends to narrow the

band, following (25), one natura, lly expects that {21)
is a good approximation. There is another support-



4038 K. A. CHAQ

ing argument: the concept of the so-called exchange
hole. Let us write

order density matrix p((= (@,I 4, ). With the help of
(14) and (15), we can write

lA(K, G)l =g lA (J(', ), (', ))l (28) p = Q D*(K)D(K')Z8'(q, v)
F,z'' P

I&.,(&(, ), G(i, ))I'=(,.t(;-z')
G

". ') .

(27)

The quantity )A„(J(i, v), G(i, o))l describes the ex-
change effect between the (i, s) electrons. Its value

is smaller the closer the electrons are to one an-
other.

Since B(K, G) is related only to the interatomic
interaction between different configurations, for the

convenience of our discussion let us pretend to have

only this kind of correlation. The previous discus-
sion indicates that the correct result for the zero
bandwidth is obtained if we simply set IB(K, G)
&'A(K, G) I =1. As the electrons start hopping, re-
sulting in wider bandwidth, the value of I B(K, G)
&&A(K, G)l departs from 1. B(K, G) should no longer
be constant because otherwise the interatomic cor-
relation would not narrow the band.

Suppose the (i, o) configuration G(i, o) spreads
evenly throughout the entire lattice, then it has a
small exchange hole. That is, lA„(J(f, a), G(i, v)) I

is relatively large. However, this will give the
(i, &r) electrons a greater chance to be close to the
electrons in other G(j, p), where i 0j or a 0 p or
(i, v) &(j, p). Therefore, they feel a stronger inter-
atomic correlation from the electrons in G(j, p) as
compared to the strength of interaction sensed by
the electrons in a configuration which is restricted
in a small portion of the lattice. Hence the occupa-
tion probabilities for configurations having larger
lA(K, G) I are reduced more than those having
smaller IA(K, G)l. In other words I B(K, G)l
& IB(K, G ')I if IA(Z, G}l & IA(K, G ') (. The net ef-
fect is to compensate the exchange hole and to bring
1B(K, G}A(K, G) I back towards the value 1.

Thus, it seems that the QCA is a reasonable ap-
proximation for the narrow band, although there is
no detailed treatment of electron dynamics. The
lack of exact dynamical properties, as revealed in
Fig. 4, is reflected in Sec. V where the change of
occupation probability for electrons in reciprocal
space due to the correlation effect is discussed.
However it is found then the QCA is sufficient to
describe the characteristics of a correlated electron
system. Therefore we will use @CA to compute the
various expectation values for the variational wave
function 4,. This would allow us to find the values
of q which minimize the total energy.

IV. QCA OF ELECTRON DENSITY MATRICES

The first task is to normalize the wave function
O', . This is equivalent to calculating the zeroth-

&&+'A*(Z, G)A(Z', G) B*(K, G)B(K ', G) . (28)

K and K ' represent two different choices of subsets
K(fin) and K (lirr) of the set K(lo). The top portion
of Fig. 1 is reproduced in Fig. 2 to illustrate them.
These subsets are chosen arbitrarily except for one
restriction. Let m(lio') be the number of sites in
K(lfo') and m'(lie) the number of sites in K (lie).
Then they are related by m(I, i, v) +m (II, i, o)
= m'(I, i, a) +m '(ll, i, &x), because two configurations
are orthogonal if they have different numbers of
electrons in orbitals of type 1 or 2. The sum of K
in (28) runs through all possible choices of the sub-
sets K(lier) Sim.ilarly the sum over K ' exhausts
all the subsets K '(Iiv) which satisfy the above con-
dition.

The QCA (20) largely reduces po to the simple
form

p,""=Z lD(K)l'Z 8'(n, v)C(v)
E V

(29)

It gives the correct answer in the limit of weak
correlation, where poa " should reduce to (4'i 0') = 1.
In this region, since 8(q, v) = 1, we have

p
~ (q=l)=P lD(K)l Q C(v)=5 lD(K)l

E P 17

k, 1

The advantage of (29) is that the dependence on

the geometry of individual configurations disap-
pears, and the terms involving the real and recip-
rocal spaces are separated. The computation of
po~ "becomes a simple counting problem. The
counting procedure starts with picking a particular
K. Once K is fixed, the numbers of electrons in
the four sets G(iv) are known. Then these electrons
are inserted arbitrarily in the corresponding local-
ized orbitals. The last step is to count the number
of configurations C(v) which have the same numbers
of multiple occupations. Finally these numbers are
weighted by the correlation factor 8'(q, v ).

The numbers C(v ) have certain well-defined prob-
ability distributions of a binominal type. In fact,
g p8 (q, v)C(v ) is a hypergeometric series. Since
the number of electrons is large, this hypergeo-
metric series is sharply peaked at a specific value
v, which depends on the values of correlation
strength q. Therefore, the series can be approxi-
mated by its peak term. From now on, we will
use v to refer to the most likely numbers of multiple
occupations, and Co(g) for the 8 (q, v)C(v) of the
peak term. (29) then becomes
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po""=&~ID(K)l'C, (q) . (31)

This formula can be further simplified. Note that
C&&(q) depends on the choice of K only through the
numbers of k vectors in the sets J(io) =K(I, i, o)
U K(II, i, o) UK(o). The identity of individual k
vectors does not matter at all. Let g(io) be the
number of elements in the set Z(icr), then we can
rewrite (31) as

S DASHED LINE FOR K(II, 0e)

gee"We~«

e~

~K(II, I,0 )
«Pe, ~ ee ~~ ~ eeeeeee ~ ee ~ ~ *~ ~e ee ~ e e ~ e e eeee e ~ ee e ~ ~ ~

~ ~ e eee eeeeee~e ~ ~ ~ eee eeeeee ~ ~ eee ~ e ~

K(II,a, 0e)

~ e
«Q ~ee ~e ~ ~ ~ ~

~ r'r.eeV

p,""=Z Z'lD(K)l' c,(q) . (32)
jf

The primed sum over K is restricted to those K
which have the same value of $. If we assume that
C»(k) are smooth functions of k, it is shown in Ap-
pendix B that the dominating term in the summation
over $ corresponds to ((Io) = $(2o) = ,'N(o)—Thi.s is
consistent with the symmetry property, because
Qz, (x -g) and $2,(x -g) are equivalent because of
symmetry. Hence if we approximate the first sum-
mation in (32) by the dominating term, and use the
identity Co(q = 1) = 1, where q = 1 denotes q, = F12 = q3
= 1, we obtain the final form of po~ " as

po
'"=

po '"(7T= I)co(n),
(33)

p,
~"

(7) = 1)= Z'lD(K)
l

',
where the primed sum is restricted to $(io) =-,' N(o).

g. tt t

t ' t
-- t; t -t

, 't g"4(tt, t

g.tt t tt g tt ttt, t gstt
g,tt. t j]' I;.4, ,(x-h}

&&(x-g} /
/X/t

', t" "
t! ,

".
t

~ ~ I~ e ~ ~ ~ I ~ ~

tt"" t ", tt-.

FIG. 3. Typical paths to move an electron from state
f f Q g) to state p &, Q —h) . A ll the electrons on the same
path move simultaneously.

It is easy to see from the last formula that
po (q = I) =I+0(N '), where Nis the numberof elec-
trons, instead of poa "(q= 1) = 1 as in (30). This
results from the approximation used to get (33) from
(32). We will use the same approximation to com-
pute the first- and second-order density matrices
p& and pz, and the same factor 1+O(N ') appears
there. When we normalize p& and p, this factor
cancels out. Therefore, the normalized pq@ " and

p2
" reduce to the correct values when there is no

correlation.
The first-order density matrix (4e, I a„„a&, I ek, )

measures the probability that an electron moves
from P&, (x —g) to Q&,(x —k). Using (14), it can be
decomposed into

(ek, la„&,a~&, le, ) = Q D~(K)D(K ) 5 A,*(K, G)
rc,r ' C, G'

&& A,(K', G')(4(G)la„',.a„.lc(G')) . (34)

DASHED LINE FOR K(II,0«)

~ere««

'ee,e«"e~
~ e eee«eee

K'(II, I,0«)
~l

il
~
l

:I
:l
~l

,:::K'(II,2,0e) .,:
ee

~e+

FIG. 2. Two different choices of K(lio) and K'Jig)
correspond to two different localized many-electron wave
func tions.

For fixed G and G
' such that (I (G)la~„a„,[4(G ))

~ 0, let us first examine the uncorrelated coefficient
A*(K, G)A(K, G '). If the determinantal form of
A(K, G) given by Eq. (A3) is used, it is easy to
show that A*(K, G)A(K, G ') represents all the pos-
sible channels through which an electron can move
from Q~, (x -g) to Q~, (x -k), while the other elec-
trons move through various closed paths in the lat-
tice. Figure 3 shows three typical channels in a
simplified configuration which contains only one
kind of localized orbitals Qz (x -g). The arrows
indicate the spins of the occupied Wannier orbitals.
In channel A all the intermediate sites are doubly
occupied. In channel B part of the intermediate
sites are doubly occupied. However, in channel C
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FIG. 4. Inter-
atomic correlation
makes it harder to
transfer an electron
from ft)&, Q —g) to

p&, (x —h) in (a) than
in (b).

tl tl t

(a)

t tl
I tlt I t f

fl

(b)

there is no doubly occupied intermediate site.
The transfer of the electrons in each channel, say

channel A, is characterized by moving the electron
at site g& to site h, and the electron at g2 moves to

g&, and so on. The electron at site g only moves to

gv rather than to site h directly. In this manner the
numbers of double occupations before and after the
electron transfer can differ by no more than 1.
Therefore, the QCA given by (20) is applicable to
(34). The computation is very tedious, but presents
no additional difficulty. Its @CA expression is given
in Appendix B.

However, the computation of the first-order den-
sity matrix reveals the weak point of QCA in its
present form of (20). In the following analysis we
show that (20) may need modification in order to
take into full consideration the dynamics of the elec-
trons. Consider the two configurations in Fig. 4.
Although the numbers of doubly occupied sites in

(a) and in (b) are the same, it is more difficult for
an electron in (a) to go from P„(x -g) to P„(x —h)
than the electron in (b). It seems hopeless to justify
rigorously that (20) has taken full account of the
pseudointeratomic correlation (the interatomic cor-
relation is actually induced by the intra-atomic
correlation whenever one electron passes the other
electrons).

There is one argument which favors the reason-
ableness of (20) with respect to this particular
point. For a fixed number of doubly occupied sites,
the configurations which evenly spread over the
whole crystal largely outnumber those having sites
concentrated in a small portion of the lattice.
Therefore, the pseudointeratomic correlation cannot
be a first-order effect for our model Hamiltonian
(42).

We shall use p~uc"(hia, gjo) to denote the QCA
expression for the normalized first-order density

matrix. With the help of (33) and the results from
Appendix B, we have

p, ~ "(hio, gja)

=(+.
I l;. ..I

&.)""&&+. I +.)""
= p, (hia, gqa)C(hia, gja; q&, q2, q3) .

p~o(hio, gjo) is the density matrix if there is no cor-
relation, which can be easily obtained from Bloch
representation as

p, '(hia, jg)=oh 'EZ C*„(k)C, (k)e "'"", (36)
E

where k belongs to the set K(la). C(hio, gja; gq, qa,

q3) is a well-defined weighted number of configura-
tions. It is computed by first picking up all the
configurations G, the associated 4 (G) of which con-
tain P&, (x -g) but not P„(x—h) provided (jg) 0 (ih).
The next step is to filter out those G for which
M(lo) &M(2a), where M(io) is the number of ele-
ments in G(ia). This step comes from the same
approximation as that used to get (33) from (32).
Then the numbers of configurations having the same
numbers of multiply occupied sites are weighted by
proper correlation effect. The sum of these
weighted numbers is a hypergeometric series.
C(hio, gjo; 7h, q~, 0,) is the sharp peak term which
approximates the series.

The most general forms of C(hia, gjo; q» q» q3)
as given in Appendix 8, which are valid for all
values of correlation strength and electron density,
are extremely complicated. However, under strong
correlation, the probability of having more than two
particles (either electrons or holes) at the same
lattice site is negligibly small if we assume that the
number of particles N& L. This is the case of in-
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C(hio, hio; z)z zIz z/3)

C (hio, hjo; z/z, z)z, zIz)

= [(z n, )(1 ——,
' n, ) ]

' p, [1+ (y ti+ Y ) l2 z 1

(37)

C (hio, gio; zI, , zlz, zIz)

iz j (38)

= C(hio, gjo; z/, , zIz, zIz)

= [(ln.)(1 —ln. )l 'p.zz[1+y.«2+zI3)+y. z)z]'

g~h (39)

where y, = p, /&, and p is the spin opposite to o.
The v& and g& are related by

terest for which C(hio, gjo; z)z, z)z, z),) is greatly
simplifed to the following forms.

Since the numbers of 0 spin electrons in both
types of localized orbitals are equal, v«= v23 and
v»= v&4 as a result of the symmetry property. Let
us normalize them as v, = vz3/L, v, = v4z/L, vz= vz4/L
= vzz/L, and vz= vzz/L = v34/L. Accordingly let
n =N/L and n, =N(o)/L, the density of electrons in
lattice. Further define o. = 1 —n+ v, + v, + 2 v2+ 2 v3
and p, =n, /2 —v, —v, —v, . Then, from Appendix B,
we have

gI) =5 q, N(o) e, +C, L Z v, +2CzLvz+2C, Lv, ,

(43)

q, = [-,'n, (1 ——,'n, )] ' &p, [1 +y, ( z,i+z,I)+ y, zI, ]'. (44)

&, is the mean band energy of the occupied uncor-
related o-spin Bloch states. q, measures the dis-
continuity of the occupation probability for the 0-
spin electrons in reciprocal space, as indicated in
Fig. 5.

With the help of the definitions of a and P, as well
as the relations (40) and (41), it is easy to see that
(H) depends on vz and C, . We use the variational
method to minimize (FI) with respect to v, . This
yields the necessary relations between v& and C,
through which either C& or v; can be eliminated.
In the similar s-band problem, Gutzwiller' kept
v& to investigate the stability of the ferromagnetic
ground state. On the other hand, Brinkmann and
Rice worked with C; to predict a metal-insulator
transition.

We will eliminate C&. The resulting form for the
general case is very complicated. However, for
the ferromagnetic state, it becomes quite simple
owing to the fact that v, = v2= vs=0 and g2=&3=0.
Letting the subscript f denote the ferromagnetic
state and v, = vz, &, =&f, and q, =qf, we find

2= -2
gy =

Vty &~fy ~

zI, = v, cz(p, p, ) ', z = 2) 3.

V. CRITERION ON FERROMAGNETISM

(40)

(41)

vy dqy
(H)/=q/ NE/ 1 ——

qy de

q/= [-,'n(1 ——,'n)] ' (-,'n —v/)

(45)

Consider tiie model Hamiltonian consisting of two
degenerate tight-binding bands and intra-atomic
Coulomb interac tion:

H=Q a(l, k)n, ~, +Czar n«, nz,

+Czar n&, nz„+CzZn«, n«, . (42)

x [(1 —n+ v/)' + v/ ] . (46)

For the paramagnetic state which is symbolized by
a subscript p, we let v, = v, = v, and q~=q, =q, .
Since n, =n, = —,'n, (43) and (44) then reduce to

P

(H)~=q~Ne~ 1-Z
qp dvr

n», and n«, are the number operators. l, o, p, i,
k, and g are the appropriate dummy indices. The
band energy is normalized to 5',„&(f,k) = 0 for conve-
nience.

To compute the expectation value (4,

IHIP',

), the
two-body interaction energy turns out to be trivial.
Whenever two electrons orbit around the same
atom, they contribute one unit of the appropriate
correlation energy. Hence the interaction energy
is obtained by counting the number of double occup-
ancies and weighting them with the corresponding
correlation energy C &.

With the help of (1), the correlated band energy
can be expressed in terms of first-order density
matrices. To be mathematically manageable, our
computation is restricted to the cases of less than
one or more than three electrons per atom. In such
a situation, (4, IH I @,) can then be written as

q/, = [-,
' n(1 ——,

' n) ]
' (-,' n —v, —vz —v, )

x [(1—n+ 2yz+ 2v, + 2v, )' '

/ /z /
] (46)

where N e~ = $,N(o)e,
If the correlation is so strong that there is no

doubly occupied site, the energy difference ~E
= (H)/ —(H)~ has the simple form

/zE = N(1 —n)(1 —
z n) '

(a/ —a&)

x [1+4n(1-4 n) '~, (~/- «,) ']. (49)

Equation (49) is computed for various simple den-
sity-of-states curves which are assumed to be step
functions consisting of three steps. It is found that
&E & 0, and therefore the ground state is ferromag-
netic if the density of states is large at the band
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edges. If the density of states is large at the mid-
dle of the band, 4E & 0 and so we have a stable
paramagnetic ground state.

The criterion on ferromagnetism depends on the
shape of the band, rather than the local properties
around &z and e~ as one might conclude from (49).
This is because the band energy is so normalized
that && and E~ are measured from a zero point which
depends on the entire band structure. This depen-
dence on the whole band structure can be demon-
strated by the occupation probability for the elec-
trons in reciprocal space.

Since the electron correlation serves as a scat-
tering mechanism to excite the uncorrelated Bloch
electrons from below to above the Fermi surface,
let us first compute the correlated Fermi distribu-
tion function

F,(fko) = (4, in„. i
4, )/(4, i

4, ). (50)

F, (SE~) «c(

Fcp(EEt) + Fcp(

2qp'

+pi

h, Fc (lE)

FIG. 5. Occupation probabilities of electrons vs energy.
Subscripts p and f stand for paramagentic and ferromagnetic
states, respectively, and ~,(lE) is defined by (56).

Substituting (1) into (50), it becomes

F,(lko)=L ' 5~ e ' ' ' C„.C,&. p(gj og'j'o).

(51)
Using (35)-(41), the correlated occupation proba-
bility in k space can be obtained as

F,(lko) = 2 n, + [2 n, (1 ——,
' n, ) ] ' [F(lka ) ——,

' n, ]

x nP, [1+r, (p, + p, ) + x, r), ]'s F (fko). (52)

F(fko) is the Fermi distribution function for the un-
correlated wave function. F(lko) is a complicated
k-dependent fluctuation which depends on the band
structures. The + spin goes with one band, and the

—sign goes with the other band. Since I'(lkcr) is of
the order O(N ') as compared to the k-independent

part, it will be neglected. We can then rewrite
(52) in terms of energy as

F,(/Eo) = -,' n, + [F(lEo) ——,
' n, ] [-,' n, (1 ——,

' n, ) ]
'

x nP.[1+r,(7)2+ /3)+~ 7g]' (53)

Under extremely strong correlation such that

v; = 0, we have for the paramagnetic state

(54)F,&(fEo) = —,
' n+ [F&(fEo) ——,

' n] (1 —n)(1 ——,
' n) ',

and for the ferromagnetic state

F,&(fEo ) = ,' n + [F—&(fEo) ——,
'

n] (1 —n) (1 —
~ n) '. (55)

Let 8& and S~ be the Fermi energies of the uncor-
related ferromagnetic and paramagnetic states,
respectively; then

&F,(lE) = F,f(lEt ) —F,q(lEit ) —F,q(fEt )

= —(1 —n)

= (1 —n) (1+-,' n) (1 ——,
' n) '

if E& 8~

if $~&E& g&

= ——,'n (1 —n) (1 —
~ n) '(1 ——,

' n) '

if $~& E. (56)
(54), (55), and (56) are shown in Fig. 5.

The contribution from the band energy to the en-
ergy difference rE (48) can be expressed as

&E~=Z, J Ep, (E) nF, (lE)dE. (57)

For convenience we reset the zero point of the en-
ergy at the bottom of the band, that is, E ~ 0 in
(57). This does not affect the value of (57) because
there are equal numbers of electrons in both the
ferromagnetic and the parametic states. If the den-
sity of states p, (E) is large at the center of the band
where F(l )Eis positive, then 4E~ & 0 and we have
a stable paramagnetic ground state. However if
p, (E) is large at the band edges, especially at the
top of the band where r F,(lE) is negative, then
&Eh& 0. In this case the correlation of electrons
favors a ferromagnetic ground state.

We must point out that the result which is pre-
sented in Fig. 5 has some obvious shortcomings.
To excite a Bloch electron from the bottom to the
top of the band may be energetically unfavorable.
The present result comes from neglecting the dynam-
ics of the electrons as mentioned in Secs. III and IV.
The correct treatment including such dynamical
properties is expected to produce a modification
of the Fermi distribution function only within a
finite region around the Fermi surface. However,
except for the detailed numerical evaluation of (57),
the exact solution does not give additional charac-
teristics to the criterion on ferromagnetism. In
this sense, QCA leads to a reasonable prediction.
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VI. DISCUSSION

We have used the variational method to investi-
gate the Hubbard model of degenerate bands. Since
the number of particles is assumed to be less than

1, and there are four localized orbitals at each
site, our results are valid only for less than one or
more than three electrons per atom. The method
can be extended to all electron densities simply by
devoting the necessary effort to handle the compli-
cated algebraic work. The results, however, may
not add any new features to what we have already
presented.

Only the intra-atomic correlation is emphasized
in both the trial function and the model Hamiltonian.
Although the interatomic correlation is considered
in the trial function, it is not fully taken into ac-
count by the QCA. The ignorance of the dynamics
of electrons by QCA yields the step-function-type
occupation probability of electrons in reciprocal
space. Hence this approximation is good only for
narrow bands.

The correlation of electrons scatters the elec-
trons from below to above the uncorrelated Fermi
surface in such a way that the total occupied volume
in k space is preserved. The probability that elec-
trons are excited into the holes is larger for the
paramagnetic state than for the ferromagnetic state
as shown in Fig. 5. Therefore, if the density of
states is large at the band edges, the ground-state
energy of the paramagnetic state increases much
faster than that of the ferromagnetic state as the
intra-atomic Coulomb repulsion increases. Even-
tually this is the mechanism through which the cor-
relation of electrons produces ferromagnetism.

The results of the present paper can be summa-
rized by the schematic plot in Fig. 6. The top por-
tion corresponds to the cases in which a large den-
sity of states lies at the middle of the band. The
energy (H)& for the ferromagnetic state is always
greater than the energy (H)~ for the paramagnetic
state, no matter how strong the correlation is.
However for those bands which have a large density
of states at the band edges, (H)z and (H)~ cross at
C = C, as indicated in the bottom part of Fig. 6.
At this particular value of correlation energy C
the paramagnetic and ferromagnetic states are de-
generate. Hence, around C the ground state of the
correlated electron system is a mixture of both the
magnetically ordered and disordered phases. A
magnetic transition thus occurs as the intra-atomic
Coulomb interaction increases and passes through
C

The QCA results (for d-band as well as the s-band
models) are valid not only for three-dimensional but
also for two- and one-dimensional lattices. There-
fore the ferromagnetic state can occur in a one-
dimensional case which is forbidden by the theorem
of Lieb and Mattis. ' However their theorem is true

f

X
4J 0--
I-0

CORRELATION ENERGY C ~
I

IC~

/
P

FIG. 6. Schematic plot of the total energies of the
electron system in ferromagnetic state (solid curve) and
in paramagnetic state (dashed curve) as functions of the
electron correlation energy.

The author would like to express his sincere
thanks to Dr. M. C. Gutzwiller who kindly sug-
gested the problem and continuously gave very val-
uable advice, and also to Dr. W. F. Brinkman for
helpful discussions.

APPENDIX A

Before going into the computations, it is helpful
to review the definitions of the various sets, the
relations between them, as well as the relations
between the numbers of elements in the sets. We
use the parenthesized indices preceded by either K
or G to represent the sets. The indices are 0 = 0

or 4 (the spin quantum number), I = I or II (the band
index), and i = I or 2 (the characteristics of the
localized orbitals).

If the parenthesis is preceded by K, it is a set
of reciprocal vectors. If preceded by G, it is a set
of lattice sites. A set of k vectors is associated

only for a spin-independent Hamiltonian like the one
used in the s-band model. Since the intra-atomic
Coulomb energies vary with the spin of the electrons
in the localized orbital, the degenerate-band Hamil-
tonian (42} is spin dependent. Hence the present
model is out of the scope of applicability of Lieb
and Mattis's theorem. This is very important be-
cause it is very difficult to construct a solvable
model Hamiltonian which predicts the existence of
ferromagnetism only for three-dimensional lattices.

ACKNOWLEDGMENTS
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with a set of Bloch states, and similarly a set of
sites is associated with a set of atomic orbitals
localized around these sites. The natures of the
Bloch and the localized states are characterized by
the indices in the parentheses. Hence in our nota-
tion, K(la) is a set of k vectors which are related to
the Bloch states 4„,(x}, where kCK(la). In the
same fashion G(ia) is related to the atomic orbitals
4(„(x-g), where gEG(ia)

Let the numbers of elements in K(la) and G(ia)
be m(fa) and M(io), respectively, and m(I, a)
+m(II, a) =M(la)+M(2o) =N(a} (total number of elec-
trons of spin a). Therefore we can match the N(o')
Bloch states associated with K(I, o) and K(II, o) and
the N(o) atomic orbitals associated with G(lo) and
G(2a} by a one-to-one mapping. We only consider
the restricted mappings defined as follows: Let
K((r} be the subset of the k vectors which are com-
mon to K(I, o) and K(II, a). Topologically define the
arbitrary subsets K(lia) by the top portion of Fig.
1. Then we match the J(la) in Fig. 1 to G(la)
and J(2a) to G(2a). If the number of elements in
K(fia) is m(lia) and that in K(a) is m(a), it is clear
that m(la) = m(lla)+ m(l2(r)+rn(a), and M(ia)
=m(I, i, o}+m(II, i o)+m((r)

When (1) is inserted into (2), we have (4) as a lin-
ear combination of the localized wave functions.
Equation (4) is obtained through all possible ways
to map K(la) into G(ia) The .coefficients A(K, G)
are defined in terms of determinants with the rows
labeled by the elements in E and columns by the
elements in G. Therefore the sign of these deter-
minants depends on the order in which the k vectors
and the lattice sites are enumerated. Of course,
the final results do not depend on the particular
order which was chosen. If we enumerate the k
vectors and the sites by a certain order, we can
write

un c„(»)
fla

&& Z II L-"' e'" . 4 (G), (A1)G(ja}

where n(a)=m(I, 1, a)+m(II, 1, o). Once n(a) and

m(I, 1, o) are fixed, we can determine m(II, 1, o)
= n((r) —m(I, 1, a) and m(l2o) = m(la) —m(o) —m(fla).
The ranges of the dummy indices are 0& m(I, 1, a)
&n(a) and 0&n(a) &m(ia)+m(II, a) —2m(o). The
primed summation over X runs only through those
K having the same values of m(lia).

APPENDIX B

Substituting (A2) and (As) into (28), it becomes

p((=II 5 Z e'(r}, v)
a n(a), nt(I, l,a), nt'(&, l, a)

D (K)D(K') p(r(K, K'), (Bl)

(g g i) L-( Q e((a~-a'„r') (Bs)

where

p =II Z II (o„(g—g') . 8'(K, G) 8(K', G).
G G ja

(B2)

At this point the degenerate band turns out to be
much more complicated than the s band. In the
latter the function (o,(g -g') is a simple summation
over the occupied region in reciprocal space, i. e. ,
over the states in K(Ia) (if we assume that we have
only the I band). However, in the present case we
have to be very careful in defining the (d „(g-g')
in order to avoid any ambiguity.

Since the k vectors are enumerated according to
a certain order, we can also label the k vectors in
the union of K(I, i, o), K(II, i, o), and K(o) by num-
bers. That is

k„E K(I, i, (r) UK(O, i, a) U K(o),

n = 1, 2, . . . , m (I, i, a}+ m (II, i, a) +m (a).

By the same token, we have another set

k'„F K'(I, i, (r) UK'(II, i, (r) UK(a),

n=1, 2, . . . , m'(I, i, o)+m'(II, i, a)+m(a).

The elements in the ia determinant can now be de-
fined as

where k&K(lja), and the notation for the determi-
nant is explained in Ref. 14. Thus we have

D(K)=G II C„(k),
fla

A(K, G) = D I 'r~ e'"
,
G(ja)

(A2)

(As)

ElI f, "' '" . 4(G), (A4)G(ja)

For the convenience of later computations, we
would like to write

~= II Z Z' II IIc„(k}
a n(a) fn(I 1 a) E l l

By the @CA (20), po = C(v)5r rt. Hence .(BI) is
simplified to

p,""=II Z P II II c„(k) e'(~) c(-.).
L a n(a), nt (I,j,a) E l l

(B4)
Since C„(k) are smooth functions of k, then the
primed sum over E is proportional to the number
of K to be summed Up. This number is sharply
peaked at n(a}= —,

' N(a) —m(o), a result in agreement
with the symmetry properties of the e~ sublevels.
If we approximate the sum over n(a) by the peak
term, we have
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tt,"*= II r 2' II 11 c (t„.l)e (n')-,c(
tft(I 1 a) K il k

where 0& m(I, 1, (T) & 2'N—(o) —m(&r)

(B5)

To write down the complicated quantity 4(I}v)
x C(v), letus use the notation/[A(a] to represent a
summation over the integer a from 0 to A. Then
we have

-2
Bf'(I(v) C(v}= L LN( }

E[2N(t)I v2(1~[ N2(t) —v, sI v,s] &[,N(—t} v» v(sl v,4]Z[2N(t) —v» —vssIv24]

x~[v~
I

v as] ~[-'N(t) —v13 —v~ —v 23I v34] ~[v 2
—v(ssI v 24] ~[v(sI v(m] &[vss

I V~4] ~[v(23I v»s4]

L —,'N(t))( N—(t))('„)('N(t) — „)('N(tl — „)(', N(t) — „-—„)(,'N(t) — „—-„)12N(t) v12 v12 v123 v13 v23 v14 v24

X 12 V123 V23 0 ~+ V12 P+ ~ V13 V23 —V123
j.

V124 V234 2N(t) V13 V23 V123 V34

2 ( }+V12+ V13 23+ 1 3 V123
1

—,N(t) „- „--„- „,— „,— „,— „„)( „„)
X np 12+ 34+ 124+v234+ v»34) ~2(v23+ v14+ v124+ v234+ v + v 2 4) ~2&v13+ v24+ v123+ v134+ v234+ v»34)'I2 134 1 3 P(I

We should point out that e (1}v)C(v) is symmetric in N(t) and N(t), although the present form is chosen for
convenience only.

If we are interested in the strong correlation (sc) region, the numbers of triple and quadruple occupations
are small and neglected. e (jv) C(p) is then approximated by its peak term C()(I}) as

e'gv) c(v}
I
„=c (q)

L -' L -' L--,N 0 —,N 0 —,N 0 —v» —,N 0 —v,2- v23

X
'N(t) —, —,.,N(t) —,—,—L— N(t) — t —, N(t) —,—,

)V23 V 14 2N(t }—v-, s
—vss V34

X
1I —N(t) —2N(t) + V12+ V13+ V14 2(v + v 4) 2(v tv I 2(v(3+ vM)12 Tl2 1 23

3N(t) —v14 v24 v34
(BV)

The most likely numbers of double occupation v, &

are obtained by solving dc()(I})/dv(& = 0. Because
of the symmetry property of the e, sublevels, we
have v12= v34 and v14= v23. If we normalize the v, &

as v, = v13/L, v, = v24/L, vs —-v14/L= v23/L, and vs
= v12/L = v34/L, then they satisfy the conditions

trons in lattice [not to be confused with the dummy
indices n and n(&r) which appeared in (B3) and (B4)].

Following the same procedure and approxima-
tions, the @CA of the first-order density matrices
(34) are obtained. If we define

1
COa= 1 —na —

p p+ Va+ V2+ V3 p

2= 2'01= VaAa ~ a=4, t (B8) 1
P = pn —v —v2 —v3

q] ——v)A, A, , i =2, 32

A, = (1 —n+ v, + v, + 2vs+ 2vs)

x (2 n, —v, —vs —vs), (B10)

where n=N/L and n, =N(o)/L, the density of elec-

n = 1 —n+ v, + v, + 2v2+2v3+ V124+ V]34+ V234+ Vf234,

Xv (( v V124 V134 V234 V1234)/(2

&tt = (L)v(PN V»3)/(2((L)v+ V123) t

X(t (t) t) P /Q(& tt+Vlsst)tt

where p is the spin opposite to o, then we have
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C(Ina, tuo; 3i1, ri2, 3i3)=1, i=1 or 2

C(I31c, I32o; 3i1, 3i2, 3i3) = p, [—,'n, (1 ——,'n)] ' [I+(X,+ p, ,)'g23l3+Xpl p l13l2 3]

(B11)

(B12)

C(hio, g1c;311, rb, 313) = op, ((o, + v123) [(3n~)(1 —3n,) ~,] '

2 2 2 2+ [I+ Xg ll+ Xp 72+ I P i2+ (&Pl P + OPX'e+ XUXP) 11 i2 l3+ XP+PX+ i1 )2 i3 ] (B13)

C(I3lc, g2o;3)1, 3i2, 113) =&p, (~, +&123) [2n (I 2n)~

(B14)

In (B14) i=2 and j=3, or 3=3 and j=2. The other coefficients C(h2o, bio", 311, 3)2, 3i3), C(h2o, g2o; 3i„1)2,
3l3), and C(h2o, glo, 3l„3)2, 3)3) are obtained from (B12)-(B14)by exchanging I and 3, and 2 and 4 of the
indices of p F.or strong correlation such that the triple and quadruple occupations are negligible, (Bll)-
(B14) reduce to (36)-(38).
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Mossbauer spectra have been obtained for bcc Fe alloys containing up to 25-at. /0 Ga in solid
solution. The spectra have been analyzed in a manner which permits the study of the effect of
configuration on the hyperfine magnetic field and on the isomer shift with very few prior assump-
tions. Various assumptions commonly made in handling data of this type have been examined in
detail and their validity tested. The details of 16 different configurations are presented along
with an empirical formula to describe the hyperfine field as a function of configuration and
concentration.

I. INTRODUCTION

The range and strength of the hyperfine magnetic

interaction in nondilute solid solutions is of gen-
eral interest in understanding the mechanismwhich
causes these alloys to be ferromagnetic. Many of


