
EXTRA-ORBITAL MODEL OF A DILUTE METALLIC ALLOY 4017

orbital and the single-site models of a dilute alloy.
For a discussion of this point, see W. A. Harrison,

Solid State Theory (McGraw-Hill, New York, 1970),
p. 185.
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The graphical spin-wave approach to two-magnon Raman scattering which was developed in
an earlier paper is applied to a study of the two-dimensional Heisenberg antiferromagnet K2NiF4.
In the present treatment the one-magnon energies are taken to be renormalized in the Hartree-
Fock approximation, with the two-magnon Green's function evaluated in the "ladder" approxi-
mation. It is found that the Hartree-Fock renormalization gives very good agreement with the
experimental results for the temperature shift of the Raman peak up to the measured Noel
temperature TN=97. 1 K, and yields satisfactory agreement above TN up to the maximum tem-
peratures for which Raman data are available. As in the three-dimensional case, a satisfactory
explanation for the observed thermal broadening of the spectra remains to be given. Compari-
sons between the results for K2NiF4 and its three-dimensional analog KNiF3 are made. In
particular it is found that the renormalization of the zone-edge magnons for T = Tz is much less
marked in the two-dimensional case. As has been discussed by other authors, this indicates a
rather different temperature dependence of the "coherence length" for the two-dimensional sys-
tem.

I' INTRODUCTION

In an earlier paper' (hereafter referred to as I),
we presented a spin-wave approach to two-magnon
Raman scattering and applied it to a study of sim-
ple three-dimensional antiferromagnetic systems
(e. g. , KNiF~). The theory was based on the Dyson-
Maleev boson representation of the spin operators,
and proceeded through the application of the finite-
temperature graphical perturbation theory. In
this paper we present results of calculations based
on the theory developed in I, but applied to the in-
teresting case of a simple two-dimensional anti-
ferromagnet. Probably the most widely studied
example of such a system is the compound K~NiF4,
which we shall consider in particular in this paper.
At various points throughout the paper, we shall,
for convenience, use the abbreviations [2] or [3]
to stand for two- or three-dimensional systems.

Perhaps the most interesting theoretical ques-
tion associated with the [2] systems involves the
question of long-range ordering. Mermin and
Wagner have applied the Bogoliubov inequality to
provide a rigorous proof that there can be no long-
range order in a [2] system described by the Heisen-
berg exchange Hamiltonian for T &0 in the absence
of anisotropy. This instability is also suggested
from simple spin-wave theory using a standard
argument which we recall briefly here. Consider
an isotropic [2] ferromagnet with a spin-wave
branch having energy 0-~ k for k- 0. Calculation
of the magnetization involves an integral of the form

f 1
k dk ~/"~~ —1

which diverges logarithmically in the neighborhood
of k-0. Next consider the case of an isotropic
[2] antiferromagnet with a spin-wave branch having
0-o- k as k- 0. Here calculation of the sublattice

k
magnetization involves an integral

kdk 1
Q/0g T

where the extra factor of 0„in the denominator
arises from the Bogoliubov transformation which
diagonalizes the spin-wave Hamiltonian. Again one
obtains a logarithmic divergence from the region
k-0. These considerations show that the question
of long-range order in [2] depends sensitively on
the behavior of the long-wavelength magnons. Also,
since a small amount of anisotropy is sufficient
to remove the singularity at k-0, the ordering
problem (at least in the simple spin-wave ap-
proximation3) involves a carefultreatment of anisot-
ropy effects.

In contrast to the discussion above, we now con-
sider the problem of two-magnon Raman scattering
in a [2] antiferromagnet. Here the cross section is
determined almost exclusively by the behavior of
the short-wavelength (zone-edge) magnons, which
should be very insensitive to small effects due to
anisotropy. Also one expects the zone-edge mag-
nons to reflect the properties of short-range order
in the system, and this can persist well above the
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long-range-ordering temperature T„.
In the lowest-order approximation discussed in

I, the one-magnon energies are renormalized by
summing the Hartree-Fock self-energy graphs.
This yields a result equivalent to that which was
first obtained by Bloch from a variational calcu-
lation, and which may also be obtained using the
method of Keffer and Loudon. ' The renormalized
energies in this approximation are given by

II&;(T) = n„-o(T),

where

1 1~ Qgo(T) 1 Sz o &r&Ia»r

It should be noted that the integral above is perfect-
ly regular in the region q - 0, and will therefore
be insensitive to small anisotropy effects. In this
paper we show that the above Hartree-Fock theory,
applied to the [2] system KzNiF4, yields a rather
good description of the shift of the Raman peak to
lower energies with increasing temperature. As
in the [3] case, however, a satisfactory explanation
for the observed thermal broadening of the spec-
trum remains to be given. Nevertheless, the pres-
ent theory permits some interesting quantitative
comparisons to be made between the [2] and [3]
systems. In the [3] case of KNiF„ the theory pre-
dicts a downward shift of the Raman peak of the
order 40-50/&& for temperatures T = T„.In the [2]
case of KzNiF„ the theory yields a shift of only
5/p near T„.Both of these results are consistent
with the experimental data.

Another interesting point to be made is the follow-
ing. In the [3] case, o(T) fails to have a solution
at a temperature which is close to various theo-
retical determinations of T~. In this case, the
Hartree-Fock theory permits one to study the
Raman shift only up to temperatures T = T„.On
the other hand, in the [2) case there can be no ob-
vious connection between the temperature T where
&&&(T) fails to have a solution, and the ordering tem-
perature T„.This is clear because a solution for
&&&(T) exists in the absence of anisotropy, whereas
a calculation of the sublattice magnetization di-
verges in this case. It turns out, in fact, for our
particular example of Kz¹F4, that o(T) fails to
have a solution at a temperature which is approxi-
mately twice the measured Neel temperature.
Thus we are able to compute Raman shifts up to
temperatures of the order 2T&& for this [2] system.

It is perhaps worth remarking here that the ques-
tion of actually determining T„theoretically for
[2] systems is a subtle one. Stanley and Kapl~'
have employed high-temperature expansion meth-
ods to infer the possibility of a phase transition (in
the absence of anisotropy) to a state lacking long-
range order, but in which the spin correlations

may have a much longer range below T, than above.
Their formula

kz T, =
~&0 Z(z —1)[2S(S+1)—1],

applied to the case of K2NiF4 [S=1,z=4, (J/kz)
= 112 'K], predicts a T, quite close to the measured
Neel temperature, T„=9V. 1 'K. Lines' has re-
cently considered the problem (for the ferromag-
netic case) using a new Green's-function decoupling
scheme. For the isotropic system he finds two
critical temperatures, T,' ', a Stanley-Kaplan tem-
perature corresponding to a transition to a state
with zero magnetization and infinite susceptibility,
while T,'" = T„=O K is the long-range-ordering
temperature. However, for small but nonvanishing
anisotropy, Lines finds that T,'" and T,' 'will co-
incide. It is also pertinent to remark here that
Lines' s wave-vector-dependent decoupling scheme,
applied to the two-magnon scattering problem,
should lead to results similar to those we present
in this paper. That is, for small k magnons,
Lines uses the usual Tyablikov or random-phase-
approximation (RPA) decoupling which makes the
magnon energies renormalize with the magnetiza-
tion (or sublattice magnetization in the antiferro-
magnetic case). However, for the large k magnons,
which are important in two-magnon Raman scatter-
ing, he chooses the Keffer-Loudon renormaliza-
tion, and this is equivalent to our Hartree-Fock
renormalization scheme.

In the remainder of the paper we take over, with
minor modifications, the theory developed in I,
and we apply it to the [2] antiferromagnet KzNiF, .
In addition to Raman scattering studies, ' '" this
compound has been the subject of recent neutron-
scattering, ' '3 and nuclear -magnetic-resonance'
measurements. The actual modifications of the
theory necessary to discuss the [2] problem are
slight. First, because we wish to investigate pos-
sible effects due to anisotropy, we generalize the
Hamiltonian considered previously to include a
small dipolar anisotropy contribution. Second, the
Oguchi corrections" (which arise from normal
ordering the two-body-interaction terms) are not
so negligible in the [2] case as they were in the
[3] case, and these are included in the present
analysis. With the above modifications, the theory
presented in I may essentially be taken over direct-
ly, and the reader is referred to the earlier paper
for further details.

II. HARTREE-FOCK THEORY

The basic Hamiltonian we work with is written

H JZ sq, ~ Hq, , —gg H* zsg=, —r sf). ,
f, 6 f f+6

(I)
The first term in Eq. (1)is the usual Heisenberg ex-
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change term, with nearest-neighbor interactions as-
sumed only within the plane of a quadratic layer struc-
ture. In the subsequent analysis w e shall be concerned
with the K2NiF4 quadratic layer structure, where
z = 4 is the number of nearest-neighbor b sites of a
spin at site j, a. The anisotropy contribution as
given by the second term in Eq. (1) is expressed
in a form assumed to arise from an effective field
P„,which we assume to be proportional to (S;),
the sublattice magnetization. In reduced units, we
define an anisotropy parameter h, given by

2 2 SJz
sf+ vz = (1+n) (io)

1 SJF.
up- = ——y(k) —'

2 Qg

Turning now to the Hartree-Fock self-energy re-
normalization, we obtain, in the present theory,
the following results for the one-magnon energies:

n(;(T) = n(T)n;+ n(1+ n)[I —n(T)], (12)
(SZz)'

8'&z &~
SJz (S,')0

(2) where n(T) satisfies the implicit equation

Eo= —NJzS (S+1)+ n(2S+ I)+ C C'

[
(4)

with

(I + n) —y(k)'
iV ; '

(() ~ »' - 1 (1)'1'") (5)

where the zero subscripts refer to zero tempera-
ture. The above form' for the anisotropy should
be valid for dipolar anisotropy, but not for anisot-
ropy arising from single-ion contributions. For
the case of K2NiF4 we can justifiably assume the
condition +«1.

Following the same approximate analysis dis-
cussed in I, but including the effects of s and the
Oguchi corrections (from normal ordering the two-
body-interaction terms), we obtain the Hamiltonian

K= Eo+'Ko+ V.

The first term in Eq. (3) is a constant contributing
to the ground-state energy and given by

In the equation above

n(0) = 1+ C /2S, (14)

and N(II) denotes the Bose function. If the anisot-
ropy parameter b, is set equal to zero, the above
equations become identical to those derived by
Bloch. Also it appears that Eqs. (12)-(14) are
identical to those which have been discussed by
Keffer, '~ with the identification of symbols n(T)
=1 —l(T). Thus the Hartree-Fock theory is equiva-
lent to the heuristic method of Keffer and Loudon.

As pointed out in the Introduction, the integral
which appears in Eq. (13) is perfectly well be-
haved near q-0 (with or without a finite n), and so
the renormalized energies will be relatively insen-
sitive to the effects of a finite anisotropy. In con-
.rast to this, the sublattice magnetization, in the
Hartree-Fock approximation, is given by

and

y(k) = —,'(cosk„a+ cosk, a), (8)
with

(S:)= (S.'), —(1 ~ » —+ ) 11'(()((1')) (i5)

and all sums go over a [2] Brillouin zone containing
N unit cells. Next, Ko contains the one-magnon
spin-wave contributions and is given by

Zo =Zf Af(0)(n„-nf+ p„-p(;+1),
where

(S,' )()
= S(1 —C"/2S)

C" = —5 ((1 ~ s) —
1) .

(i8)

()1(D)=() (1+—— »)»C (Svz)' C
2S n„- 2S (8)

are the spin-wave energies at zero temperature.
In Eq. (8), Q-„isthe spin-wave energy which ob-
tains if the Oguchi corrections (C') are ignored,
l. e. y

n„-= SZz [(i+n}'- y(k)']'" .

Finally, V is given by Eq. (18) of I except that the
u's and v's arising from the Bogoliubov transfor-
mation are now determined from

It should be noted that the integral occurring in
Eq. (15) will diverge logarithmically as n-0. In
the present theory, with the anisotropy inserted in
the form given by Eq. (2), one cannot therefore
compute an actual Neel temperature, i.e. , a tem-
perature T„&0such that (S,')r„=0.We can, how-
ever, obtain a maximum temperature T„,above
which Eq. (15) fails to have a solution. This tem-
perature lies midway between the measured Neel
temperature T„and the maximum temperature T
where Eq. (13) for n(T) has a solution. Probably
the only conclusion one can reach from this is that
the Hartree-Fock theory does not adequately treat
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the renormalization of long-wavelength magnons,
and that some k-dependent renormalization scheme
is necessary to treat this problem. Nevertheless,
as we shall see in the discussion which follows,
the Hartree-Fock theory appears to give quite
reasonable results for the renormalization of the
zone-edge magnons involved in the two-magnon
Raman process.

III. RAMAN CROSS SECTION

For the present case of the [2] quadratic-layer
structure, we take the following transition operator
for the two-magnon Raman scattering process:

llf=2 8[ E ' Eg — (((' t )(((' Kp))sg
'

Hg

j, 6

(18)
In this equation &, and &f are the unit polarization
vectors for the incident and scattered electric
fields, respectively. The vectors 5 lying in the
plane connect nearest-neighbor spins on opposite
sublattices. In this case, only the planar compo-
nents of &, and && contribute to the scattering pro-
cess. Additional polarization factors, including
out-of-plane components, commute with the spin
Hamiltonian and cause no inelastic scattering.

In I we obtained an approximate Raman cross-
section formula in terms of renormalized one-
magnon propagators and a vertex function which
satisfies a general Bethe-Salpeter equation. In
the lowest order of approximation we take the one-
magnon energies to be renormalized in the Hartree-
Fock approximation as discussed in Sec. II, and
we take the vertex function to satisfy the "ladder"
approximation Bethe-Salpeter equation. The re-
sult of this calculation, applied to the [2] antiferro-

magnet Kz¹iF4, is summarized in the equations
which follow. The cross section is proportional to

ImG($( - h(()+ i0')
[1 -he /k() T] (19)

where ~ = co, —cu& is the frequency shift of the scat-
tered light. Also in Eq. (19),

G(&() = G"(&()+G"(- &(),
where we find

(20)

(- "($() = g(&(, zy)NS B
L(2) (g(L(1)L(1) L(2)L(0) )+g '"- * ")j

(»)
The factor g(z(, zz) contains the polarization depen-
dence for the scattering cross section, and is given
in the [2] ca,se by the expression

g(t(, zy) = (t(fy) + (f(Kg ) —2t;z) E(z) . (22)

Also in Eq. (21), the L' ' functions are given by

L' )($,) = —Z(cosh, a —cosk, a) ((()-, +()p)

2N(Q;(T))+I
2flf(T) —&(

where the II„-(T)'sare the Hartree-Fock spin-wave
energies, and the sum over k is over the [2]
Brillouin zone. It is straighforward to check that
the integrals (for m ~ 2) appearing in Eq. (23) are
all well behaved near k- 0, and thus the Raman
cross section will be insensitive to small anisot-
ropy.

In order to actually compute spectra from the
formulas above, we rewrite Eq. (23) in the equiva-
lent form (as 2I'- 0')

2SJz 2N(nE'/2+[2(SJz) /E ]&(I+&)(I —n))+1
E' nE'+ [(2SJz) /E']n(1+ n)(I —n) —h(d —i2I'

2E' 1 ~ (cosh, a —cosk„a)'
X Im —~ (~" pN, Z -4nq- z0

where n = n(T), II ~ = (fl;) ~, and 2I' is chosen to
be small enough to yield results independent of F
as I'-O'. The last factor (in curly brackets) in
Eq. (24) is essentially a density-of-states func-
tion which can be expressed in terms of the (tab-
ulated) associated Legendre function. The remain-
ing E' integration was then performed numerically
on a computer. In the actual computations we
chose 2I = 0.0005 and employed a Gaussian quadra-
ture routine with a net estimated accuracy of ~20.

It should be noted, in all the equations where
a~ (S,') appears as a parameter, that in principle
it is necessary to carry out a self-consistent calcu-

l

lation using Eq. (15) for (S,'). In practice, how-
ever, with ~0«1, this is only important for the
calculation of (S,') itself, because n(T) is very
nearly independent of 6 for small values of ~.
Thus the Raman cross-section calculations can be
carried out by ignoring 6 altogether, and this is
what we have done for T & T„.Also, as in the [3]
case, we have performed calculations to verify
that the cross-section formula is very insensitive
to the approximations L' ' =L'" =L' '. This is
again due to the sharp peaking of the density-of-
states function near the zone edge. This means
that, to a very good approximation, Eq. (21) may
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FIG. 1. Hartree-Fock renormalization parameter G. (T),
the sublattice magnetization (P~), and the normalized tmo-
magnon Raman peak position EQT)/Ep(0) as functions of
temperature in K2NiF4.

be approximated as

I (0)

&L&o& ~ (25)

IV. RESULTS AND DISCUSSION

In Fig. 1, along with the function a(T), we pre-
sent a comparison of our theoretical predictions
for the temperature dependence of the two-magnon
Raman peak position, with the experimental data
for KBNiF4 obtained by Fleury and Guggenheim. '
Also in Fig. 1, we show the results of our calcula-
tion for the sublattice magnetization (S,'). Below
T„these calculations were carried out by solving
(iteratively) Eqs. (2), (15), (12), and (13) to obtain
a self-consistent result. We have chosen a value
of =0. 0019, consistent with experimental deter-
minations' of the zero-temperature anisotropy.
As discussed previously, (S,') fails to have a solu-
tion midway between the measured Neel tempera-
ture T„=9V. 1 K (close to the Stanley-Kaplan tem-
perature) and the maximum temperature T = 2T„
where n(T) has a solution.

The most interesting feature of the results pre-
sented in Fig. 1 is the relatively small shift of the
Raman peak at the ordering temperature T„.Both
the theory and experiments are consistent with a
downward shift of approximately 5% at this tempera-
ture. This should be contrasted to the [3] case of
KNiF3, results for which are shown in Fig. 2.
Here we observe a Raman shift of the order 40-

1.0

0.8—

0.6—
M

M
N

~04— Calculated
Experiment

0.2—

]

0.05
I

0.1 0.15

kT/22JS

I

0.2 0.25

FIG. 2. Two-magnon Raman peak position as a function
of temperature in KNiF3. From Refs. 1 and 11.

5(PO for temperatures near T„.A qualitative in-
terpretation of these observations has been dis-
cussed by Fleury and Guggenheim'0 in connection
with the theory developed by Lines. Assume
there exists some "coherence length" L such that
magnons with wavelengths X & L experience much

less renormalization than magnons with X & I..
Then for a given T/T„, it appears that L is much

greater in [2] systems than in [3] systems. Like-
wise, for essentially the same reasons, it appears
that the Hartree-Fock renormalization of the zone-
edge magnons is valid for much larger values of
T/T„ in the [2] case, although, from Fig. 1 we
can claim only fair agreement in the region T & T„.

Finally, in Fig. 3 we present some Raman spec-
tra computed from the formulas of Sec. III. The
zero-temperature spectrum is in good agreement
with the line shape predicted by the zero-tempera-
ture Green's-function theory of Elliott and

Thorpe. "' While the higher-temperature spectra
correctly shift toward lower energies, they suffer
from the same inadequacies discussed in I for
the [3] case. Instead of broadening and becoming
weaker, the line shapes actually become sharper
and the amplitude increases, in contradiction with
the experimental results.

The increase in the computed amplitude is due
primarily to the increase in the magnon occupation
numbers 2N(Q-(T))+ I and the Stokes factor
(1 —e ""~ ~ )

' in Eqs. (19) and (23). We stated
in I that Solyom~ has found an amplitude renormal-
ization factor of o~ using a different graphical
technique. Subsequently Solyom has informed us
that his amplitude factor is actually (S,*) (although
his energies renormalize proportional to o}. How-

ever, Solyom obtained the result (S,'}by neglecting
the term S~,S',~, in the Raman-transition opera-
tor. In a future publication we will show that when
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FIG. 3. Computed two-magnon Raman spectra in K2NiF4
for different temperatures.

the above term is included, the correct amplitude
renormalization factor is indeed Qt . However, by
itself, the factor of a is not sufficient to offset the
increase in amplitude from the Bose and Stokes
factors. The addition of one-magnon damping,
discussed below, can contribute significantly to
the reduction in amplitude.

One possible source of the observed broadening
which was considered in I, and which is often in-
voked in discussions of line broadening, is the
damping of one-magnon states due to higher-order

self-energy processes. As shown in I, if one assumes
a sufficiently large width I' for a zone-edge magnon,
one can obtain spectra which are in qualitative
agreement with the experimental results. However,
there are some difficulties with such an explana-
tion. One of these, which can perhaps be dis-
missed due to the crudeness of calculation, is that
we have not been able to compute I"s which are
large enough to explain the experimentally ob-
served broadening. A second, more serious diffi-
culty is that a value of 7' large enough to give the
observed broadening produces a high-energy tail
extending well above the zero-temperature maxi-
mum energy. Such a tail does not appear to be ob-
served experimentally. Also, because the simple
Hartree-Fock theory appears to give such reason-
able results for the shift of the Raman peak, one
might argue from the Kramers-Kronig relations
(relating the real and imaginary parts of the self-
energy) that damping effects should be rather
small.

As has been mentioned in I, a satisfactory ex-
planation of the linewidth problem may involve
terms in the Heisenberg or Raman Hamiltonians
which have been neglected in the present treatment,
or, perhaps it may involve the kinematic interac-
tion 3' 4 which has been totally ignored thus far.
Given enough hard work, the neglected terms in the
Hamiltonian should be amenable to calculation.
However, if the kinematic interaction is important
in this problem, it may be necessary to go to a
scheme, such as the drone-fermion ' represen-
tation, in which the effect can be included some-
what more conveniently. Application of this
scheme for S & —,

' is not completely straightforward,
however.

In conclusion, while we have shown that the Har-
tree-Fock renormalization scheme gives satisfac-
tory results for the temperature shift of the two-
magnon Raman peak for both [2] and [3] systems,
an interesting and challenging problem remains
concerning the broadening of the spectra.
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Quasiclassical Equation of Motion for the Heisenberg Spin System
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Previous results of quasiclassical spin dynamics are extended by presenting a new approxi-
mation for quantum corrections to the classical equation of motion for the Heisenberg model.
The accuracy of the equation with these corrections is determined by comparing computer cal-
culations based on this formalism with exact quantum and classical results for spin pair cor-
relation functions for a six-spin linear chain at infinite temperatures.

I. INTRODUCTION

( ) ( ))
Tle Sg ( ) 0igS( )t

(2)

The spin pair correlation functions defined in Eq.
(2) are directly related to the neutron scattering
cross section. Another quantity of interest which
is proportional to the neutron cross section is the
Fourier transform of the spin pair correlation
function:

(z, &u)= — dte '"' Z e'"'"& &'(S» (0)Sqt(t)) .
t, t

(2)
In recent years, the technique of computer simu-

lation has been applied to the classical Heisenberg
model, and several interesting results have been
obtained. It is well known that the classical
approximation is valid in the large spin limit. 7

The dynamical behavior of the Heisenberg spin
system, described by the Hamiltonian

H= —Z J;r S(' S,
i' $t

has received a great deal of attention. Dynamical
quantities of interest are, for example, spin pair
correlation functions of the form

However, for finite spin j, the validity of the clas-
sical approximation is not understood very well.

In a previous paper' (which will be referred to
as I), we have employed the Wigner formalism' "
to obtain quantum corrections to the classical
spin dynamics. These quantum corrections derived
in I can be divided into two types. The first re-
sults from approximating the thermal average as
an integration over a classical distribution of the
form e" ci. The second is a quantum correction
to the classical equation of motion.

These two corrections will be discussed sepa-
rately in Secs. II and III. In Sec. IV, we present
computer calculations to test the accuracy of the
quasiclassical equation of motion.

II. THERMAL AVERAGE

In this section, for simplicity, we will consider
only the spin--,' nearest-neighbor exchange model.
In I, we obtained spin pair correlation functions in
terms of a series in classical spin pair correlation
functions. The result to second-order classical
correlations is
—,'(S, (0)S,t(t)+S,t(t)S, (0)) =(&; n, t(t))„

—~(2p —p J)Z J;; (Dt Q,B(t))„


