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The eight-vertex model solved by Baxter is shown to be equivalent to two Ising models with
nearest-neighbor coupling interacting with one another via a four-spin coupling term. The
critical properties of the model in the weak-coupling limit are in agreement with the scaling
hypothesis. In this limit where o. -0, the critical indices obey p/pp= p/pp=p/vp =1 2A p/Qp
= p/pp = 1 with the subscripts zero denoting the index values for the ordinary two-dimensiona}
Ising model.

In a recent publication, Baxter ' has found the free
energy for the eight-vertex problem and shown that
& is a continuous function of the interaction con-
stants. This continuous variation of a critical index
contradicts the hypothesis of smoothness or univer-
sality often postulated for near- critical problems.

One way of seeing the source of this behavior is
to rephrase the eight-vertex problem as an Ising
model. Imagine a spin placed at the interstitial
points of the lattice as in Fig. l. An arrow to the
right (or upward) corresponds to the case in which
the adjacent spins are parallel; a leftward or down-
ward arrow makes the adjacent spins antiparallel.
Then, the four combinatorical factors a, b, c, and
d corresponding to the vertices shown can all be
represented by a factor in the partition function

E al a4+E+apa3+Xcrga2aga4

and we obtain the complete partition function

A exp(K (Ty y(Tg g y+g+ K oy y k(7g
fa„=~1} g, a

+ ~of, k+)+1,

kazoo/+1,

koJ, ktl) & (l)
in which next- nearest- neighbor spins are coupled
by interaction constants K' depending upon the di-
rection of the diagonal. The factor & couples all
four spins. The precise connection is that

K++K-+),

K+-E

The constant A does not, of course, enter into the
critical properties.

The Baxter solution shows that this Ising-type
problem has a very new kind of singularity at the
critical point, namely, one in which the singularity
in the specific heat as e- (k+ c+ d —a)/a goes to zero
is of the form e with & being a function of the pa-
rameters, namely, '

sin, = tanh2X . (3)4 l —ko

This result seems at first to contradict the
smoothness hypothesis which suggests that critical
indices should not change their value unless there is
a symmetry change. However, this eight-vertex
model certainly has a different set of symmetries
than the usual two-dimensional Ising model. Notice
that at X= 0, the lattice with j+ k = (even integer)
does not interact with the lattice with j+ A = (odd in-
teger). Even at & 40 for T & T„ i. e. , k &0, the
spins on these two sublattices are uncorrelated.
Therefore, the Ising form of the eight-vertex mod-
el can be viewed as having two lattices with "in-
dependent" ferromagnetic transitions which occur
at exactly the same temperature. The coupling be-
tween these two lattices is of the form

-(K++ E-) +)t
t &Z, u, ; g(1) g(2) (4)



3990 L. P. KADANOF F AND F. J. WE GNE R

l" l T" l l" T

$i( f

ordinary two-dimensional Ising model, the mag-
netization has an index x,= 8, and the energy den-
sity xg= 1.

If these indices vary with &, then the derivative
of (0)r „contains a term like R "lnR, in particular,

( )K,x (0) g( xa~ (6)

C
r

J

d— l" T
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FIG. 1. The correspondence between the Ising-spin
configurations, the eight-vertex configurations, and the
Boltzmann factors a, b, c, d.

for n~ 2.
Here the x 's are critical indices which describe

the behavior of the fluctuating variables. For the

where 8&" and 8', ' are the energy densities on the
two sublattices. This kind of coupling leaves the
spontaneous magnetizations on the two lattices free
to point in either the same or in opposite directions.
Since this two-sublattice symmetry is very different
from that of the usual Ising model, it is not sur-
prising that the critical indices of the Baxter solu-
tion are, in general, different from those of the
Qnsager solution.

A second unexpected feature of the solution is that
& varies continuously with &. The scaling hypothe-
sis usually rules out this idea as is shown in the
discussion of Ref. 3. However, there is one special
case in which the scaling idea does permit the con-
tinuous variation of critical indices —if there is a
term in the Hamiltonian of the form of &g, u, and u,
scales as 1/r (d denotes the dimension of the lat-
tice).

To see why this particular scaling is so signifi-
cant, recall the definition of scaling: In the criti-
cal region, the phase transition is supposed to be
described by fluctuating local quantities, e. g. , the
magnetization density and the energy density, which
we can write as 0 (r) The n dist.inguishes among
different quantities. Let 0 be a product of n differ-
ent quantities of this type,

n

0= II 0;(r;), (5a)
i=1

and take each pair of operators in the product to be
separated by a distance I r; —r& I of the order of
magnitude of R, with R much greater than a lattice
constant and much smaller than a coherence length.
Then the statement 0 (r) scales as 1/r means
precisely that

(0)»„-, , x= Q x, (5b)

where the ~ ~ ~ represents terms which are not loga-
rithmic in R. Therefore, these logarithmic terms
are signals of continuously varying critical indices.

To see how this logarithm can arise, notice that
if ~ is conjugate to u&, which contains a term u&,

then

8
~~(0)r.~=+, (0 u„)r, ,+

According to the operator algebra concept, when a
product of two operators which are relatively close
to one another appears inside a correlation func-
tion, their product may be approximately replaced
according to

0, (r~)0~(rz)=Q„A, ~, „(rq —r2)0„(—,(r, +r2)), (8)

where, according to scaling,

a.8, y[(r g
—rg)/( I r g

—r p I )jQs' lr r Ix-+xs-x
1 3

for separations lr1 —r2l large in comparison to the
lattice constant. In the particular case in which Os
is u, which scales as 1/r', then the product in (8)
contains a term of the form

t'&R
1/r2= 2mln(R/ao) . (12)

When Eqs. (11) and (12) are combined, a set of
logarithms appears in the derivative. A compari-
son with Eq. (6) then shows that

ax
= —27T ae

We apply this result to the model solved by Baxter

( ) ( ) (10)Ir -rl'
when 0 and u are scalars under rotation. Here a
is, of course, the particular coefficient which ap-
pears in the reduction formula (9) when o = y and
Os= u.

As a result, the sum in (7) contains a succession
of terms

9 )~ ~ a~(0)F h= m 4
~

~d (0)K,X+ ~ ~ ~

j-1 (T l'~)&&R

(11)
which corresponds to I r —r, I being much smaller
than the average separation distance lr; —r, I -R.
Here the + ~ include all terms in which all separa-
tions are at least of order R. The logarithms then
appear in g„. In two dimensions one obtains
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for the particular case ~= 0. At ~= 0, the operator at )(= 0, dx,/dX = 0 so that to first order in )(

u&= 6$& 'lg,' ' (14) X(y 8 ~ (20b)

(u, u ) = (5$„"'5S"))' . (15)

However, the statement that x~ = 1 at X= 0 implies
that at criticality for large r

(5$"'5$"'}= q/2»r' (16)

From Ref. V we obtain q = 4/». (Note that nearest
neighbors in the sublattices are separated by ))2. )
The correlation function on the left-hand side of
(15) is then (q/2&(r ) and, consequently, u, scales
as 1/r»

Because M& has this special value of the scaling
index, the critical phenomena theory indicates that
the critical indices can vary continuously in ~.
Conversely, if there is no operator with index d,
then ther can be no continuous variation of the
critical indices.

To find the first variation in the critical index
for the energy, calculate

does indeed scale as 1/r if 5$,"' and 6$,' ' are the
deviations of the energy on the two sublattices from
their critical values. To see this, calculate (u„u, )
at &= 0 and at the critical point. At X= 0, the two
sublattices are independent so that

To derive this result, notice that for r& close to r&,

(1) (1) ~g (1)~g (2)
"2

contains no term which is like cr,
' ' since this ex-

pression contains a reference to fluctuations on
lattice 2. Hence the coefficient a in Eq. (13) van-
ishes. It follows that g = 2x, does not change to
first order in A..

From these results and scaling theory, we can
predict all critical indices to first order in A.. For
example, the deviation of energy from criticality
contains a singular term of the form

where t' is the correlation length, since x, is the
index which goes with the energy. Also the free
energy contains a singluar term like

5F- $

Since $ - E ", 5F-E, and 5$ - E, we find

(2 —x, ) v= 1

or

(21a)

According to Eq. (17), as r, approaches r» at )(= 0,
the product of the energy fluctuations on lattice (1)
can be replaced by a constant divided by lrq —r2l .
In particular,

Q= 2A.q .
Equation (21b)
suit, Eq. (3).
that

(21b)

is in agreement with Baxter's re-
Similarly, scaling theory implies

(18)

when r& and r& are relatively close together com-
pared to all other distances but I r& —x~l is large
compared to a lattice constant. It now follows that
$„' scales as 1/r "~ with Eq. (10) giving

dx
dx

Since the scaling index is 1 at X= 0, we find that for
small A

x~=lwyq. (20a)

A similar argument applied to o„' ' indicates that

Note, however, that this result is not of the form
(10), needed to reach Eq. (13). To achieve the
form (10), we consider the combinations

(19)

which have a simple symmetry under the interchange
of the two lattices. Equations (18) and !19)give

5$„' u(r»)=+ q, 6$„'
2m I r~ —z2I

gS (2) ( $ (1)) +S (1) ~$ (2
&) (22)

For simplicity, set K'=K =K. Now consider any
expectation value (0)» ~ where 0 is a product of
terms O' '0 ' with 0' ' containing spins on the first
sublattice and 0~' containing spins on the second
sublattice. To zeroth order, we may write

(0)» „-—(0 ) (e )(0' ') (e )+order )( .
Here E =K, -K, with K, being the critical value
of K at X=O.

In first-order perturbation theory,

(23)

—(0)» i=($' ')(0~') (e )Q, (nS„"'0"')» &(=0

on the coexistence curve. Thus, P = vx, yields

(21c)

to first order in A.. Thus, we find all the critical
indices by using the assumption that scaling holds.

To check this assumption we use first-order per-
turbation theory. There is a term Q„S„u'S~' in
—PH. This term may be written as

~(($ ((&) ($ (»)) + nS &&) ($ (»))
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+(g (1&) (0(1&) (eo)g (~g (2) 0(2))

Bince 8 is conjugate to K, the first two terms in

(24) generate derivatives with respect to K of
(0' ')2 „.o and (0 '&2 „o. To first order in )(, we

may replace Eq. (24) by

(0(1& 0(2)
&

(0(1)) (&m) ( 0(2&) (~n)

(32a.)

In fact, we can see that scaling holds quite gen-
erally to first order in X. Consider the behavior
of a product of n spins on the first sublattice at
positions r1 ', . . . , x„' ' and m spins on the second
at r1 ', . . . , r '. If they are far enough separated
so that scaling holds at X = 0, then

(.„,~ ~ '„&...=
I
"I"'f„((;/&o)&

while the correlation with an energy density at R
takes the form

with

+ )(Q ( 0"'&8 "'&(0"'aS ') (25) l e I"
(Or Or 5~R &2,1=0 s fn, 1 i t pr1 rn

~* = E
' —)( ($ &„.o .

Equation (26) gives a renormalized T —T . Neaz

(8) is given by

(32b)

Then, Eq. (25) implies that to first order in )(,

(o 1 ~ (T(o 2 ~ ~ ~ ag )r„r1

(& &=-,' W -Pe'+qo'lnIo'I, (27}

with p being a new constant and q being the same
as the constant defined by Eq. (16). [Eq. (27) can
be obtained, e. g., from Eq. (97) of Ref. 8. Note
that 2K,(0}=lnctg(2'&(). ] To first order in )(, we can
write

e" = (e' - )(-,' W + p) ~') (1 - )(q b)
I
e'I )

(28)

with

—X 2 W+ pA. E (29)

(oo o &r, 1=2= 114 f (r/&o)(1) (1)

when $0- i col become, to first order,

being essentially K,()() —K. The shift in K, given
by Eq. (29) checks directly against the value given
by Baxter's solution.

Equations (25) and (28) may now be used to evalu-
ate critical indices directly. When 0= 0„' ' and T
& T„we find, to first order in X,

(o(1» ~ ( ~m)Bo ~ ( e)oo(1-ax&

where Po is the magnetization index for the Onsager
solution. This direct solution then recovers the
scaling result (21c). Similarly, the two-spin cor-
relation functions which have the form

+~ Z f., 1

which indicates that for large separations among
all the spins their correlation functions obey all the
scaling laws, at least to first order in x.

It now follows that thermodynamic derivatives
with respect to magnetic fields inserted in —PH as
l)1 g„o„"'+i)2 Q o„' ' must obey scaling in the form

8tl
b Z

I I

e
I

(n+m)B-L'(n+m)-1)2n (34)&1=&P=o
1 3

In this may, we see that the free energy in the pres-
ence of magnetic fields contains a scaling term of
the form

(35)

with 4= 2v —P, and that this scaling term dominates
all derivatives mith respect to magnetic fields.
Therefore the critical exponent 6 = 4/P does not
change to first order in X.

To check the critical index n in first-order per-
turbation theory, we consider the free-energy den-
sity

(36)

(oo o, »( „=,&( f(r/()+order)((1) (1) 1 2 (30)
From Eqs. (27) and (29) we find that the nonanalytic
contributions are

y= 1(- (1 —q)(),

as mould be predicted by scaling.

(31)

when $- I &I '"'. It follows that the two-spin cor-
relation function has a scaling form to first order
in X, and that the coherence length index is cor-
rectly given by Eq. (21a). Also, an integration of
Eq. (30) over all r gives

y.( = —qeo ln
I

e
I

+ )(q' e2 (ln
I
2

I

)',
which in first order in A. can be written

(I.I'-""- ")/2),

(37)

which again checks against Eq. (2lb).
From Eq. (20a) we obtain the ratio (2 —x,)/(2-x )

= 1+ 2A.q to first order in A.. To check this ratio
we consider the model with an interaction constant
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with

In first order in A. we can write

&x = et —&q&a h«
~

&g
~

g

&&= ez —~ ~ vT+pA. &z,
0 0

(39)

(40)

(41)

and similar equations hold for Ez and Ez. There-
fore the critical line && = 0 for A. = 0 moves to e& = 0
at A. , that is,

e, =xq~, in~~,
~

(42a)

in first-order perturbation theory. This equation
as well as

(42b)

can be written, in first order in ~,

(43)

Since &, + e& and c& —c2 are conjugate to the energy

K& for the two-spin interactions in the first sub-
lattice and an interaction constant E3 in the second
sublattice. In first order in X we obtain similarly
to Eq. (25)

( O(1«0(2«) ( Ou«) (ea) ( Os«) (e+)
1

+X~(O' 'ds' ')(0 «&Is„'), (3&)

densities 8„ the exponent in Eq. (43) is expected
to be (2 —x,)/(2-x ), in agreement with Eq. (20a).

APPENDIX

When shown the results of this paper, Wilson
drew our attention to a similar problem in field
theory which was studied by Wilson, Callen, and
Symanzik. ' In field theory the operator 4 corre-
sponds to the operator u„. In the free-field limit
4 has the critical index (dimension) d, but in
first-order perturbation theory its critical index
changes. This leads to a breakdown of scaling.

According to Baxter's solution, the critical index
o«changes continuously with A. , Eq. (3). Therefore
we expect u, to scale like 1/r' for any X. Wilson
and Fisher urged us to show this in first-order per-
turbation theory.

To see this, note that for z& & r the operator

0 (r, ) u(r) = u(rq) u(r)

is even under the Kramers-Wannier (KW) transfor-
mation of one sublattice only. (Under the KW
transformation of sublattice 158 '„" is odd and 5$'„'
is even. ) Since u(r) is odd under'this transforma-
tion, a vanishes. Thus, according to Eq. (13),
the critical exponent x„does not change in first
order in A,.

We are indebted to Dr. K. Wilson for his com-
ments.
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