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from the retarded interaction of surface plasmons.
This result apparently is due to the fact that elec-
tromagnetic bulk excitations do not extend beyond
surfaces® and thus do not contribute to an attractive
force. Since the physical properties of surface
plasmons are well understood, this new concept
provides a much simpler intuitive understanding

of van der Waals forces than the methods used be-

fore.”!%'? In particular, in the nonretarded limit,
van der Waals forces are simply the attraction
forces resulting from the interaction of the intrinsic
surface-charge-density oscillations.
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The basic idea that the convergence of the renormalized perturbation expression for the
self-energy 4, at a given energy is equivalent to the localizability of the eigenstates, if any,
at this energy is applied to one-dimensional random systems, namely, electrons in the tight-

binding approximation and phonons.
localized.

For nearest-neighbor interactions all eigenstates are
If second-nearest-neighbor interactions are present, the possibility of the existence

of extended states remains; we have shown that existing theories are unable to give a definite

answer to the problem in this case.

1. INTRODUCTION

The study of disordered one-dimensional (1-D)
systems has been focused on (a) numerical calcu-
lations of the average density of states, (b) theo-
retical efforts to show whether or not spectral
gaps remain when disorder is introduced, and (c)
theoretical and numerical studies to reveal the
nature of the eigenstates, i.e., if they are localized
or extended.

For the electronic case the early work was de-
voted to problems (b)'~* and (a)*~® above, although
problem (c) was examined briefly in the work of
Landauer and Helland. * Mott and Twose® were
the first to suggest that all the electronic eigen-
functions in 1-D disordered systems are localized.
Borland!®!! was the first to present a rather gen-
eral proof of this statement. A critical discussion
of Borland’s work is given in a review article by
Halperin. ' More recent work is discussed in re-

view articles by Mott, ** Hori,!* Economou et al.,'
and in books by Lieb and Mattis'® and by Hori. !’
For the problem of lattice vibrations in disor-
dered 1-D systems the emphasis was on the cal-
culation of the average spectral density. Since
the pioneering work of Dyson, '® many efforts have
been made on analytical calculations of the spec-
trum. Dean, !® in his remarkable numerical work,
showed that the spectrum of an isotopically dis-
ordered linear chain has much fine structure with
many well-defined peaks and valleys. Dean ex-
plained the existence of the peaks as due to states
strongly localized around small islands of light
masses surrounded by heavy masses. Hori et
al. 2! gave a theoretical basis to Dean’s finding
by showing that such a fine structure should be
expected for a wide variety of disordered systems.
Dean?? presented a proof, similar to that given by
Borland for the electronic case, that all phonons
in a 1-D disordered system are localized. It
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seems, however, that his proof has not been widely
accepted. 1617

Anderson?® studied the problem of localization
of the eigensolutions of a tight-binding Hamiltonian
in a 3-D disordered system. He introduced the
important idea that the nature of the eigenstates
depends on whether or not a renormalized per-
turbation expression (RPE) for the self-energy 4,
converges. This idea was rigorously formulated
recently by the present authors. % 1t has been es-
tablished? that if the RPE for 4, diverges at a
certain real energy, the density of states is dif-
ferent from zero there and the corresponding ei-
genstates are all extended. On the other hand, if
the RPE for 4, converges for a given real energy,
either the density of states is zero there or, if
there are eigenstates corresponding to this energy,
they are localized.

In the present work we use this idea to study
some 1-D systems satisfying the criteria for its
applicability, i.e., electronic systems in the
tight-binding approximation and lattice vibrations
within the harmonic approximation and for nearest-
neighbor coupling. Some of these restrictions can
probably be relaxed without affecting the final
conclusions.

The basic result of the present completely dif-
ferent approach is in agreement with Borland’s
theorem: All eigenstates are localized. Our
proof is direct and does not suffer from the pres-
ence of an ergodic assumption as Borland’s
does. 191218 For the electronic case, Borland’s
method is more valuable since it covers a more
realistic case than the present one. However, in
the phonon case the present proof is especially
needed in face of the skepticism which Dean’s al-
ternative proof has met. '®!7 It should be men-
tioned that our proof is based upon the convergence
of a function f,(x) as n - =, where

fal®)= f:;: K, 0) foa(x") dx" . a.1)

We have shown here that the kernel K(x',x)
satisfies Frechet conditions'® and consequently, !°
the function f,(x) converges uniformly as n -,
Borland!® was faced also with the convergence of
a function f,(x) satisfying (1.1). In order to show
that his kernel satisfies the Frechet conditions,
he imposed certain restrictions that made his
proof rigorously valid only for high energies. We
have slightly extended Borland’s method here so
that no restriction on the values of the energy are
needed. This slight generalization can be used
in Borland’s work also, making his proof valid for
every energy.

Our proof is based upon the assumption of near-
est-neighbor interaction only. If one permits the

existence of, e.g., second-nearest neighbors, our
proof breaks down, since new possibilities for the
divergence of the RPE for 4 appear which were
absent previously. In this case the analysis of the
convergence of the RPE can be carried on as in
the 3-D case.? Thus a localization function L (E)
can be defined such that L(E)>1 (<1) if the eigen-
states at E are extended (localized). However, we
are neither able, in contrast to the 3-D case, to
show that there are cases where L (E)>1 (which
would mean that there are extended states in 1-D
disordered systems) nor able to show that L(E)<1
always (which would mean that all the eigenstates
in 1-D disordered systems remain localized even
in the presence of second-nearest-neighbor inter-
action). We were able, however, to obtain under
certain conditions an inequality restricting the re-
gions where extended states, if any, can be found.

In Sec. II the tight-binding electronic case is
considered in detail. It is shown that when the de-
gree of randomness is different from zero all the
eigenstates are localized.

In Sec. III the lattice vibration problem is ex-
amined and it is shown that it is equivalent to the
electronic one, so that the proof given for the lat-
ter holds for the former, too.

In Sec. IV a model with second-nearest-neigh-
bor interaction is examined. The analysis is sim-
ilar to that used for the 3-D case and results in
the definition of a localization function.

In Sec. V a brief discussion is given about the
possibility of the existence of extended eigenfunc-
tions in disordered 1-D systems.

II. ELECTRONS: TIGHT-BINDING APPROXIMATION

We consider here the motion of an electron in a
one-dimensional array of potential wells (Fig. 1).
We denote by i) =0, £1, £2,...) a Wannier
state localized around the ith potential well. The
Hamiltonian describing the electron in this system
is assumed to be

H‘!=(i'H|j>=€‘6‘I+V‘!, (2. 1)
where
V“=V”=V!6‘+l',, j=1,2,3, oo (2 2)

=V‘6‘*1'.’, j=0,—1,—2, Y

Hamiltonian (2. 1) describes the formation of a
band from a single atomic orbital through nearest-
neighbor interaction only. The theory based on
(2.1) can be trivially generalized to more than one
band as long as there are no matrix elements be-
tween different bands in the Hamiltonian. The
disorder is introduced in the system by allowing
the quantities €; and V; to be random variables.
More specifically, we assume that the pair €,;, V;
is statistically independent from any other pair
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FIG. 1. Model 1-D random potential. Levels €; denote
the energy eigenvalue of the ground state in each well if
it was isolated.

€4any, Vi B=%1, £2,...) with a common distribu-
tion function, i.e.,

®{e,, Vit =I1i Pley, Vo). 2.3)
The eigensolution ‘") corresponding to the
eigenvalue E™ can be written as

[)=2,¢573), (2.4)

where the quantities c}" satisfy the basic matrix
equation

LjHye"=ETc{” . (2.5)

The problem is to find whether the eigenfunctions
[ satisfying Eq. (2.5) are localized or not.
An eigensolution is called localized when the coef-
ficients ¢;” are different from zero for values of

7 in the neighborhood, let us say, of j, and if

C;') m 0
It has been shown® that the localizability of an
eigenfunction overlapping, e.g., with 10) and be-
longing to the eigenergy E can be determined
by the convergence properties of RPE for the self-
energy A (E'™). The proof has been given in Ref.
24 for the 3-D case, but it is easy to check that it
is independent of the dimensionality of the system.
The self-energy Ay(E) is defined by

GolE) = ——

- €= 8y(E) ’ (2.6)

where Gy (E) is the 0, 0 matrix element of the
Green’s function of the system, i.e.,

GoE)=(0|1/(E - H)|0).

The RPE for 4 corresponding to Hamiltonian
(2.1) and (2. 2) can be found®'?* as the contribu-
tions from all self-avoiding paths starting from

2.7)

and ending at site 0 and linking only nearest neigh-
bors. The last restriction stems from relation
(2.2). To each step from site i to sitej (j=i+1)
there corresponds a factor V,;, and to each site j
(except 0) there corresponds a factor G?"", where
G%" is the j-j matrix element of the Green’s func-
tion corresponding to a Hamiltonian differing from
(2.1) in that €, =<, where & denotes every site which
precedes site j in the particular path under consid-
eration.

In the 1-D case there are only two self-avoiding
paths. starting from and ending at site 0 and linking
nearest neighbors only, as shown in Fig. 2, and
therefore only two terms in the RPE. On the other
hand, for higher dimensionality there is an infinite
number of such paths and therefore an infinite
series of terms in the RPE. This basic difference
between 1-D and higher dimensionality, stemming
from the lack of alternative paths connecting two
points in 1-D systems, accounts for the unique
properties relating to localization of the eigensolu-
tions in 1-D systems with nearest-neighbor inter-
action.

Thus, in our case, the RPE for 4, is

Bo(E)=Vy G Vig+ Vo Go Vg (2. 8)

The first term of the right-hand side of (2. 8)
can be written by taking into account (2.6) and (2.2),
v

Vo1 Gl Vyg= Foe - A0

p— (2.9)

The quantity A} is the self-energy corresponding
to a Hamiltonian where €;==. Writing the RPE
for A? by the same rules as for A, we obtain

AY=V,GP' Vs, (2.10)

where the other term V,,GJ'! Vy, is zero since

€o=>. Equation (2. 10) can be written
V2
A= 2 , 2. 11
VE - €p- 42') ( )

where AY! can be again expanded according to
(2.11). Thus the final expression for V,, GIVy, is

T &y (@
o+ (b)
- 0 1 2 3

FIG. 2. The only two diagrams for RPE of the self-
energy A, when only nearest-neighbor coupling is pres-
ent.
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VOIG?V1°= 1Va
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E-a- Vi 2.12)
E—€2— VT
E__Es__.__i__
E_e4_°.u
The RPE for Ay(E) is
Vz VZ
A (E)= 1 s + 2 5
E-c- B E-eu- Loy (2.13)
v - \% .
E-¢€;- 3 E—-€_5~ =3
E—ea—"" E_€-3—"'
I

According to what was stated, if the RPE (2. 13)
converges for E=E™ the eigensolution corre-
sponding to E”, if any, is localized. In contrast
to the 3-D case where the RPE is an infinite series,
the question of convergence arises only in relation
to the two continued fractions in (2.13). On the
other hand, if at least one of the two continued
fractions diverge for a certain value of E, to this
value of E there corresponds extended (i. e., non-
localized) solutions. If only one of these continued
fractions diverges, the eigensolution extends to
infinity in the one direction only. Since both con-
tinued fractions have the same structure, it is
enough to study the convergence of the first only.
This can be achieved by reducing it to an infinite
succession of Mobius transformations. If we de-
note the first continued fraction in (2. 8) by ¢, we
can write

t=w,(wy(ws(-++)))» (2.14)
where

w(Z)=V2/(E-¢€;-2). (2.15)

If we terminate at the nth step, we shall obtain

ta=w (wy(s o s, (0)e « = ). (2.16)
The continued fraction (2. 14) is defined as
t=lim¢, (2.17)

new

if this limit exists.

We shall examine first the periodic case where
VZ=V%and €;=¢ for every i. Denoting by Z,, Z,
the two solutions of the equation

Z=V¥(E-€-2), (2.18)
we can write (2.15) as

wZ)-2, _2,Z2-2,

wZ)~2, Z,Z-2Z,' (2.19)
Combining (2. 19) and (2. 16) we obtain

t,.-Zl <é)"d

t.-2, \Z, . (2. 20)

If |Z,/Z,1 #1, then one sees from (2. 20) that
limt,=Z; asn~o,where 1Z;| <|Z;I, i, j=1,2.
On the other hand, if |Z,/Z,l =1 and argZ,/Z,

=¢ #0, 2m, ..., then it follows from (2. 20) that £,
does not converge as n - . From (2.18) we have
that

Z,,,=3{E - e£[(E - €)- 4V?]V?}, (2. 21)

Thus if E is real and (E - €)?>4V? or if ImE #0,
then |Z,/Z,| #1 and the continued fraction con-
verges; if E is realand (E — €)?<4V?, then 1Z,/Z,|
=1 with arg(Z,/Z,) #0 and the continued fraction
diverges. The conclusion is that for the periodic
case the RPE for Ay(E) diverges on the portion of
the real axis [€ — 2V, € +2V] and converges every-
where else. We have thus retrieved the standard
result of a band of extended states with total band-
width B =4V as it should be for a 1-D case with
nearest-neighbor interactions.

The motion of a point ¢; lying on the real axis
due to successive Mobius transformations (2. 15)
can be better visualized by considering the corre-
sponding motion of the geometrically inverse point
on a semicircle with center lying outside the real
axis as shown in Fig. 3. The position of the in-
verse point is uniquely determined by an angle ¢,
such that — 37 < ¢, < 37 and every transformation
is characterized by an angle 6, (- 37 < 6, < 3m)
such that ¢;,,=¢; +6;, where 6, is a function of
the parameters of the Mobius transformation, the
quantity ¢,, and the position of the center of the
semicircle. The motion of the inverse point be-
comes particularly simple in the case where
I(E - €;)/V;| <2 and the center of the semicircle
has been chosen as C,=3{E - €; +i [4V%- (E - €,)?]'/3},

t tin X

FIG. 3. Relation between the ¢ and ¢ variables.
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Then 6, is independent of ¢; and is given by

29172
_ -1 _/E—E' E—E,
8=tan l:l \ 2V{)] 2v,

(2. 22)

We return now to the disordered case where the
quantities €; and V; are independent random vari-
ables possessing a common distribution function
P(e;, V;). In this case, the quantites ¢, are ran-
dom variables themselves possessing a distribu-
tion function f,(,) which is a functional of P€;, V;).
We shall show here that as n -« the function f,
converges uniformly for every x to a function f(x)
independent of », as long as the distribution
P(ey, V;) is bounded in heights. This means that
for every ensemble of random systems charac-
terized by a bounded distribution P(e;, V;), the
distribution of the quantity £, becomes independent
of n asn -, The last statement is equivalent to
asserting that for almost every member of the
ensemble considered (except for some of total
measure zero) the quantity #, converges as n -«
to a limiting value ¢ which, of course, depends on
the specific member of the ensemble. To prove
this it is enough to show that ¢, is independent
of £, as n -« for almost every value of #,. But if
t,., were depending on {, as n -« for a non-neg-
ligible fraction of the members of the ensemble,
then one could construct an ensemble with a
bounded P(e;, V;) such that f,(x) would not con-
verge uniformly to f (x) as n -, in contradiction
to what will be proved here.

The distribution function f,,,(t,.;) is given in
terms of the distribution function f,(,) by an in-
tegral equation of the form

Farltns) = [ o K*(t, taad)falts) dty,

where the kernel K* is given by

(2. 23)

2
K*(tn, b)) = 2= |4V, V%P(E-t,——"‘—, V¢>.
tnol tml

2. 24)

The P(€,, V;) is the distribution. function of the pair
of random variables €;, V;. In the case where V,
is not a random variable but just a constant V,

Eq. (2.24) becomes

V2 Ve
Kot to)= @ PrlE-ti- 1) (229)

n+1 n+1

where Py(€;) is the distribution of the random vari-
able €;. On the other hand, if €, is constant €, and
if V; is a random variable with a distribution func-
tion P, (V;), then the kernel becomes

1(E - t,— €,\"2
K*(tm tm—l): E (“ni)) Ps Ktml(E = tn— EO))UZ]

tnol

AND M. H. COHEN 4
if £y (E = t,— €0) >0,
=0 if (B —ty— €)tp <0 . (2. 26)

If the function P(€,;, V;) is bounded and P(€;, V;)
~g(V,)/€§ as ¢, ~ = with s >2, where g(V,) is a
bounded function of V,;, then the kernel (2. 24) is
always bounded. Similarly, if Py(€;) is bounded
and P(e;)- const/€f as €; -« with s>2, then the
kernel (2. 25) is bounded. Let us note that these
restrictions on the asymptotic behavior of the dis-
tribution functions are of no physical importance,
since any realistic distribution function would
terminate. For the kernel (2. 26) to be bounded
one needs to assume that P.(V;) is bounded by

P.(V));—=const/Vi withs>3
i

and

P (V)T constXV§ withs > 1.
" I+

Although we need to assume that the kernel in
(2. 23) is bounded to prove the localizability of the
eigenfunctions, it is clear from the physical point
of view that if we allow the functions P,(€;) and
P(V;) to violate the restrictions for the behavior
around €;== and V;=0, respectively, we actually
help the localization of the eigensolutions.

Transforming from the variables {t,} to the vari-
ables {¢,} introduced earlier we can write (2. 23)
as

/2

Pml(d’nol): _,/2K(¢m ¢ml)Pn(¢n)d¢n; (2. 27)
where
dt .
Pi(¢i)=fi(t(¢l))3¢—‘, i=1,2,... (2. 28a)

K(01, 00)=K* @0, 100) Go— 1 i=1,2,3,..

(2. 28b)

and £(¢) denotes the function relating ¢ with £.
From (2. 27) it follows that
/2
Py(@a)= [, Kn(®0, x) Po($0)ddo , (2. 29)

where K,, the nth iterated kernel, is given by

_ (/2

Kn(¢0) ¢n)— -1/2 Kn-l (¢0, ¢n-l)K(¢n-lr ¢n)d¢n-1
(2. 30)
and
Py(Pg)=6(¢o-a), (2.31)

where a is the angle ¢ corresponding to £=0 and
K, =K



[

Frechet has shown that K,(¢4, ¢) converges uni-
formly to a function p(¢) independent of ¢, as
n -, provided that K(¢,, ¢,,;) satisfies certain
conditions. Moreover, he has shown that p(¢) is
a unique solution of the system defined by

(@)= J 12 Ko, 9)p(€0)des (2.32)

[p@)do=1. 2. 33)

Thus, as can be seen by (2. 29), P,(¢) converges
uniformly to p(¢) and consequently f,({)—~f () as
n-o, where f (¢)=p(¢(¢))do/dt. This proves that
the distribution function f,(,) converges uniformly
to a function f (¢,) independent of # for any distribu-
tion P(€,, V;), provided only that the Frechet con-
ditions are satisfied. As has been already dis-
cussed, this convergence of f,(x)tof(x)asn—-x
for any distribution P(g;, V;) is equivalent to the
convergence of the continued fraction (2. 14) for
almost every member of the statistical ensemble,
which in turn means that all the eigensolutions

are localized for almost every member of the en-
semble (except, perhaps, of some of total mea-
sure zero). In the Appendix we prove that the
Frechet conditions are satisfied, as long as the
kernel K* is bounded, which is true when P(g;, V;)
is bounded. The proof given in the Appendix holds
for the case where the inequality | (E - €,)/2V,| <1
is satisfied for a non-negligible portion of the con-
figurations. A similar but not identical proof can
be given for the case where this inequality is vio-
lated for almost all configurations. The case dis-
cussed in the Appendix is clearly the most unfavor-
able one for localization since it corresponds to
small values of |E - €;| (limited degree of random-
ness) and large values of V; (well within the band).
The proof presented in the Appendix is a slight gen-
eralization of that given by Borland'® for a mathe-
matically similar problem. The generalization
consists in that we do not impose, as Borland does,
the condition that K(¢,.;, ¢,) is positive for all val-
ues of the arguments. It should be mentioned that
the same generalization can be used in the case
examined by Borland, and consequently, his result
is valid rigorously for every electronic energy and
not only for high enough energies as Borland
stated. 1

III. LATTICE VIBRATIONS

We shall consider in this section the longitudinal
motion of the atoms of a linear chain. We assume
that the mass of each atom is a random variable
characterized by a bounded distribution function
common for every atom. The spring constants
are assumed to be the same & for every pair of
nearest neighbors (isotopic disorder). No other
coupling beyond that is present. The equation for
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the displacement x; of the ith particle of mass m;
is given by
mxy==—k(x=%q)-R(X=%4y) . (3.1)

Assuming a time dependence of the form elet we

obtain
2k —m W) x =k (% +%1) - (3.2)

Comparing (3. 2) with (2. 5) one sees that they are
equivalent if one makes the substitutions

2%=E , (3.3a)
m,wi=¢€,, (3.3b)
k=V, (3.3c)
xXy=Cy . (3.3d)

Hence the whole theory of Sec. II can be repeated
for the case of phonons in isotopically disordered
1-D systems. As a consequence, the basic theorem
deduced in Sec. II is true in the present case: In
a 1-D isotopically disordered system, where the
masses are independent random variables pos-
sessing a common bounded distribution function,
all the eigenmodes are localized.

From Eq. (3.3b) we can see that larger values
of the eigenfrequency w correspond to a larger
spread of the random variable m; w? and conse-
quently to a larger degree of the randomness.
Since, in general, larger values of the degree of
randomness correspond to a higher degree of
localization—although not always in a monotonic
way—one expects that the localization length of
the eigenmodes would be small for high frequencies
and larger for smaller frequencies. This quali-
tative feature can be checked against the existing
numerical results!!*!#1"22 oy the average density
of states in the following way: As has been stated
already, the peaks in the density of states are due
to strongly localized states. '™!® On the other
hand, localized states with long localization length
or extended states lead to a rather smooth density
of states. Thus one expects the fine structure to
appear, if at all, at higher frequencies. This is
actually the case in the available numerical calcu-
lations. One should, however, exclude from con-
sideration those peaks which are the residual of
singularities occurring in the periodic case before
making the comparison.

IV. SECOND-NEAREST-NEIGHBOR INTERACTION

In this section we consider the electronic case—
the phonon case would be identical—when in the
Hamiltonian (2. 1) V;; is given by

V=V, ifi=j+1,
=V, ifi=j+2 4.1)

=0 otherwise .
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FIG. 4. Typical diagram contributing to the RPE of
the self-energy 4, in the presence of second-nearest-
neighbor interaction.

The RPE for Ay can be written as
Bg= 25 AV, (4.2)
Na1

where the Nth order term A{"’ is given by

84" =20 Von G Vayn, Gomt+ + - GRoe ™1V,

No.
4.3)

mng

The sum in (4. 3) is over all self-avoiding paths
starting from and terminating at zero. Every
step links a site ¢ with the nearest neighbors i +1
or the second-nearest neighbors ¢ +2. A typical
path is shown in Fig. 4. The number of terms in
(4. 3) is proportional to N for large N. In studying
the convergence properties of the RPE (4. 2) we
assume, as in the 3-D case, 2 that the iteration
procedure implicit in the RPE (4. 2) converges for
any nonzero degree of randomness, and conse-
quently the convergence of (4.2) is equivalent to
the convergence of the series (4.2). The problem
of the convergence of a series of the form in (4. 2)
and (4. 3) has been studied in detail in Ref. 24.
The result is?**%® that a function L (E) exists, such
that in the regions of the spectrum, where L(E)>1,
the series (4. 2) diverges for almost all values of

the random variables {e;} while in the regions where

L(E)<1 the series (4. 2) converges for almost all
values of the random variables {¢;}. The function
L (E) is given by

N _ ~0 -Onnn'l
L (E)_Z)Vo,,lG,,l (E) Vagny* *GRs""NAE) Vo

asN-o  (4.4)

where

még;...,n‘_l(E)=(lang:.-un‘_l(E)l) (4. 5)

and the symbol ( ) denotes average over the vari-
ables {G,}.

Thus the problem of finding if the eigenstates
are localized or extended reduces to determining
if L (F) is smaller or larger than unity. In the
3-D case®® with nearest-neighbor interaction there
is a single V which enters in the definition of L (E)
and which determines the bandwidth. In the pres-
ent case, however, L (E) depends mainly on the
quantity V, whereas the bandwidth depends on both

V,and V,. As a result of this, one can no longer
show, along the same lines used in the 3-D case,
that L (E) >1 within the band as the randomness
tends to zero. Consequently, one cannot decide
if extended states exist. On the other hand, we
were unable to show that L(E)<1 always, so that
the possibility of extended states remains open.

We conclude this section with some comments
regarding the specific case where the distribution
of €; is Lorentzian. Its importance lies in the
fact that, in this case, 2*'%°

G B)= |Gy (E +isE)T)], (4.6

where Gp;****"-1 is the n;, #; matrix element of the
Green’s function corresponding to Hamiltonian
(2.1) with €;=0, j #0, n,,...,n;; and €;=,
j=0,n,...,n;,; T isthe half-width of the Lorent-
zian distribution and S(E)=1 if ImE >0 and S(E)
= -1 if ImE <O0.

Using Eq. (4.6) one can show, in a similar way®
as in the 3-D case, that

L(E)<1 if F(E)L1, @.7)
where
F(E)=E,/|E +iT'| . (4. 8)

The E, is half the bandwidth for a symmetrical
band. Equation (4.7) can be used to provide outer
bounds for the region of extended states, if any,
but it does not imply the existence or nonexistence
of a region of extended states.

V. DISCUSSION

The proof of the localizability of all eigenstates
in 1-D disordered systems with nearest-neighbor
coupling presented in this paper attributes this
peculiar feature, which is absent in higher dimen-
sionality, to the unique property of 1-D lattices,
i.e., that there is only one self-avoiding path
linking nearest neighbors between two points in
the lattice. Indeed, as a consequence of the latter
property, the series in the RPE for 4; terminates
and the convergence properties of the RPE are
determined by the behavior of the resulting con-
tinued fraction.

This connection between the unique localization
properties and the unique topological behavior of
1-D systems is an extremely desirable feature of
the present analysis because it expresses in rig-
orous mathematical language the vague but reason-
able physical idea that all the eigenstates are lo-
calized in 1-D because of the existence of a unique
path of propagation from one point to another.
What we have shown here is that the existence of
a unique path connecting two points implies the
localization of all the eigenmodes. If one could
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show that second-nearest-neighbor interaction
allows extended states, then the condition of a
unique path connecting two points would be not only
sufficient for localization of all the eigenmodes
but also necessary.

In this case one could make the following gen-
eral statement which we present here as a conjec-
ture: The localizability of all eigensolutions is
a universal property of only those random systems
which are characterized by a unique path along
which the disturbance can propagate from one point
to another.

This conjecture contains as special cases the 1-D
lattice vibration problem with nearest-neighbor
coupling, and the 1-D Schrodinger problem (which
possesses the property of the uniqueness of the
propagation path due to the local nature of Schro-
dinger equation). On the other hand, in the sec-
ond-nearest-neighbor-coupling problem described
by the Hamiltonian (4. 1), extended states should
be present according to this conjecture. This
particular case can probably be checked numerical-
ly by calculating quantities depending on the local-
ization length, 10+26:27
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APPENDIX

Let
/2

Koo, 0n)= [ 1) Knt (B0, Dnet) K (@ ey, D) dD gy
(A1)

with
K\(¢, ") =K(®,¢") . (A2)

The quantity K, is related to the probability dis-
tribution P,(¢,) by

Pyd)= [ 2K (0 $) Po(Bo)do (43)
where Py(¢g)=0(po~— @). Thus
Pn(¢n)= Kn(ay ¢n)' (A4)

Let d,(@) be the total width over which the function
K,(a, ¢,) is different from zero, i.e.,

7/2

dy(@)= [, TE(@, 6,))dd,,

where

(A5)

T(Kn(ay ¢n))= 1 if K (@, ¢,)#0
=0 if Ky(2, ¢,)=0.

By a proper choice of the center of the semi-
circle on which the angles ¢, are measured and
using the fact that there are €; V; satisfying
|IE - €;| <2V,, it is always possible to find a con-
stant 6; # 0 such that the probability distribution
fn(6,) of the quantity

an'=‘¢m1 - ¢n (AG)
satisfies the relation
fn(00)¢0y n=1,2, 3, e . (A7)

As was explained in the text, 6, is related to
the choice of the center of the semicircle [see Eq.
(2.22)]. Since, in general, f,(6,) has a nonvanishing
width around the value 6,, it follows that the width
d, of the distribution function K, is an increasing
function of #» and that for large enoughn, K,(a, ¢,)
will be different from zero everywhere in — am
< Pp<am

Frechet™ has shown that the iterated kernel
K,(a, ¢,) converges uniformly to a function inde-
pendent of @ as n -« if the following four condi-
tions are satisfied'®:

tlo

() [UiK(a tydt=1.

) (48)

(ii) There is no eigenvalue of K of modulus 1
other than unity.

(iii) There is a unique solution of the system of
equations

P@)= 1" K(t, ¢)P(t)dt, (A9)

/2
L e P@)d9=1. (A10)

(iv) The kernel is bounded.

Condition (iv) is satisfied if the distribution
function P(€;, V;) is bounded and approaches zero
fast enough as €;~ « [see discussion after Eq.
(2.26)]. Condition (i) is automatically satisfied
since K(a, t) is a probability distribution for the
quantity £, To show that conditions (ii) and (iii)
are satisfied, we use a slight generalization of
Borland’s method. ® Consider the associated
homogeneous equations

JIK@, 0)P@)dt=2P($), (A11)

(EK(®, )y (t)dt=vy($) .

(A12)
It is well known that for bounded kernels these
equations have the same eigenvalues and the same
number of linearly independent solutions corre-
sponding to each eigenvalue. The function y (£)
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=const is a solution of Eq. (Al2) corresponding

to the eigenvalue ¥=1. We shall now show that
there are no other solutions corresponding to ei-
genvalues of modulus unity. Let y(¢)be a solution of
Eq. (Al12) and ¢, be such that |y (¢,)| is max-
imum. Then one can easily prove using Eq. (A12)
that

7 |y @m) |2 1Y | mae » (A13)

where 1y | . is the maximum value of ly(¢)! in
the region of ¢ where K(¢,,, ®) is different from
zero. This region has been denoted by d,(¢,,)

previously [Eqs. (A2) and (A5)]. The equality in

E. N. ECONOMOU AND M. H. COHEN 4

(A13) holds only if y(¢) is constant in d,(¢,). Thus,
vl <1 except if y (¢) is constant in d,(¢,) and such
that |y (@)l =y (¢n)l, ¢ Ed,($,). In this last case
one can repeat the argument taking as ¢, any point
in d,(¢,,). Then, it follows, using in addition the
continuity of d,(¢,,) that [v| <1 unless y(¢) is con-
stant in d,(¢,,) and such that |y (¢)I= 1y (dn)],
¢E€d,(9,,). Repeating the argument again and again
we conclude that |y¥| <1, unless y(¢) is constant in
every d;(¢,) (=1,2,3,...). But we have shown
that for large enough j,d;(¢,,) coincides with the
whole region [~ 37, 37]. Thus |v| <1 unless y ($)
is constant everywhere.

*Work was completed when one of the authors (E.N.E.)
was at the University of Virginia.
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The imaginary part of the transverse dielectric tensor has been calculated for sodium using
a two-band model and including both phonons and the interactions between conduction electrons

in the random-phase approximation.

It is found that the resulting expression reduces to the

Hopfield dielectric constant for the case of an electron gas in a perturbing crystal potential.
Reasonable agreement with N, V. Smith’s data has been found in the range of photon energies
0.5-3.0 eV. However, at higher energies the agreement is not as good, since many-body

effects become more important in this region.

I. INTRODUCTION

In recent years it has become possible to mea-

sure the optical absorption of the alkali metals over
a fairly large range of photon energies. Mayer and
co-workers!™® performed a series of careful ab-



