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Some Critical Properties of the Nearest-Neighbor, Classical
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Temperatures Greater than Tc
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Using renormalization techniques on the Englert linked-cluster expansion, we have derived
high-temperature series for the spin-spin correlation function of the spin-infinity Heisenberg
model in finite field. Analysis of our tenth-order zero-field series, which are two terms
longer than previous spin-infinity series, favors values of the critical indices y, v, and —n
higher than previous spin-infinity work but in closer agreement with spin~ results. We find
y=1.405+0.020, v=0. 717+0.007, and n=-0. 14+0.06. Our finite-field series to eighth
order in the interaction and second order in the field allow us to determine the gap index 4
for the spin-infinity Heisenberg system; we assert 24=3. 54+0. 03. Our results are compared
with experiment and with the predictions of scaling theory.

I. INTRODUCTION

Much of our theoretical knowledge of the nature
of the critical point derives from the investigation
of certain idealized models such as the Ising model
and the Heisenberg model. ' These models are
normally characterized by spins at all sites of a
lattice, interacting through a Hamiltonian

X = ——,' Z [J„(r,&)S,(r, )S,(r&) + J,( r&) S(r', ) S(r&)

+J,(r„) S(r, ) S(r&)] —mH ~~ S,(r;), (1.1)

S (r, ) being the spin operator at the ith lattice site,
J,(r„) the interaction between S,(r, ) and S,(r, ), and
8 an external field applied in the z direction. The
familiar models are special cases of this Hamil-
tonian; that is, in the Ising model only one of the
three Z„(r), J,(r), or J,(r) is nonzero, while in the
Heisenberg model the coupling is isotropic, J„(r)
=J,(r) = J,(r).

On three-dimensional lattices, these models are
believed to have a second-order phase transition.
Unfortunately, there exists no exact solution for
any of these three-dimensional models. Thus,
after Domb and others, we use the only nonexact
approach whose results agree well with the exact
solution of the spin- —, Ising model in two dimensions:
exact enumeration series. '

The method used in obtaining our high-tempera-
ture series is an extension of the procedure pre-
viously used on the three-dimensional Ising model.
That is, we used the Englert4 linked-cluster ex-
pansion completely renormalized in the sense of
DeDominicis. ' The computer program used was a
straightforward adaptation of an earlier program
which correctly produces Ising-model series. The

only modification of the earlier program was the
minor one of decorating, within the program, each
line of a diagram with all three Cartesian indices.
This prescription turned out to be very inefficient,
as it required the lattice count for each decoration
of a diagram, thus making series longer than tenth
order in PJ prohibitive. Even so, this prescription
was used because the routine nature of the modifica-
tion lessened the possibility of error. We are con-
fident of the correctness of our series because our
series are produced by slightly modifying a working
program, because our zero-field susceptibility
series agrees with existing nine-term series, and
because all consistency checks reveal no difficulties.
Using this method for the classical (spin-infinity)
Heisenberg model on the fcc lattice, with nearest-
neighbor interaction J, we derived series for the
spin- spin correlation function,

I'(r, T, H) = (S,(0)S,(r)) —(S,(0))(S,(r)), (1.2)

as a double power series in v= PJ and h= PmH, that
is,

where all the coefficients Q„o(r) have been derived
for n —10 and the coefficients Q„2(r) have been
derived for n —8.

In this paper we will attempt to determine the
Curie temperature T~ and the conventially defined'
critical indices v, y, g, n, and 2A for this system.
That is, we will investigate the leading singularity
of the following physical quantities:
the zero-field susceptibility

r=Z 1"(r, v, h=0)ceo ", &-=1 ——=1-—;
r T vc
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the zero-field specific heat

C= —— JB, F r), v, h = 0)
B

the zero-field spherical moments

(l. 5)

g„=Z ~r~" r(r, v, @=a)~&" "; (1.5)

and the second-field derivative of the spherical mo-
ments which determines the gap index,
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The series po-=y, p2, C, po ~, and p2 ~ are pres-
ented in Table I so that the reader might easily
check our more important assertions; however, we
caution him that we feel that the results of certain
methods of analysis can be misleading for this
system, especially for the large positive moments
like p~. In the following paper, hereafter referred
to as II, we present our series for I"(r, v, h) from
which all series presented and analyzed in this
paper may be derived; and we attempt to determine
the critical form of the zero-field spin-spin cor-
relation function.

The use of high-temperature series in investigat-
ing these models has proven quite convincing and
successful for the Ising model'2 ";unfortunately,
it has proven less so for the Heisenberg model.
In part, this is because the derivation of series for
the Heisenberg model is more tedious, which re-
stricts the length and number of available series.
More importantly, the Heisenberg series are less
well behaved; hence the extrapolation procedures
are less effective and less convincing.

Early work on the classical Heisenberg model,
which was based on a six-term susceptibility
series, indicated" y-1. 33; later, eight-term
series indicated the higher value 1.375+0.002.~'
The analysis of Baker et a/. "indicates y = 1.43
~0.01 for the spin--,' Heisenberg model in strong
disagreement with the universality hypothesis, which
opts for spin independence of the critical indices.
The considerable differences between these values
and the desire for information about more of the
critical properties prompted the derivation and
analysis of our longer series; these series indicate
y = 1.405 + 0.020, again higher than previous re-
sults.

In later sections of this paper we consider the
following matters. First, we discuss our methods
of analysis' ' which are based primarily on the
familiar ratio methods with certain modifications.
In many cases, these modifications allow us to form
sequences, for one physical quantity, which do not
depend on assumed values of any other physical
quantity, for exunple a sequence for v which does
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II. METHODS OF ANALYSIS

If a series

a„v"
n=0

has as its leading singularity

then

so that

p„=—1+ ~ —1+f( i)
vc

where f(n)-0, n- ~. '6 From this, we can derive
two sequences which have Tc =1/vc as their limit:

v 1
np„—(n —1)p„&= —[1 +f(n) —f(n —1)j——

ve vc

np„1 f(n) 1
1+ n —~ . (2. 2)n+y —1 vc n+y —1 vc

Note that in both cases the remainder goes to zero
more rapidly than 1/n. We can also form a se-
quence the limit of which is y:

nvc p„—n+1=y+f(n)-y, n-~ . (2. 3)

We can form other sequences for Tc and y using
the log-derivative series

d lny"=Z (da)„v",
dv

not depend on a value of Tc. We feel that it was
just this sort of interdependence of physical quan-
tities which allowed previous analysis to indicate
y = 18 with such apparent precision. ' Secondly,
we present Tc analysis of our zero-field spherical-
moment series using methods of analysis which do
not depend upon assumed values of y and v. This
analysis favors Tc = 3. 1753+0.0020 as opposed to
3. 18016+0.00007. ' We also observe trends in the
sequences for the different moments and attempt
to ascertain the effect of these trends on the later
sequences for the indices. Thirdly, we present
analysis for the critical indices v and 2v —y using
the method of "Tc renormalization" ' ' for which
the analysis does not depend on our value for Tc.
Lastly, we present analysis for the indices v, y,
n, and 2~ using our value for Tc. The results of
this analysis for the indices, as well as the results
of earlier series works' ' 3' ' ' and experiment,
are shown in Table II.
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which has

1 v=Zy—
I-v/vc „0 vc

as its leading singularity. Therefore, the terms
of the exact series (da)„have as their limit y/vJ
and thus (da)„= [y+g(n)]/vc, where g(n)- 0 as
n- ~. The ratio of consecutive terms forms a se-
quence for Tc,

(da)„v y+g(n)
(da)n ~ vc y+g(n. -I)

1 1 1
= —1+ —[g(n) -g(n —1)] ——,

vc VC

00 (2. 4)

and vc(da)„ is a sequence which has y as its limit,

vc(da)„= y+g(n)- y, n- ~ . (2. 6)

Of course we have only a finite number of terms
in these sequences, and we must use some extrap-
olation technique to find their limit. We use the
most common such method, the Neville table, '
which assumes that the remainders are analytic
functions of I/n. As an example, consider the se-
quence (2. 3). The Neville table assumes that the
sequence is of the form

~c ~c c
I =np v n+1 =-y+ ~+ ~+++ ~

n n C n n2 n
(2. 6)

The Neville table is the two-dimensional array

I„'—= [nl„' ' —(n —1)l„' |]/i, i &0 (2. 'I)

where, if the remainder is of the form (2. 6), then

c', c'i+1 + 5+2 +. . .
n &+1 (+2 (2. 6)

Of course the Neville table is an approximation
which assumes that the remainder is analytic in
I/n. If one has a nonanalytic remainder, the
Neville table will not extrapolate the sequence cor-
rectly. To give an idea of the sort of error that is
made, Table III shows a Neville table of the se-
quence l„= I+I/vn Note that the .I„' decrease mono-
tonically as a function of n and i towards 1 but that
the true limit is not apparent from the table. It
will be seen in later sections that some of our
Neville-table extrapolations behave in this fashion.

where the c' depend on c and all c~ for j( i and
n( m. Thus l„' is the linear extrapolant, l„ the
quadratic, and so forth. Note that in the sequences
(2. 1), (2. 2), and (2. 4) for Tc the remainder goes
to zero more rapidly than I/n, so that if the re-
mainder is analytic, it has the form

0 0 0+++ ~+ ~ ~ ~

n n n

p, =Z p„(n)v" ~e "*"
n=0

p, =Z p, (n)v" ~e "-'" .
n=0

TABLE III. This Neville table of the sequence L&

=1+1/vn exhibits the slow monotonic convergence char-
acteristic of some later extrapolations.

L,„

6
7
8
9

10

1.4082
1.3780
1.3536
1.3333
l.3162

1.1963
1.1827
l. 1716
l. 1623

1.1419
1.1327
1.1251

1.1143
1.1073 1.0969

Another characteristic behavior we will observe in

our extrapolations is a lack of smoothness which

may be due to singularities at complex values of V.

Note that of the sequences for Tc only one, (2. 2),
is not self-contained; that is, the sequence (2. 2)
depends on a value of y. If one chooses y a bit
small, the terms of the sequence will be too large,
and the leading term in the remainder will go as
I/n and will be poorly approximated by a Neville
table, which assumes the leading term goes as
I/n . Thus, for an irregular sequence like (2. 2)
for the susceptibility series, the choice of an incor-
rect y may cause the Neville table to indicate an
incorrect value of Tc. We believe that the differ-
ence between our results and those of Bowers and
Woolf' may be due to this sort of effect. Their
methods for Tc were affected because they chose
y a bit low (1-, ); and the value of Tc thus arrived
at indicated, not suprisingly, y=18 when it was
used in determining a value of y. To support this
assertion we present in Table IV the Neville table
of sequence (2. 2) for our ten-term susceptibility
series, with y taken to be 1-,' . The first eight rows
of this table are replicas of Table XII of Bowers
and Woolf, which they felt indicated Tc = 3. 180
+0.001. ' However, we note that the ninth and tenth
terms in the second column begin to decrease, and
that even the maximum is below the allowed values
quoted by Bowers and Woolf. Thus, this table in-
dicates a lower value of Tc which would, in turn,
indicate a higher value of y, and so forth.

Aware of these difficulties, we determine our
value of Tc relying solely on sequences (2. 1) and

(2. 4). We also have a method, Tc renormaliza-
tion, ""of deriving fairly regular sequences for
the indices v and 2v —y that are independent of Tc.
As an example of this method, let us consider the
two moment series
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3.20—

3.15—

I'0

P-5

TABLE IV. This is an extension, using our ninth and
tenth terms of X, of Table XII of Bowers and Woolf,
which shows a Neville table of the sequence np„/(n +y —1)
for Tc with y taken to be 18. Note that the s cond col-
umn begins to decrease in tenth order and has not reached
the value quoted by Bowers and Woolf, 3.180+0.001,
while the third column decreases monotonically from the
seventh-order term.

3.05—

%pi
1
2
3
4
5
6
7
8
9

10

2.909 09
3.087 72
3.13535
3.153 92
3.162 71
3.167 68
3.170 79
3.172 81
3.174 16
3.175 09

3.172 48
3.175 89
3.177 63
3.178 56
3.178 87
3.178 89
3.178 81

3.178 16
3.17938
3.17980
3.17938
3.178 92
3.178 64

3.00
I

Q7

I I I I I I

J.J. l, J. I J.
1098 7 6 5

FIG. 1. 1/n plot of sequence (2. 1) for the moment
series.

It is not hard to show that the series

has (1 —Z) ' *"~"as its leading singularity. There-
fore this series has Zc =1, and sequences (2. 3) and
(2. 5) can be used to determine v.

III. DETERMINATION OF Tc

We base our determination of T~ on sequences
(2. 1) and (2. 4) for the zero-field spherical moments

I I I I I

3~22

+21

3Q20
C

O
I—

3.19—

3.18—

3.17—

I I I I I I I

I J J 1. l. L J10987 6 5

FIG. 2. 1/n plot of sequence (2. 4) for some moment
series; the moments not included here behave similarly.

p.„ for n from -1 to +2 in increments of —,'. Neville
tables of these sequences are shown in Table V.
As can be seen, these extrapolations are not
smooth; however, we feel we can say with some
confidence that Tc = 3. 1753+0.0020 especially from
sequence (2. 4) for the susceptibility and the positive
moments. Moreover, none of the other extrapola-
tions appears inconsistent with this value.

This is an appropriate place to discuss some
trends in the behavior of the remainders which will
affect later extrapolations. Shown in Fig. 1 (2) are
plots of the sequence (2. 1) [(2.4)] for the moments
in question vs 1/n. Figure 1 and the corresponding
extrapolations show significantly different behavior
of the sequence (2. 1) for the different moment
series. The remainders of this sequence are large
and depend strongly on 1/n, especially for the large
positive moments. Also, the extrapolations for
these positive moments appear to have both a cer-
tain lack of smoothness and the sort of behavior
encountered in Table III, associated with a non-
analytic remainder. At the same time, from Fig.
2 and the corresponding extrapolations, the re-
mainders g(n) -g(n —1) for the different moments
behave very much alike and are neither so large
nor so strongly 1/n dependent as the f(n) -f(n —1);
however, these sequences are less smooth than
sequences (2. 1). These trends will be of interest
in further sections because the behavior of the
Neville-table extrapolation of g(n) -g(n —1)
[f(n) —f(n —1)]will be very similar to that of g(n)
[f(n)]. Thus we will observe the same lack of
smoothness in g(n) as well as the same "nonanalytic"
behavior in f(n).

IV. DETERMINATION OF v USING T~ RENORMALIZATION

Shown in Table VI are Neville tables of sequences
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Sequence {2.4)

1 2

Sequence (2.1)

5 3. 1081
6 3 ~ 1315 3.1784
7 3.1445 3 ~ 1768 3.1747
8 3.1512 3.1713 3.1620
9 3. 1553 3.1700 3.1677

10 3. 1584 3.1708 3.1730

3 ~ 1519
3.1657
3.1714
3.1724
3.1724
3.1726

3.1933
3 ~ 1855
3.1753
3.1725
3.1733

3.1752
3.1582
3.1669
3.1751

TABLE V. Analysis of the zero-field moment series
p,„for Tz using Neville tables of the last six terms of
sequences (2.4) and (2. 1). Because of the irregularity
of these series, we will normally present only the first
three columns of the Neville table except when later col-
umns are indicative of important trends.

that the limit of all sequences is v and not
1+ (n —m)v.

As was expected from the behavior of the tables
of Sec. III, the extrapolation of sequence (2. 3) de-
pends strongly on the moment in question. These
tables for the large positive moments show the
overshoot and slow monotonic convergence charac-
teristic of the corresponding tables of Sec. III.
Thus, the entries in the last column of the tables
will be belo~ the limit of the sequence, which ten-
dency will increase as the label of the moment in-
creases. At the same time, the tables of sequence
(2. 5) are somewhat less smooth, but they do not
exhibit such pronounced trends and appear to be

5 3.1894
6 3.1885 3.1870
7 3. 1872 3.1837 3.1793
8 3.1851 3.1787 3.1707
9 3. 1832 3.1767 3.1723

10 3 ' 1818 3.1760 3 ' 1753

&0

3.1906
3.1892
3.1873
3.1849
3.1828
3.1814

3.1863
3.1827
3.1775
3.1756
3.1756

3.1780
3.1688
3.1718
3.1755

TABLE VI. Analysis for v from the ratio series
g» ~ 0 [»»„(i)/»»e(i) LZ». Presented are Neville tables of se-
cyxences (2.3) and (2. 5) for the ratio series (g, m) shown
in tbe table.

5 3. 1925
6 3.1877 3.1779
7 3.1853 3. 1792 3.1809
8 3.1831 3.1768 3.1726
9 3.1814 3.1755 3.1730

10 3.1803 3. 1755 3.1756

3.2011
3.1944
3.1906
3.1877
3.1855
3.1838

3.1810
3.1811
3.1790
3.1776
3.1772

3.1812
3.1755
3.1750
3.1761

5 3.2654
6 3.2278 3.1523
7 3.2090 3.1620 3.1749
8 3.1984 3.1667 3.1743
9 3.1919 3.1690 3.1733

10 3 ' 1877 3. 1707 3.1747

3.1775
3.1791
3.1801
3.1805
3 ~ 1804
3.1801

3 ' 1822
3.1828
3.1815
3. 1800
3.1791

3.1835
3.1793 3.1752
3.1771 3.1744
3.1770 3.1767

5 3.2509
6 3.2124 3.1355
7 3 ~ 1967 3 ~ 1576 3.1876
8 3.1895 3.1677 3.1843
9 3. 1854 3.1713 3.1787

10 3.1829 3. 1730 3.1770

PI. 5

3.1148
3.1412
3.1551
3.1629
3.1675
3.1704

3.2134
3.1896
3.1863
3.1837
3.1819

3.1579
3.1808
3.1783
3.1777

3.2040
3.1755
3 ~ 1767

5 3.2196
6 3.1957 3.1479
7 3.1883 3.1699 3.1991
8 3.1852 3.1759 3 ' 1860
9 3. 1832 3 ~ 1760 3.1763

10 3.1817 3.1755 3.1743

3.0079
3.0788
3.1143
3.1344
3.1466
3.1545

3.2207
3.2032
3.1945
3.1893
3.1860

3.1798
3.1801
3.1789
3.1782

3.1804
3. 1773
3.1773

5 3.2112
6 3.1949 3.1624
7 3.1889 3.1738 3.1853
8 3. 1857 3.1762 3.1800
9 3.1834 3.1754 3.1738

10 3.1817 3.1750 3.1742

2. 8508
2.9891
3.0565
3.0942
3.1172
3.1321

3.2656
3.2252
3.2073
3.1976
3. 1918

3.1713
3 ' 1773
3.1783
3.1783

3. 1833
3. 1794
3. 1783

(2. 3) and (2. 5) for the ratio series

5 0.6164
6 0.6435
7 0.6589
8 0.6693
9 0.6771

10 0.6831

5 0. 5739
6 0.6010
7 0.6190
8 0.6323
9 0.6427

10 0.6509

5 0.5854
6 0.6080
7 0.6235
8 0.6350
9 0.6440

10 0.6512

5 0.6299
6 0.6466
7 0.6573
8 0.6651
9 0.6711

10 0.6758

5 0.6566
6 0.6673
7 0 ~ 6741
8 0.6792
9 0.6833

10 0.6866

0.7792
0.7514
0.7422
0.7395
0.7371

0.6818
0.7146
0.7301
0.7274

0.7363
0.7275
0 ~ 7254
0.7253
0.7250

0.7055
0.7191
0.7250
0.7238

0.7209
0.7166
0.7157
0.7159
0.7161

0.7058
0.7130
0.7168
0.7170

0.7301
0.7218
0.7194
0.7190
0.7187

0.V012
0.7119
0.7175
0.7175

0.V207
0.7146
0.7148
0.7163
0.V169

0.6993
Q. V154
0.7217
0.7193

Sequence (2.5)

1 2

(o, -1)
0.6823
0.6852
0.6867
0.6881
0.6895
0.6909

0.6744
0.6775
0.6795
0.6813
0.6831
0.6847

($, o)

0.6931
0.6911
0.6900
0.6896
0.6896
0.6900

(1, 0)

0.7240
0.7156
0.7103
Q. V069
0.7047
0.7032

($, 0)

0.7556
0.7404
0.7308
0.7243
0.7197
0.7165

(2, o)

0.7000
0.6955
0.6976
0.7009
0.V033

0.6844
0.7039
0.7123
0.V130

0.6933
0.6916
0.6940
0.6970
0.6993

0.6874
0.7011
0.7075
0.7087

0.6807
0.6834
0.6869
0.6902
0.6928

0.6899
0.6974
Q. V018
0.7035

0.6734
0 ~ 6786
0.6832
0.6870
0.6901

0.6915
0.6969
0.7006
0.7023

0.6644
0.6727
0.6788
0.6835
0.6871

0.6935
0.6971
0.7000
0.7016

Sequence (2.3)

1 2

Q. 7364
0.7290
0.7146

0.7241
0. 7204
0.7114

0.7098
Q. 7105
0.7075

0.7060
0.7078
0.7063

0.7031
0.7058
O. V052

Z»». (i)
»=o )»m(i)

(n, m) = (0, —I), (0, ——,
'

), (-, , 0), (1, 0), (1-,', 0),
(2, 0). Note that the sequences are normalized so

5 0.6669
6 0.6752
7 0.6805
8 0.6848
9 0.6884

10 0.6914

0.7167
0.7123
0.7151
0.7176
0.7177

0.7015
0.7235
0.7261
0.7185

0.7885
0.7660
0.7517
0.7419
0.7350
0.7299

0.6536
0.6657
0.6737
0.6795
0.6838

0.6959
0.6978
0.6999
0.V012

0.7008
0.7042
0.7042
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TABLE VII. Analysis for 2v-y using Neville tables of sequences (2.3) and (2. 5) for the two ratio series shown.

Sequence (2. 5) Sequence (2.3)

p(n)

5
6
7
8
9

10

—0.0088
-0.0010

0.0040
0.0075
0.0102
0.0123

0.0377
0.0339
0.0324
0.0316
0.0311

0.0244
0.0279
0.0287
0.0291

0.0235
0.0302
0.0299

—0.0040
0.0015
0. 0054
0.0084
0.0107
0.0125

0.0232
0.0250
0.0261
0.0267
0.0272

0. 0295
0.0294
0.0290
0.0290

0.0293
0.0280
0.0292

6
7
8
9

10

0.0754
0.0703
0.0656
0.0616
0.0583
0.0556

0.0444
0.0378
0.0338
0.0318
0.0307

0.0211
0.0220
0.0248
0.0262

0.0235
0.0303
0.0297

0.0763
0.0716
0.0673
0.0635
0.0602
0.0575

0.0527
0.0456
0.0407
0.0376
0.0355

0.0277
0.0260
0.0267
0.0271

0.0243
0.0275
0.0278

more rapidly convergent. Thus, as before, we
tend to have more confidence in the log-derivative
sequences.

We feel that value v =0.717+0.007 is consistent
with these tables, which, we reiterate, are self-
contained, being independent of an assumed value
of Tc.

V. DETERMINATION OF 2s -y USING Tc
RENORMALIZ ATION

It has been observed in experiment and Ising-
model calculations ' that y is only slightly smaller
than 2v for three-dimensional systems. ~4 We in-
vestigate the difference 2v —y by forming, from
the series p„jp„z and po, the ratio series

Z "" (i) po(i) z',
]=p 9 ~a

which has (1 —Z) ' ~"~ as its leading singularity.
Shown in Table VII are Neville tables of sequences

(2. 3) and (2. 5) for two of these ratio series. The
sequences are normalized so their limit is 2v —y.
Other such ratio series were investigated; and,
although they were not inconsistent with those pre-
sented, their sequences were less well behaved.
We feel the analysis presented indicates 2v —y
=0.029+0. 006 which, with the result of Sec. IV,
implies y=1. 405+0. 020. Also, using the scaling
law y = (2 —q)v,

' we find q = 0. 040+ 0. 008.

VI. ANOTHER DETERMINATION OF v AND y

In this section, we attempt to determine the in-
dices y and v from the same moment series con-

sidered in Secs. III and IV, using Tc =3. 1V53
+ 0.0020 as determined in Sec. III. Neville tables
of the sequences (2. 3) and (2. 5), with Tc = 3. 1753,
for these moments as well as our readings of these
extrapolations are shown in Table VIII. These ex-
trapolations behave as discussed previously, caus-
ing the seqeunce (2. 3) for the large positive mo-
ments to appear to indicate lower values than se-
quence (2. 5).

The values thus obtained are consistent with each
other and with the results of Secs. IV and V. A

plot of y+ nv -0.717n vs n, which is shown in Fig.
3, indicates v =0.717+0.002 and y=1.406+0. 004.
These uncertainties are due only to the uncertainty
in reading the above extrapolations, which assume
Tc = 3. 1753. When proper account is taken of the
uncertainty in Tc, it is found that y= 1.406 + 0. 020
and v =0.717+0.007, which agree with the results
of the Tc renormalization method.

VII. DETERMINATION OF Of USING Tc = 3.1751 + 0.0020

Specific-heat series are notoriously hard to ana-
lyze"' '; the series for this model is no exception.
Sequences (2. 3) and (2. 5) for the specific-heat
series using Tc= 3. 1753 are listed in Table IX and
are shown in Fig. 4 plotted vs 1/n. We do not
present Neville tables for these sequences because
they are so badly behaved; from Fig. 4, we feel
safe in estimating n= —0. 14+0.06, the rather large
uncertainties being dictated by the irregularity of
the sequences. If we use the Josephson inequality
dv —2 —n, 26 we can limit the uncertainty, —n ~ d v
—2 —0. 166. Therefore, given the inequality, we
have n = —0. 14-o.o3 ~

+O. OB
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TAB? E VI@. Analysis of the zero-field moments p„ for y+nv. Shown are Nevij. le tables of sequences (2.3) and (2. 5)
for the moments with Tc=3.1753. Also shown are our readings of the extrapolations of p„ for ~+~p.

Sequence (2.5) Sequence (2.3)

5
6
7
8
9

10

0.7825
0.7717
0.7642
0.7584
0.7536
0.7496

0.7177
0.7192
0.7177
0.7154
0.7135

0.7229
0.7131
0.7074
0.7059

p,„i, y —v=0. 695+0.010

0.7108
0.7078
0.7066
0.7056
0.7047
0.7038

0.6927
0.6991
0.6990
0.6973
0.6960

0.7151
0.6990
0.6910
0.6908

p f/2 y —2v = l.050 +0.005

5
6
7
8
9

10

5
6
7
8
9

10

l.0123
1.0166
1.0203
l.0235
1.0260
1.0281

l. 3702
1.3755
1.3798
1.3832
1.3859
1.3880

1.0376
1.0430
l. 0453
l.0463
l. 0469

1.4021
1.4056
1.4070
1.4072
1.4074

1.0566
1.0523
1.0495
l. 0495

l.4144
l.4110
l.4079
1.4082

p, o, y=1.406+0.003

l. 0154
l. 0198
1.0235
l. 0265
1.0289
1.0308

1.3536
1.3596
1.3645
1.3683
1.3715
1.3742

1.0416
l. 0462
1.0476
l.0478
1.0479

1.3897
1.3933
1.3956
1.3971
1.3983

1.0578
1.0517
1.0484
1.0486

1.4023
1.4025
1.4022
1.4030

pf/2 ~ y+yp = 1.764+0. 005

5
6
7
8
9

10

1.6523
1.6795
I.6973
l. 7097
l.7186
l.7253

1.8159
l. 8042
l.7961
l.7900
1.7853

1.7749
l.7719
1.7683
1.7670

1.7670
1.7610
1.7639

1.7247
1.7259
1.7274
1.7290
1.7306
l.7321

1.7318
1.7364
1.7403
1.7433
1.7456

l. 7481
1.7519
1.7536
1.7551

l.7582
l. 7570
l.7587

p, i, y+ p = 2. 125 + 0.005

5
6
7
8
9

10

2. 0298
2. 0536
2. 0674
2.0766
2. 0832
2. 0882

2. 1721
2. 1505
2. 1409
2. 1359
2. 1331

2.0965
2. 1123
2. 1184
2. 1217

2. 1387
2. 1306
2. 1293

2. 1288
2. 1181
2. 1117
2. 1078
2. 1053
2. 1037

2. 0644
2. 0734
2. 0803
2. 0855
2. 0897

2. 0958
2. 1010
2. 1039
2. 1062

2. 1096
2. 1098
2. 1115

p, 3/2, y + gv = 2.485 + 0.005

5
6
7
8
9

10

2. 3994
2.4148
2.4247
2. 4323
2. 4383
2.4432

2.4919
2.4840
2.4852
2.4865
2.4869

2.4645
2.4889
2. 4908
2.4886

2. 5294
2.4945
2. 4837

2. 5672
2. 5369
2. 5176
2. 5048
2. 4957
2. 4891

2. 3849
2.4024
2. 4145
2. 4232
2.4300

2.4462
2.4507
2. 4541
2.4568

2. 4583
2. 4608
2. 4632

p2, y+ 2v = 2. 840 + 0.010

6
7
8
9

10

2. 7459
2. 7629
2.7746
2. 7837
2.7908
2. 7964

2. 8475
2. 8453
2. 8472
2. 8475
2. 8471

2. 8399
2. 8528
2. 8487
2. 8457

2. 8742
2. 8467
2. 8385

3.0421
2. 9834
2.9460
2. 9205
2. 9022
2.8886

2. 6901
2. 7215
2.7417
2. 7557
2. 7660

2. 8001
2. 8020
2. 8047
2. 8075

2. 8051
2. 8103
2. 8139
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Seqnence (2. 5) Sequence (2.3)

TABLE X. Analysis of the series p„,&/p„ for 2 6,.
Sbown is the sequence (2.5) and the Neville table of
sequence (2.3).

gg l I I

—.5 0
I I I I

,5 I I 5 2
h ~

FIG. 3. Plot of (y+nv) —0.717n vs n.

3.515
3.498
3.504
3.522
3.530
3.530

3.625
3.598
3.580
3.569
3.560
3.555

3.515
3.510
3.511
3.514
3.516

3.504
3.512
3.520
3.524

VIII. DETERMINATION OF 2b USING T~ = 3.1753+0.0020

In analyzing the series po, ,/po, &~a/P, ~, and

pa a/pa for 2n, we found the sequence (2. 5) was,
apparently, rapidly convergent but very irregular,
while sequence (2. 3) seemed more slowly conver-
gent but less irregular. Therefore, presented in
Table X is sequence (2. 5) and the Neville table of
sequence (2. 3). We feel these sequences indicate
2~=3. 54+0. 02; when proper account is taken of
the uncertainty in T~, one finds 2b, =3.54~0. 03.

IX. CONCLUSIONS

3.668
3.623
3.552
3.524
3.524
3.531

3.470
3.490
3.511
3.508
3.523
3.530

3.391
3.445
3.473
3.488
3.498
3.505

3.640
3.605
3.584
3.571
3.562
3.555

3.552
3.555
3.552
3.548
3.545

3.535
3 ~ 522
3.517
3.517
3.518

3.559
3.545
3.539
3.538

3.510
3.509
3.516
3.522

3.510
3.522
3.530

As a result of the analysis of Secs. III-VIII, we

assert that the critical indices have the values
v = 0. V1V + 0.OOV, y = 1.405 + 0.020, g = 0.040 + 0.008,
n = —0. 14+ 0.06, 2b, = 3. 54 + 0.03 for the high-tem-
perature nearest-neighbor classical Heisenberg
model on the fcc lattice. We realize that, given
some previous work, several of these assertions
are rather controversial; but we feel that our re-
sults are reliable and that our work has the follow-
ing advantages: (i) Our series are two terms longer
than any of the previous series. (ii) We analyzed
more series for Tc, v, and y, and we presented
more analysis than would normally be necessary.
We have presented analysis only for the fcc lattice
because the series for the other lattices appear to
be less well behaved and because there is little
doubt that the indices are lattice independent. 27

(iii) We rely heavily on methods of analysis which

are self-contained, making the assignment of un-
certainties more transparent. (iv) We assign gen-
erous uncertainties to compensate for the natural
tendency to have too much confidence in one's anal-
ysis. (v) We were careful that the different analy-
sis methods were consistent; and, where apparent
inconsistency was unavoidable, we feel we have
offered a plausible explanation.

How do our results agree with the predictions of
scaling theory '? Widom-Kadanoff scaling theory
predicts relations between the indices which deter-
mine all but two of them. ' These relations are ex-
actly obeyed for the two-dimensional Ising model';
but in three dimensions there exists convincing
evidence that some of the relations are invalid for

TABLE IX. Analysis for 0. using the specific-heat
series. Shown are sequences (2. 3) and (2.5) for the first
derivative with respect to v of the specific-heat series
with Tc= 3.1753

0.00—

-005—
C

Cf

-O.IO—

x
x ~ x

Sequence (2.5) Sequence (2.3)
-O.I5—

5
6
7
8
9

10

—0.0463
—0.0582
—0.0387
—0.0408
—0.0555
—0.0688

+ 0.0277
—0.0302
—0.0431
—0. 0515
—0.0628
—0.0749

-020—

3 J J J J Jl098 7 6 5
I/n

FIG. 4. 1/n plot of sequence (2. 3) ( ~ ) and sequence
(2.5) (&&) for the specific-heat series, with T&=3.1753.
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the Ising model. 3' '~4'~ For example, dv —2+ o.

and dv+y —2h, d=3 being the dimensionality, are
not zero as predicted by scaling but approximately
0.04. Testing these two relations for the Heisen-
berg model, we find

3p —2+ a = 0. 01 + 0.08,

3v + y —2b, = 0.02 + 0. OV . (9.1)

P = 6 —y = 0. 365 + 0.035,

P =
2 (3v —y) = 0. 373 + 0. 014,

Thus, the relations are obeyed to within large un-
certainties which would mask violations greater
than those of the three-dimensional Ising model.
Still, we can use scaling relations to predict the
indices P and 6 which determine the leading singu-
larities of the equation of state, and we can have
some confidence that the values will be correct to
within the uncertainties quoted because any scaling
violation will probably be smaller.

() = 2&/(2n —2y) = 4. 9 ~ 0.4,
5 = 6v j(3v —y) —1 = 4. 8 + 0. 4 . (9. 2)

These results do not eliminate the attractive 6 = 5
and are in agreement with the results of previous
work 7y 15' 19

How do our series results agree with experiment?
Unfortunately, the experimental situation for
Heisenberg systems is not as good as that for Ising
systems. Of the relatively few systems which are
now believed to be well represented by the Heisen-
berg model, we know of only one, RbMnF3, for
which accurate determinations of y, v, and g have
been made. 0 The results of analysis by Corliss
et al. are shown in Table II. Their values of v

and y agree well with ours; the difference in g may
be due, as we will discuss in II, to their use of a
poor approximation for the scattering function in
analyzing their data; if their value of P is reliable,
then it represents a dramatic violation of scaling
and cannot be compared to ours, the derivation of
which requires scaling.
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