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ficients yg (r„l R,'), the determinant of the coeffi-
cients should vanish:

k tang", , /(&~'I j~'k) (r:Ini'k) tang/ ),

2AK;R;

= 0 . (A10)

Eq. (A10) becomes

(All)

After factoring out which is identical to Eq. (5.11).
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Equivalence of van der Waals Forces between Solids and the Surface-Plasmon Interaction
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It is shown that the well-known Lifshitz formula for the retarded van der Waals attraction
between two solid half-spaces can be obtained from the zero-point energy of the interacting
surface plasmons.

INTRODUCTION

Recently it was shown' that a nonretarded van

der Waals attraction between solid half-spaces
(separated by a gap) can be obtained from the inter-
action of the surface excitations on either side of
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the gap. This concept follows the basic idea, due
to Casimir, 2 that the interaction between two media
may be found from the total zero-point energy of all
modes. In the following, it is shown that the equi-
valence between the two types of interaction also
holds for the retarded case, thus leading to a con-
siderable simplification of the general concept of
van der Waals forces. Moreover, this equivalence
establishes a connection between the large number
of results on surface plasmons3~ and the important
technological field of attraction between solids. '

where

5= (b„(x), b, (x), b, (x)) e'"+"3' ""
with

S b(x) K—'b(x) O=.
Bx

Insertion of Eqs. (5) and (9) leads to

(b„, b„b,}

(9)

(10)

DISPERSION RELATIONS FOR SURFACE PLASMONS

We consider a system consisting of two half-
spaces (denoted by 1 and 2} separated by a vacuum
gap (denoted by 3). The surfaces are assumed to
be at x=0 and x=d.

In order to obtain dispersion relations for the
surface plasmons we have to solve Maxwell's equa-
tion in 1, 2, and 3 and match the solutions accord-
ing to continuity conditions. In a homogeneous
medium characterized by a complex diel. ectric con-
stant e, magnetic permeability i3= 1, and vanishing
external currents and charge densities, Maxwell's
equations lead to the following wave equations for
E and%:

~ 3

—eE/c'+ &E = 0,
~3

—&B/c + &5 = 0 .
In order to obtain a solution for surface plasmons
we used the ansatz

E = (f.(x), f, (x), f.(x)) e'" ""'"".
For each of the components we find

. sf, sf,

(ii)

If we take k to be parallel to the y direction, the
linearity of Maxwell's equations permits us to con-
sider the following cases separately:

(a) f, 3'0, f,=o,

(b) f, =o, f, ~o.

Case (a) corresponds to electric waves (TM) with
nonzero surface charge density. In this case all
the boundary conditions are satisfied if

(i4)

are continuous.
Case (b) corresponds to magnetic waves with zero

surface charge density everywhere. The sources
of these waves are the electric currents J satisfy-
ing the equation div J= 0 everywhere. In this case
all the boundary conditions are ~ti~fied if

f(") K2f( ) = 0ex (4)
a gf.

where

K2 —k2 2 (u2/C 2

k =k„+k, .
In the intervals

(5)

(6)

are continuous.
Applying (14) to (7) and solving the resulting

determinant then yields the dispersion relation

gg=
(Kl +K3 1)(K2+ K3 2) 2IC 3e 3 —1=0,
(K, —K3&1)(K2 —K3 &2)

(16)

-"-x-010=x=did-x--
Eq. (4) leads to the following ansatz for f:

Ae 1'lBe 3"+ Ce 3'l De (7)

which is a generalization of the dispersion relation
for surface plasmons derived by Economou for

The dispersion relation corresponding to
(15) can be obtained from (16) by setting e, and e2
equal to 1, but keeping them in K, and K2. We ob-
tain

5+ rotR = 0, (6)

where A, B, C, and D are constants (standing for
A„, A„, etc. ) which are determined from continuity
conditions at the surfaces at x=0 and x= d.

The magnetic vector 5 can be obtained from the
relation

(K1+K3)(K2+K3) 2K 3 I 0e 3 —1=0.
(K1 —K3) (K2 —K3)

(i7}

(In the nonretarded case, g3 is infinite. ) Although
these excitations are not related to surface-charge-
density oscillations, we will, in a generalized
sense, call them surface plasmons also.
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VAN DER WAALS ATTRACTION

Since e is a function of the frequency , the dis-
persion relations (16) and (17) lead to a certain
number of branches of ~(k). Then the zero-point
energy U (per unit area) of our system can be ob-
tained by summing —,'k~(k} over all branches and
over all values of k. Proceeding as in Ref. 1 this
sum can be expressed by the general relation

] 1 t h~
U=

( )2 2vkdk

sg.(") 1 sg (~)((( ' r())
(18)

where the path has to be taken around the positive
axis.
Here we used the fact that the contributions from

the poles of g, and g, are d independent and thus
do not contribute to the force F= —SU/Sd to be de-

rivedd.

To calculate the integrals we put

(g+ 1),8g 2P (
8d c (27)

the differentiations in (25) can easily be carried out
to give

2 1 P' —18g Pg 8g
gc Pg g 8P g 8$

(28)

1 1

(..(('(( (( (t, , (() '

The dispersion relations g, ,(p, () are obtained by
inserting Eqs. (19)-(22) into (16) and (17); we find

S&+ p6& S2+ ~ 2 Rpkd /c

S) —Pf y S2 —P&2

A= Sg+ p S2+ I 2P4d/c

si —p s2- p

insertion into the equation for E and partial integra-
tion then gives

g2
E= — 2, P dP

277 C
0

ck= $(p —I)'i
(19)

(20)

where

s&,2= (p —1+ ei, 2)
2 i/2 (32)

which leads to

p(/c (k2 ~2/p)1 /2

s(~, k} i( p
&((, p) c (p 1}—
P = (c'k'/$2+ 1)'"sg.i$ .

Insertion into Eq. (1V) gives

U=B pf((Pf (d(

(22)

(23)

The boundaries of the $ and p integration in (29) are
obtained as follows': Since ( = —i&, the path around
the positive real ~ axis in (18) transforms into a
path around the negative imaginary $ axis. This
path can be shifted to the real $ axis. Further, be-
cause of (23), the p integration is limited to the
intervals —~ &P &1 and 1 &P &~. We obtain

fdpge= f A[&( 0f, -dp+& &()f, dp)

(33)

s sg(p g) 1

(:(P, ())
Using the relations

(25}

sg, (p, &)»g&(p, $):-,, )
(24)

The quantity U includes a divergent contribution
owing to the fact that the u(k} curves do not go to
zero for d- ~ (infinite energy of isolated surface-
plasmon systems). This contribution is canceled
by differentiation of U with respect to d, which
yields the attraction force F= —BU/Sd resulting
from interaction of the surface plasmons.

The derivatives in E are of the form

d$ f dp —f d$ f dp. (34)

If we apply these integrals to the function p2$2/

g(p, $), the first term of (34) can be transformed
by $ ——$ and P- —P to give the second one (includ-
ing the sign). This argument is based on the fact
that g(p, $}= g(- p, -t'). [The p's occurring in (30)
and (31) have a factor of sign $. ]

The force given by (29) is identical to that derivai
by Lifshitz for the retarded van der Waals attrac-
tion of two solid half-spaces characterized by the
complex dielectric constants 2, (&u) and c2(&o).
Damping does not occur since Ime(i(c) =—0.

CONCLUSIONS

,. &g(p, &) p'-1 sg
Pg 8P 8$ ' (26)

We have shown that the well-known Lifshitz
formula for the van der Waals attraction of tNro

solid half-spaces is identical to the force resulting
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from the retarded interaction of surface plasmons.
This result apparently is due to the fact that elec-
tromagnetic bulk excita'ions do not extend beyond
surfaces' and thus do not contribute to an attractive
force. Since the physical properties of surface
plasmons are well understood, this new concept
provides a much simpler intuitive understanding
of van der Waals forces than the methods used be-

articular in the nonretarded limi
van der Vfaals forces are simply the attraction
forces resulting from the interaction of the intrinsic
surface-charge-density oscillations.
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The basic idea that the convergence of the renormalized perturbation expression for the
self-energy &0 at a given energy is equivalent to the localizability of the eigenstates, if any,
at this energy is applied to one-dimensional random systems, namely, electrons in the tight-
binding approximation and phonons. For nearest-neighbor interactions all eigenstates are
localized. If second-nearest-neighbor interactions are present, the possibility of the existence
of extended states remains; we have shown that existing theories are unable to give a definite
answer to the problem in this case.

I. INTRODUCTION

The study of disordered one-dimensional (1-D)
systems has been focused on (a) numerical calcu-
lations of the average density of states, (b) theo-
retical efforts to show whether or not spectral
gaps remain when disorder is introduced, and (c)
theoretical and numerical studies to reveal the
nature of the eigenstates, i. e. , if they are localized
or extended.

For the electronic case the early work was de-
voted to problems (b)' and (a) above, although
problem (c) was examined briefly in the work of
Landauer and Helland. Mott and Twose were
the first to suggest that all the electronic eigen-
functions in 1-D disordered systems are localized.
Borland' '" was the first to present a rather gen-
eral proof of this statement. A critical discussion
of Borland's work is given in a review article by
Halperin. ' More recent work is discussed in re-

view articles by Mott, ' Hori, ' Economou et al. ,
"

and in books by Lieb and Mattis' and by Hori. '
For the problem of lattice vibrations in disor-

dered 1-D systems the emphasis was on the cal-
culation of the average spectral density. Since
the pioneering work of Dyson, "many efforts have
been made on analytical calculations of the spec-
trum. Dean, ' in his remarkable numerical work,
showed that the spectrum of an isotopically dis-
ordered linear chain has much fine structure with
many well-defined peaks and valleys. Dean ex-
plained the existence of the peaks as due to states
strongly localized around small islands of light
masses surrounded by heavy masses. Hori et
al. ' ' gave a theoretical basis to Dean's finding
by showing that such a fine structure should be
expected for a wide variety of disordered systems.
Dean presented a proof, similar to that given by
Borland for the electronic case, that all phonons
in a 1-D disordered system are localized. It


