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The description of the self-imprisonment of resonance radiation in gases or solids and of
the density distribution of excited species depends upon a transmission coefficient T(p), the

probability that a quantum of emitted radiation will traverse a thickness p of material. This
coefficient is shown to be given by the rapidly convergent series T(p) =g „(-ko p) "/s ) (s+ 1)~ t,
where ko is a constant characteristic of the excited species and of the temperature. The
above expression is used to give the first accurate discussion of resonance radiation con-
fined between infinite parallel planes, and of radiation inside a sphere over a wide range of

ko p values.

I. INTRODUCTION

Resonance radiation is emitted by an excited atom
when it makes a transition directly to its ground
state. Such radiation is strongly absorbed by other
atoms of the same kind when in their normal states.
The absorbing atoms are raised to the same state
of excitation as the original atom, and can in turn
emit the same quantum of energy in order to return
to their ground state. Thus, in a volume of gas,
the same quantum of energy may be absorbed and
reemitted many times over before it reaches the
walls of the container. Under these conditions, the
radiation is said to be imprisoned.

In a paper' bearing nearly the same title as the
present one, Holstein has discussed the imprison-
ment of resonance radiation in terms of a probabil-
ity T(p) that a quantum of emitted radiation passes
through a thickness p of gas. In Holstein's basic
equation for T(p), the absorption coefficient of the
gas, k(v), is explicitly considered as a function of
the frequency, so that an averaging of the mono-
chromatic transmission factor, e '"", over the
entire frequency spectrum P(v) of the emitted radia-
tion at a given point must be taken. Then

T(p) = f P(v)e """dv . (l. 1)

where vs = 2RT/M, and kc depends on v, and on
known spectral characteristics of the normal and
excited atomic states. It can be shown' that

pP(v) = k(v)

may be used when the shape of the resonance line
is Gaussian, as is the case with Doppler broadening
or for the luminescence of certain solids emitting
at low temperatures. The proportionality constant
p is determined by the requirement

f P(v)dv= 1 .
Let

X = V —
Vp Vp C Vp

Then it will follow that

k(x) = pP(v) = k, e "

with

(1.6)

(1.6)

P=m kp,

whence

(l. 7)

employed by Holstein, k(v) is given for Maxwellian
velocity distributions by

k(v) = k, exP(- [(v —vs)/v, ]'(c/vs)'f,

Of the various forms that the frequency variation
can assume, this paper will concern itself only with
the Doppler -broadened absorption. In the notation

T(p) = v '"f„"e "'e 'o- "
dx . -

The further transformation

(1.8)
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x= (ink() p/y)'/ (1.9) final result

results in

e 'dy
2'"kop, (»ko p —ln )' ' (1.Io)

(- s)"
(P} ~ (( I)1/2 ) P ko P

III. PROCEDURE

(2. 6)

Let the probability that a quantum emitted at r '

be absorbed in a volume dr at the field point r be

given by G(r, r )dr. Let the density of excited
atoms be given by n(r ). Assume the walls of the

container are nonreflecting, and further assume
that the time of flight of quanta (= 1/y ') is negligibly
small compared to the atomic lifetime (= 1/y).
Then there follows a Boltzmann-type integrodiffer-
ential equation':

Bt
= —yn(r)+y n(F')G(F', r)dr' (1.11)

(1.12)

with p =
I
F' —r I . As Holstein remarks, Eq. (1.12)

"shows how the whole problem of the space-time
variation of the density of excited atoms is referred
back to the nature of the transmission coefficient
T(p). " It was the lack of a suitable evaluation of

T(p) as given in Eq. (1.10), and hence of G(F', r),
which strongly limited the utility of Holstein's anal-
ysis. In Sec. II, a convenient form for numerical
work is derived for T(p).

If attention is restricted to solutions of Eq. (1.11)
of the form

n(r, t)=n(F)e

where P and n(r ) satisfy

(1 —P/y)n(r) = f G(r, r')n(r ')dr ',

(3.1)

(3. 2)

E(r ) = 1 —f G(r, r ')dr ' (3.4)

(s. 5)

Then, as Holstein comments, since all P are posi-
tive, after a sufficient time the lowest eigenvalue
will prevail. '

The linear expansion of n(r ) over a suitable basis
set

then it can be shown, ' due to the symmetry of
G(r, r ) = G(r, r), that the problem can be put into
a variational form:

f n(r) dr = f n(r) E(r)dr

+ —,
' f f [n(r) -n(r ')] G(r, r ')dr dr ', (3. 3)

where

r(P)=g x''e "dx, P&0. (2. 1)

II. EVALUATION OF T(p)

The form of Eq. (1.10) shows that T(p) is closely
related to the I' function,

n(r)=Z a;n, (r)
j=1

leads as usual to a secular equation:

I I
ff(/ —~-'s, , I I

= o,

(3. 6)

(3.7)

Introduce the new variable y = Pe " . Then

(2. 2)

where

H„= f n, (r) n/(F)E(r)dr + 2' f f [n, (F}—n;(r ')]

x [n, ( r ) - n/( r ) ] G( r, r ') dr dF ', (3.8)

In particular, for p =-,', n=g+1,
S(/= f n((r)n/(r)dr . (s. 9)

0

and since I'(-,') = 7('/, it follows

(2. 3)

n 1/2
7f pft+1

[ln(P/ )]'" n+1 (2. 4)

(2. 5)

Insertion of Eq. (2. 4) into Eq. (2. 5} leads to the

If e ' in Eq. (1.10) is expanded in a power series,
and if p = k0 p, then

1 ~ ( —1)"
I

y "dy
(P} 1/2p ~

( [»(@' )]1/2
0

Holstein has solved these equations for the case of
the infinite slab and of the infinite cylinder. In
both cases, his results are valid only in the limit
of large k0 p, and involve many simplifying approxi-
mations. The present paper restudies the case of
the infinite slab and presents results for the more
realistic case of the finite sphere. The case of the
finite cylinder will be the subject of a future in-
vestigation.

A. Infinite Slab

Consider a gas confined between two infinite par-
allel planes a distance L apart. It is also conve-
nient to introduce the parameter w =-,' kQL. Then,
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due to symmetry, n(r ) is a function only of z, and
the x and y coordinates can be integrated out im-
mediately. The origin of the z coordinate lies mid-
way between the walls. Equation (3.2) becomes

(1 —e )n(z)= f n(z ')H(r)dz',

where 7 =
I z —z I, and

ff(r) =- sg (r)
87

with
3 /2

h(r) =-,' f, T(r/cose) d cose, (3.12)

with corresponding forms for Eq. (3.6). The in-
sertion of Eq. (2. 6) into Eq. (3.12) leads via ele-
mentary integrations to rapidly convergent infinite
series at the upper limit of integration, but re-
quires the evaluation of

(-x}
Vo= lim lnx+ 2 ~ {( 1)( l)~~z (3.13)

at the lower limit. This limit was obtained numeri-
cally, and was taken to be

Vo= 0 672785 (3.14)

which is probably correct to at least five significant
figures. A limited number of calculations were
performed with Vo taken as 0.672775 or as 0.672795.
The & were found to vary roughly as z for small

FIG. 1. Display of & as a function of K. Solid lines—
this paper; dashed lines —Holstein's approximation [Eq.
(4. 1)].

TABLE I. Excitation decay. The infinite slab.

0. 1
0.2

0.3
0. 4
0. 5
0.6
0.7
0. 8
0. 9

1.0
1.25
2. 5
5. 0

10.0
15.0
20. 0
25. 0

1.252 17
1.454 14
1.647 85'
1.839 59
2. 03178
2. 225 55
2. 421 50
2. 619 95+

2. 82108

3.02496
3.546 80
6.39117

12.925 22
27. 915 80
44. 39137
61.816 55
79.93121

n(+ 9
n(O)

0.770
0.716
0.675
0.641
0.613
0.588
0.565
0.545
0.527

Q. 510
0.473
0.358
0.251
0. 174
0. 140
0. 121
0. 108

Half-
width

0.471b
0.464
0.458
0.454
0.449
0.446
0.442
0.439
0.436

0.434
0. 428
0.409
0.392
0.381
0.376
0. 374
0.373

Half-
value

0. 977
0. 887
0. 826
0.790
0.779
0.774
0.772

All calculations based on a four-term expansion
which included no, n~, n2, n6 for & —5.0, and no, n~, n5,

n6 for &» 5. 0.
All calculations based on a three-term expansion

which included no, nq, n2 for x ~ 5. 0, and no, n~, n5 for
K» 5. 0.

changes in Vo, so that for large g the results were
very sensitive to small changes in the Vo value
adopted. Thus, by interpolation for Vo = 0. 672786,

at z = 5.0 shouM be 0. 00055 higher than the tab-
ular entry.

The expansion basis set is

(3.15)

(3.16)

where

$ = 2z/L,

$
'= 2z'/L .

(3.17)

Note that only no($) contributes to the excited atom
density at the walls. All possible four-term com-
binations of the n&($) for i =0 through 6 were em-
ployed for values of v ranging from 0 to 25. 0. Dou-
ble-precision arithmetic was needed for values of g

larger than about 5.0, depending on the choice of
basis functions. A limited number of calculations
were also performed with three-term expansions,
and agreement to five decimals was obtained in the
best cases, indicating that the results are probably
converged to at least this extent. The results are
presented in Table I and Fig. 1, together with other
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data. These other data include n(s I)/n(0), the ratio
of the density of excited atoms at the surface to the
density at the center.

As may be seen from Fig. 1, for large values of

K, the & values seem to be becoming linear in K.

For small K the correct behavior may be closely
approximated by the contribution of np($} alone, for
which

K= koR . (s. 29)

The integrations over cose in Eqs. (3.28) and (3.29)
lead to terms involving I $ —( I, so it is convenient
to introduce the variable o =s/g, where s and g are
the smaller and greater of $ and g', respectively.
All the integrations can then be expressed in terms
of the following auxiliary functions:

=Hpp/Spp= 1 —(2 /4+2Vp)v+2 ging+0(g ),
{s.19)

= 1 —0.829284K + 0.707107K lnK. (3.ao)

T", = f v'[(I+a)" —(1 —&r)" ]do',

1

L, = a ln1 do
1+a
1 —0

0

(s.3o)

(3.31)

For & = 0. 025, Eq. (3. 20) gives s = l. 07955, which is
in a four-figure agreement with the value 1.08002,
obtained from the four-term expansion treatment.

B. Sphere

Consider a gas contained inside a sphere of radius
R. Due to symmetry, n(r) is a function only of

r = j r I, and the 8 and P coordinates can be inte-
grated out. Let

N,'p = f o'(I —o')(1 —a )do, (3.32)

(n+l +2}T,"' = 2"' +(n+1)T," . (3.33)

with formally identical functions arising for the in-
tegrations over g that remain after the integrations
over (' have been performed. For the T," the follow-
ing recursion relation is easily established by in-
duction:

n(() =Ha(n;($) (S.21) The L, may be obtained by elementary integrations

with

(3.22)

(3.23)

m

(am+1)Lp = 21n2+ Z —,
n=

1
n—

(3.34)

(s. s5}

(s. 24)
These integrals are most conveniently calculated

Note that j need not be restricted to even values,
as was the case with the infinite slab. It seemed
more convenient to dispense with the type of coordi-
nate transformation used by Holstein in the study
of the infinite slab, and instead to proceed more
directly. Let r be the polar axis for r '. Then

p =r +r' —2rr'cose
7 (s. as)

(l +1)L,= (I —1)L, p+2/l,

with

Lo= 2ln2,

L1=1 .

For Eq. (3.32), write

(s. s8)

(3.37}

(s. s8)

and Eq. (S.3) can be written as

~1 t
1

4 &
'

I ]'n(()'d$ = 4~ $'n($)'d$
p

where

1 1 I
1

P„= ~ deaf, ~ df $ [n($) —n(&')] dcose
o ~o +-1 R

(3.27)

and

ab(a+b+ 2l + 2)
(l +l)(a+l +1)(b+l + 1)(a+b+l + 1)

. (S.S9

All possible four-term combinations of the n&($) for
i =0 through 6 were employed for values of K ranging
from 0 to 20. 0. The calculations were performed
in both single and double precision as before, the
double precision being needed for values of K larger
than about 7.5. The results are presented in Table
II and Fig. 1, together with the n(s I)/n(0) values
and other data.

As may be seen from Fig. 1, for K greater than
about 5.0, E seems to be becoming linear in K. For
small K the correct behavior is closely given by
the contribution of np(g) alone, for which

fl 3

Q„= deaf n(f)' d$'f' d coss —,(3.28)
0 0 1 R

with

= Hpp/Spp= 1 0. 375 &2K + O(K )

E '= 1-0.530330K .

(s. 4o)

(3.41)
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TABLE II. Excitation decay. The sphere.

0. 2

0.4
0.6
0. 8

1.0
1.2
1.4
1.6
l. 8
2. 0
2. 5
5. 0
7. 5

10.0
15.0
20. 0

1.11377
1.233 34
1.358 56
1.489 10
1.624 75
1.76524
1.91035
2. 059 83
2. 213 49
2. 371 10
2. 78123
5. 10424
7.747 00

10.606 47
16.777 03
23.346 35

n(+ 1)
n(0)

0 359
0.339
0.322
0.305
0.291
0.278
0.266
0.255
0.245
0.236
0.216
0. 155
0, 124
0. 106
0. 085
0. 070

Half-
width

0. 727b

0. 724
0.720
0. 717
0. 714
0. 711
0. 708
0. 706
0. 703
0. 701
0. 696
0. 679
0.669
0.663
0.656
0. 651

Half-
value

0. 871'
0. 855
0. 841
0. 829
0. 818
0. 808
0. 800
0. 792
0. 785
0. 778
0. 765
0. 727
0. 711
0. 702
0. 692
0. 688

All calculations based on a four-term expansion which
included no, n2, ns, n6.

All calculations based on a three-term expansion
which included no, n2, n5.

E = 1.8906~(inn)' (4. 1}

so that for K = 5.0, he calculates 11.99. The pres-
ent results are 12.92. In view of the approxima-
tions used by Holstein this is surprisingly good
agreement, and his results are presumably more
satisfactory for larger ~ values. Equation (4. 1}is
indicated with a dashed line on Fig. 1. The series
equation (2. 6) for T(p) is numerically convenient
for ~ values less than about 25. It is shown in the
Appendix how the useful range may be doubled,
after which results obtained from Holstein's for-
rnulas should suffice.

Graphs of the n(r ) function strongly resemble a
Gaussian curve with its tail truncated at the con-
tainer surface. To help get a feel for the excited
atom distribution, half-widths and half-values are
entered in Tables I and II. The half-width is the (0
value for which

For K= Q. Q5, Eq. (3.41) gives & = 1.027239 which
is in four-figure agreement with the value 1.027919,
obtained from the four-term expansion treatment.

IV. DISCUSSION

Holstein's infinite slab resultso for large p can
be written in the present notation as

That is, the half-width corresponds to the $ value
inside which (or outside which) 50/0 of the excited
atoms are to be found. The half-value is the $0
value at which

n(g, ) = n(0)/2 . (4 3)

APPENDIX: SUM RULE AND DUPLKATION FORMULA
FOR THE T(p)

Define

(A1)

so that for p = 1 and with P = kop, T&(P) is exactly
the transmission coefficient T(p) Then.

1/2T (P)Pu-m
I

-Bs m-1 ~
( ~ )g-m

p -ml J [in(l/z)]"', „p, -m(

In a practical experimental situation many factors
intervene to make the experimental values differ
from the present results. These factors include
loss mechanisms in addition to those considered
by Holstein, and reflection at the boundaries. In
the following paper Menon and Nolle' allow for
both of these effects with the use of considerations
arising from the present calculations. Thus, Menon
and Nolle incorporate the effect of additional loss
mechanisms into Eq. (1.11) by changing the coeffi-
cient of n( r) slightly, a modification whose conse-
quence is to merely raise all the E

' by a constant
amount. They consider the effect of boundary re-
flection via the surface densities of excited atoms
determined here.

A third difficulty in comparison is due to the use
of block or cylindrical samples, rather than infinite
slabs or spheres. For a cube of side length 2s, a
sphere of radius 1.2407s, the radius of a sphere
of equal volume, should be a good approximation.
For the cylindrical sample, if the ratio of length to
face diameter (q} is near 1, then a sphere of radius
(3'/2)t~aR (the equivolume sphere) should be a good
approximation. However, for wide deviations of g
from 1, it would be preferable to have results di-
rectly for the cylindrical geometry.
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f, n(g)w(]) df. = -,' J n(&)w(]) d],
where

(4. 2)
(A3)

w(t') =1 for the slab
Hence,

w(]) = $~ for the sphere.
(A4)
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(As) (A6)

and if pII is set equal to p, we obtain a sum rule

In particular if Po is set equal to —P, we obtain a
duplication formula

00
pQ «]

Z
( i) )

Tg(p): 1 (A7)

T. Holstein, Phys. Rev. ~72 1212 (1947).
T. Holstein, Phys. Rev. 72 1212 (1947), Eq. (2. 3).

3T. Holstein, Phys. Rev. ~72 1212 (1947), Eq. (2, 21).
T. Holstein, Phys. Rev. ~72 1218 (1947).

5The eigenvalues seem to be well separated. For a
typical case (I(: =2. 5), reported in the sphere calculation,
the second root was nearly double the value of the lowest.
The situation becomes more favorable as the radius be-
comes larger.

T. Holstein, Phys. Rev. 83, 1159 (1961).
The details of the arithmetic manipulation are similar

to the procedures used in the sphere, discussed in text.
I oss of significant figures was encountered due to the

near-linear dependence of the higher-order N&($). It
probably would be more desirable to have chosen the.
N&($) to have been the I egendre polynomials of even
order.

T. Holstein, Phys. Rev. 72 1212 (1947), Eq. (4. 22).
T. Holstein, Phys. Rev. 72, 1212 (1947), Eq. (3.2),

~IN. S. K. Menon and A. W. Nolle, the following paper,
Phys. Rev. B 4, 3890 (1971).
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The theory of imprisoned radiation developed by Holstein and recently extended by Scherr is
adapted to apply to the luminescence decay in a solid. In addition to including a correction for
losses from the excited level, it is necessary to consider reflections at the sample surfaces.
Reflections are calculated approximately for a slab. The single Gaussian absorption function
used in the reabsorption theory in lieu of an actual absorption function for the imprisoned radia-
tion has the same integrated absorption I as the actual function and has a height equal to ~2I
times the integral of the square of the actual function. Calculations are described for the ruby
R lines, including the case where the Zeeman components are separated in a magnetic field.
Experimental measurements of decay times at 77 K of the ruby R lines are presented for sam-
ples having a Cr' concentration of approximately 10 cm 3 and thickness from 0.6 to 13 mm.
Magnetic fields up to 20 kG are used. The various decay times, lying between 5 and 12 msec,
are predicted within about 5% by the theory, with the help of the approximate absorption cor-
rections and of Zeeman component intensities given by Sugano and Tanabe. The RI 1ine is used
for most comparisons. Intensity increases of up to 100% in the steady-state R-line emission
in a 20-kG magnetic field are shown to be accounted for by approximate treatments related to
the decay-time theory. No change of transition probabilities with magnetic field is indicated
by the foregoing results. Further observations suggest that the channels leading from the ex-
citation levels for both single ions and pairs are affected by magnetic field, however. These
observations include changes in the relative intensities of various pair lines when the field is
applied, and a field-dependent difference in the emission intensities produced with blue and
green excitation. Field-induced changes in pumping light absorption, if present, are insuffi-
cient to account for these variations.

I. INTRODUCTION

The theory of reabsorption of resonance radiation,
also known as imprisonment, has been extensively
treated by Holstein. He provided working formu-
las for the limiting case of nearly complete reab-
sorption, which is important for gases. The cal-
culations are troublesome for the case of a species
having small peak absorption or present at small
concentration (cases often encountered with solids),

with the result that empirical approximations have
been proposed in lieu of the theory. Recently
Scherr has put the Holstein transmission function
for a Gaussian line into a form convenient for par-
tial reabsorption. From this he has evaluated the
decay-time function for an infinite slab and also
has extended the theory and the calculations to the
case of a sphere.

We shall show that where sufficient information
is available as to line shape and absorption cross


