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Use of Orthogonalized Atomic Orbitals in the Koster-Slater Method for Impurities*
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It is proposed to use orthogonalized atomic orbitals as approximate Wannier functions in the
Koster-Slater method for treating impurites in crystals. The method used to compute such
orbitals can also be applied to the computation of arbitrary elements of the Green's function
of the host crystal. The procedures are illustrated by reference to the "hydrogen metal. "

f. INTRODUCTION

The advent of the Koster-Slater method for the
calculation of localized impurity states' repre-
sented an important step forward in the solution of
the problem of an impurity in a crystal. Since the
method requires that one know both the impurity
potential and the full set of energy bands and corre-
sponding wave functions for the perfect crystal, it
isnot surprising that practically all applications have
been co'nfined to some kind of model systems. Sev-
eral papers have also been published with critical
discussions of the method and its conceptual im-
plications.

In the Koster-Slater method the impurity function
is expanded in the Wannier functions of the perfect
crystal. These form a complete set only if all
bands and all lattice sites are taken into account.
An important question then is how quickly this ex-
pansion converges. Keeping the computational dif-
ficulties in mind, it is natural that one has tried to
truncate it as much as possible. This is done first
of all by considering only one band, and secondly
by assuming that the impurity potential is suffi-
ciently localized in "Wannier space" to allow the
neglect of all matrix elements except the one as-
sociated with the impurity site. This is the one-
band one-site approximation. Izyumov4 has given
a comprehensive survey of this approximation. In
particular, he discusses the changes in the density
of states due to the impurity states and the electron
density near the impurity. Izyumov uses this ap-
proximation to treat three different physical prob-
lems: the influence of an impurity on the bands of
a. metal, the spin-wave spectrum of a ferromagnetic
crystal, and the yhonon spectrum of a crystal.

Turner and Goodings' studied the effect of the
one-site approximation on the matrix elements of
the impurity potential in the Bloch representation.
They showed that in this approximation the impurity
matrix is independent of the wave vectors k.

Beebye showed that for an impurity potential con-
fined to the central cell the one-band approximation
is poor. From that result he drew the conclusion
that the one-band and the one-site approximations
are inconsistent. It should be noted, however, that
the one-site approximation in Wannier space cor-
responds to a potential which is not negligible out-
side the central cell. This has been stressed by
Stoddart, March, and Stott, who have analyzed in
detail the implications of the one-site approximation.
They found that the range of the impurity potential
is the same as the range of the Wannier functions
in the band under consideration.

Clogston' discussed the connection between the
Koster-Slater method and the phase-shift analysis
of Friedelo for metallic compounds. By applying
a condition of self-consistency on the perturbation,
he derived expressions for the susceptibility and

the Knight shift of dilute transition-metal alloys.
Kilby" set up a variational version of the Koster-

Slater method, which simplified the calculations
considerably, and still seemed to give fair agree-
ment with the original treatment. As an example
he treated the case of a locaLized impurity in dia-
mond, using an eight-band model due to Leman and

Friedel. "
Two detailed investigations of a much more rea-

listic type than those mentioned have been carried
out by Callaway and Hughes'~ and Faulkner. '3 The
former studied the inclusion of several bands and
several sites in a calculation of the bound states of
a neutral vacancy in silicon. The bands of the per-
fect crystal were obtained in a pseudopotential ap-
proximation, from which explicit Wannier functions
were calculated. By taking full advantage of the
symmetry, the authors were able to carry through
this major computation. The results definitely
show the necessity of including Wannier functions
for more than one band and seem to indicate that
for the case studied only a few sites were needed.
An important aspect of the paper by Callaway and
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Hughes is the discussion of the phases of the Bloch
functions and of the question how to define an en-

ergy band.
Faulkner' considered the GaP:N system. He

carried out detailed calculations both for the one-
band one-site case and for the case of two bands and

several sites. He showed that the simple approxi-
mation could be used to correlate a number of ex-
perimental results, but he also stressed the im-
portance of taking the response of the host crystal
to the impurity into account. In his construction of
the Wannier functions Faulkner used a procedure
slightly different from that of Callaway and Hughes,
which forced him to use more sites than the other
authors.

The explicit computation of the Wannier functions
is one of the central problems in the Koster-Slater
method. To calculate those functions using the
basic definition is far from trivial, as can be seen
in both Refs. 12 and 13. It might therefore be in-
teresting to approach this problem from another
direction. In the linear-combination-of-atomic-
orbitals (LCAO) approximation, the Wannier func-
tions are the orthogonalized atomic orbitals (OAO),
introduced by L5wdin. '4 Methods for the explicit
evaluation of these OAO have been developed. "'"
In this paper we propose to use OAO as approximate
Wannier functions in the Koster-Slater method, and
we show with a simple example what such a calcu-
lation involves.

The computation of the OAO i.nvolves the matrix
, where 4 is the overlap matrix of the atomic

orbitals. The methods and programs developed to
compute b,-' ~ or any other "reasonable" function
of 4 can also be used to compute the Green's func-
tion associated with the perfect crystal. This has
nothing to do with the use of OAO as Wannier func-
tions but can be done for any Green's function of
this type provided the orbital energies e(k) are
known.

Until recently the LCAO method has not been used
to calculate accurate bands, but this situation now

seems to be changing. " The procedures proposed
in the present paper are applicable to the case when
an LCAO band calculation is available. Explicit
Wannier functions can then be obtained from a com-
bination of the OAO with the LCAO coefficients.

A by-product of the approximation of the Wannier
functions by OAQ is the fact that we can write the
Koster-Slater equations in terms of atomic or-
bitals. This is probably not desirable in general,
but there might be cases where a one-site approxi-
mation in the atomic-orbital (AO) representation
is more reasonable than in the Wannier representa-
tion.

The paper is planned as follows. In Sec. II we
describe the construction of the OAO and the adap-
tation of the method to invert the overlap matrix

(4)

If the Bloch functions are normalized LCAO func-
tions, they can be written as

4'= yU, (6)

where the y's are the orthogonalized atomic or-
bitals obtained from the basic atomic orbitals as'4

@=46 ' a=(4~4) . (6)

Combining Eqs. (4)-(6), we get for the Wannier
functions in the LCAO case

p @ +~1/2

In general, we have to consider several bands,
labeled p. , and several sets of LCAO Bloch sums

n n+ =gU, 4„=P„4'„C„„. (6)

Here the matrix C„„consists of the LCAO coeffi-
cients which are determined from the variation
principle. The OAO y„might be the result of a
combination of symmetric and successive ortho-
gonalization. '4' In this general case the Wannier
functions corresponding to the p, th band are given
by

W„=ft„Ut, W„(m, r) = P „p„(m, r) c„, .

For a detailed discussion of these quantities we
refer to Ref. 14(c).

Methods for the explicit evaluation of & ' and
4 ' in terms of the matrix elements

to the calculation of the Green's function. In Sec.
III we review the Koster-Slater method and discuss
how to calculate the perturbation matrix in terms
of the OAO. A simple numerical example is given
to illustrate the procedures. In Sec. IV we dis-
cuss the Koster-Slater method in the AQ represen-
tation with reference to a numerical example.

II. WANNIER FUNCTIONS AND GREEN'S FUNCTIONS
FROM ATOMIC ORBITALS

Given a set of Bloch functions

~=~«ki, r), 4(k&, r), . . .],
and the unitary matrix U with elements

P(m k) G-3/2 e2tik'm

where G' is the number of unit cells in the Born-
von Karman region and m is a direct lattice vector,
we can construct the corresponding set of Wannier
functions'4'

W=[W(m„r), W(mq, r), . . .]

from
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6 (m, n) = J P *(m, r) P (n, r) dv (10} $0(r) =2 Q N„& ' (~)ao(R„/r) =P A, (~)no(R„/r),

have been developed by Lowdin, Pauncz, and

de Heer" for the one-dimensional case and by
Calais and Appel' for the three-dimensional case.
The latter method is based on the fact that since
4 is a cyclic matrix, it is diagonalized by the
unitary matrix U, Eq. (2):

y, (r) = Z N„n '~'(~)C, (O~„, 4'„)o.', (R„/r)
9

= Q A, (v) a, (R„/r),
(15)

(U n U)(k, k ) C4(3, 0) = &40(8 P)+ [144(s 9 )+ y4, 4(» 9)] ~

v 21 F30

= 5(k, k') Q„A(n, 0)e "'= 5(k, k ) d(k) . (11)

Any "reasonable" function of & can then be ob-
tained from

f(A) = U f(d)U',

in other words,

f(A)(m, n) = G ' Z„f[d(k)] e"'"'

(12a)

(12b)

In the case f(h) = A ' and f(b)= n ' 2
, the sum in

(12b) is converted to an integral, which is evaluated
by means of a special kind of numerical integra-
tion. Programs are available at the Quantum
Chemistry Group of the University of Uppsala.

It should be stressed that this method of calculat-
ing functions of ~ works very well also in the case
of metals when the overlap integrals (10) are quite
large and when many of them have to be taken into
account.

In the more general case shown in Eqs. (8) and

(9), the I CAO Wannier functions are linear com-
binations of orbitals s„(m, r) which have been ob-
tained from a combination of different types of
orthogonalization. The corresponding procedures
involve matrix multiplications of matrices like 4
where the rows and colums are labeled by the
direct lattice vectors m. Programs for such pro-
cedures are also available.

To study the form of the OAO shown in Eqs. (7)
or (9), it is desirable to expand the AO's from which
they are made up, in spherical harmonics centered
at, for example, the origin. Symmetry will sim-
plify the summation over atomic sites implied in

(7). Procedures for carrying out this are described
in Ref. 14c and have been summarized by Calais. "

We illustrate the procedures described in the
present paper with "hydrogen metal, " a bcc lattice
with hydrogen atoms. For such a host crystal the
OAO corresponding to the ls AO's,

3C g(k, r) = e (k}g(k, r),
imply

«-E)4 =4 [e —E 1],

(18)

(17}

where e is a diagonal matrix with elements e(k).
The Green's function in the %annier representation
is then

in other words

=U[e —E 1] 'U', (18)

2rik (m-K)

G(m, n;E)= G (19)

TABLE I. Coefficients of the functions no(g„/y)
and n4{R„/r) in Eq. (15) for nearest-neighbor distance
R(=2 Wa. u.

s- '"(~)

Here ~ denotes the order of the neighbors, N„de-
notes the number of the neighbors of order a',

n, '~~(~) = A '~~(m, 0), where m is one of the neigh-
bors of order ~, and (R„,8„,4„}are the polar co-
ordinates of one of the neighbors of order ~. The
functions a, (R„/r) are the expansion coefficients
of the spherical harmonics I',„(8,y) in the expan-
sion of (13) around the origin. These functions

o, (R„/r) are illustrated in Ref. 14c, p. 104. In
Table I we give some values for the other quantities
in (15) for the case when q= 1 and the nearest-neigh-
bor distance in the crystal is 243 a.u.

The methods and programs for the calculation of
4-' can also be used to calculate the Green's func-
tion for the perfect crystal in the %'annier repre-
sentation. The one-electron equations for the per-
fect crystal,

P(m r) (ri3/v)1/2 e-~l™ (13)

can be written as'9

P( r) = P (r) Y (S, 0) + P (r) C (&, P) + ~ ~, (14)

where

0 1 0
8 2va

2 6 4
3
4 24 2411
5 8 4&3
6 6 8

1.191729
—0. 107 871
—0. 041 712

0. 014 756
0. 006 742
0. 009012
0. 000 604

2. 383458
—l. 725 936
-0.500544

0. 354 144
0. 323 616
0. 144 192
0. 007 248

0. 292 935
—0. 121459
-0.022540

0. 017 703
—0. 024473

0. 001 845
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This is of the same form as (12b) with f[d(k)] re-
placed by [e(k}-E] '.

The particular kind of numerical integration
used to compute (12) is applicable when the inte-
grand can be written as a function of cosine of the
integration variable. This can be done when the
lattice has inversion symmetry so that ea"' can
be combined with e i" ' to yield cos(2vk ~ m).

In the case of inversion symmetry the denominator
of (19) can be written in this form, since e(k) can
always be expanded in a Fourier series:

W= @A, (26)

where

A'~A= l . (27)

tioning method.
If we know explicitly a set of Wannier functions,

we do not have to make any assumptions about V

but we can calculate its elements directly. In the

LCAO case the Wannier functions can be written as
in (7) or in a more general case as

e(k) =Q- $(m} e 2" '
(20}

Denoting the impurity matrix in the AO representa-
tion by V~,

where $(m) are the matrix elements of the Hamil-
tonian with respect to the Wannier functions

V'=(C V 4),
we get

(28}

t'(m} = f W (m, r)KW(0, r) dv . (21) V=&W~ V
i
W) =At V'A . (29)

In the LCAO case the coefficients $(m) are there-
fore the matrix elements with respect to the orthog-
onalized atomic orbitals.

III. KOSTER-SLATER METHOD

Assuming that we can define an impurity potential
V, we can write the impurity problem as

An alternative way of evaluating the matrix ele-
ments of V is to use expansions of type (14). In

any case, at most, three-center integrals have to
be computed. The LCAO programs of Lafon and
Lin" handle up to three-center integrals.

In the one-band one-site approximation, the sec-
ular equation corresponding to (25) reduces to

(X+ V)/=ED, (22) 1+ G (0, 0; E)Vo = 0, (3o)

g(r) = W c = Q W„(m, r) c~ (m), (23)

where X is the one-electron Hamiltonian for the
electrons in the perfect crystal [cf. (16)]. In the
Koster-Slater method the unknown function g is
expanded in the Wannier functions of the perfect
crystal,

where Vo= V(0, 0). As an illustration of the method

described in Sec. II for the computation of the
Green's function, we solve (30) for the bcc lattice.
To facilitate comparison to other calculations, we

make the simplifying assumption that the band under
consideration can be described by

mph'

and an equation for the coefficients c (m) is ob-
tained, which involves the Green's function (19).
This equation can be derived by rewriting (22) in
the form

nn

e(k) =e, +e, p e

f () + 86 y COS3» COS33i COS3g

where

(31)

g= —(Ã- E) Vg . (24) 3„=mak„, etc. , (32)

Using (23) and the fact that the Wannier functions
form a complete set, we get

[1+GV]c = 0, (25)

TABLE II. Impurity energy level E ' as a function of
the strength of the perturbation Vo' calculated from Eqs.
(30) and (33).

where G is defined in (18) and V is the matrix rep-
resenting the potential V in the Wannier represen-
tation.

The assumption that the impurity is somehow
localized now implies that most of the matrix ele-
ments of V vanish, which reduces the size of the
secular equation corresponding to (25) and makes
the problem tractable. In the one-band one-site
approximation all except one element of V are ne-
glected. For a more general case Lowdin~o has
proposed an iteration procedure based on the parti-

1.04
1.08
1.12
1.16
1.20
1.24
1.28
1.32
1.36

Vo

from (30)

0.8355
0. 9003
0.9568
1.0094
1.0595
1.1079
l. 1551
1.2013
1.2468

V()'

from (33)

0.8355
0. 9003
0.9568
l. 0094
1.0595
1.1079

—l. 1551
1.2013
1.2468
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TABLE III. Matrix elements G(m, 0; E) of the Green's
function (19) as functions of E' = (E- E'p)/8eg.

000
111
200
220
311
222
400
331

E' =l. 08

1.11078
0.19964
0. 114 03
0.073 91
0.04667
0.05032
0. 028 10
0. 026 29

E' =1.20

0.943 86
0.132 64
0.063 73
0, 038 16
0.020 32
0.023 80
0.01011
0.00988

E' =1.36

0.802 03
0. 09077
0. 03684
0. 020 91
0. 00944
0.012 26
0.003 92
0. 004 13

a is the edge of the cube, and nn means nearest
neighbors. With only these two parameters eo
and e„we can calculate the impurity level E as a
function of V, [or rather E'= (E —ao)/Se, as a func-
tion of Vo'= Vo/Se, ] without introducing any actual
values of &o and &,. We want to stress, however,
that the present method for calculating the Green's
function works equally well in a case where a num-
ber of parameters (a'0, e„e2, . . . , e~, . . . ) are
given numerically.

No one-band one-site calculation for the bcc case
seems to have been published. We can get a check
on our results, however, by using the analytical
expression for the density of states for a band de-
scribed by (31), which has recently been published
by Jelitto. ~' To that end we rewrite (30) in terms
of the density of states' g(g) as

Vo p dx= 1.z'+ x (33)

This integral has been calculated by Gaussian quad-
rature.

In Table II we give E' as a function of Vo obtained
in two different ways.

A value of Vo= 0. 722 is needed to get the discrete
level to appear (corresponding to E'= 1). In his
variational calculation for the bcc lattice Kilby'
obtained a value corresponding to Vo= 0.788.

With the method described in Sec. II we can also
calculate the nondiagonal elements G(m, n; E) which
are needed when more than one element of V is
taken into account. In Table III we show some
values of the elements of the Green's function for
three values of E.

vides an alternative way of solving the impurity
problem in the Koster-Slater method. We should

be aware though of problems connected with ap-
proximate linear dependence. The matrix ~ can
easily be inverted by the methods'6 used to calculate

and G and the calculation of V ~ is more direct
than that of V.

One can also discuss a one-site approximation
in this representation. The relevant secular equa-
tion is

1+ G + (0, 0;E) V (0, 0) = 0, (35)

Vo = V(0, 0) /8&, = [& ' (0, 0}] V (0, 0)/8& g .

The relation between V(0, 0) and V~(0, 0) follows
from

V(m, n)= Q 4 '~ (m, m')V (m', n')4 ' (n', n}
m', 5'

= V'(O, O)a ' "(m, 0)&-'"(0,n) . (36)

A large value of gR means that ~ = 1 and therefore
4 '= l. Equation (35) then reduces to (30). Table
IV shows that the values of V,

' approach those of
Table II with increasing gR.

The value of Vo which corresponds to E =1, i.e. ,
the one necessary to get a discrete level at all,
has not been calculated with the same accuracy as
those given in Table IV, since a rather large num-

ber of integration points was necessary to get ac-
curate values of the elements of G for this E' value.
The general trend is that for smaller values of gR
larger values of Vo are needed to get a discrete
level outside the band.

TABLE IV. Impurity energy leve1E' as a function of
the strength of the perturbation Vp for different values
of gR.

where G~=Gn '. Equation (35) has been solved
in the case of an impurity in a "hydrogen metal"
for four values of gR, where g is an orbital exponent

[cf. (13)]and R is the nearest nei-ghbor distance.
The results are given in Table IV, which shows

the impurity energy level E' = (E —eo)/Se, as a func-
tion of

IV. KOSTER-SLATER EQUATIONS IN AO REPRESENTATION
Vo'

qR= 2. 2~3 qR =3~3 qR=5W

[1+G~-'v']b=o, (34)

where /=4 b and V~ is defined in (28). This pro-

By means of (26) we can rewrite the set of equa-
tions (25) as a set of equations for the coefficients
b in the expansion of the impurity function (( in
terms of the AO's 4. In the simplest case, when
A = 6 '~~, we get instead of (25)

l.04
1.08
1.12
1.16
1.20
l.24
l. 28
l.32
l.36

1.0167
1.0611
1.1037
1.1452
1,1861
1.2265
1.2665
1.3062
1.3457

1.0068
1.0539
1.0985
1.1417
1.1841
1.2258
l.2671
1.3080
1.3486

0.9384
0.9949
1.0460
1.0944
1.1412
1.1868
l. 2316
1.2758
1.3194

0.8448
0.9090
0.9652
1,0174
1.0673
1.1155
1.1626
1.2087
l. 2541
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qR= 2&3

(311)(200)(ooo)

0.008 03
—0.000 73
-0.000 28

0.000 10
0.000 05

1.42Q 22 —0.049 71
0.004 50
P.001 74

TABLE V. Perturbation corresponding to Eq. (36) in the OAO representation tV(m, I)/V~(0, 0)].

(111) {22o)

(ooo) —0.128 55 0.017 59

(111) 0.01164 —0.001 59

(2oo) —0.000 62

(22o) 0.000 22

(311)

(ooo)
(111)
(200)
(22o)
(311)

1.000 232 -Q. 002978
0.000 009

—P. 000 953
0.000 003
Q. 000 001

& 10-6

&10
&10
& 1P-6

0.000 006
& 10-6

&10
& 1P-6

& 1P-6

V(r) = (Z/r) e-"" (3&)

and the ls functions (13), we can calculate the one-
and two-center elements of V~ analytically. The
results are

As shown in (36), the one-site approximation in
the AO representation corresponds, at least in
principle, to a many-site approximation in the Wan-
nier representation. In Table V we show for two
values of qR the ratios V(rn, n)/V (0, 0). For a
relatively small value of pR, we have a many-site
OAO approximation, whereas if gR is large, we
have in practice a one-site approximation in the
DAO representation also.

With a set of atomic orbitals and an impurity
potential given we should of course calculate the
various elements of V~. With a screened Coulomb
potential

where R = I ml. These reduce to

V'(0, 0) = Zq,

V' (m, 0) = Zn e ""~[1+gR ]
(38)

for the pure Coulomb potential.
In Table VI we show some numerical values of

these matrix elements as functions of g and X for
the eight nearest and the six next nearest neighbors.
Here we have fixed R to 3 a.u. , which is the order
of magnitude of the "hydrogen metal" equilibrium
distance that most calculations give. '

Table VI indicates that even for relatively large
values of the screening parameter & it is hardly
justifiable to neglect the nondiagonal elements of
the impurity potential.

V. CONCLUSION

V (p, p) =Zp /('ti+ 2&)

V2 (m~ p)
i e-( 0+2/2) s~2Z '

x(n+ —,
' x)

XR~
&& 1 —

R ) ( 2p)
sinh

3
+cosh

(38)

We have described how to use orthogonalized
atomic orbitals as approximate Wannier functions
in the Koster-Slater method for treating impurities
in crystals. It is pointed out that the procedures
used to compute the inverse or the inverse half-
power of the overlap matrix of the atomic orbitaI. s
can also be used to calculate the Green's function
for the host crystal. These procedures give not

TABLE VI. Relations bebveen the central element V~(0, 0) and neighboring elements V(m, 0).

s v'(m, o&

v~{0, o)

6v'(~, o)
v {o,o)

1
2/~
3/H3
5/~3

10/~3

1
2/vY
3+a
5/W3

10/W

l.593
1.118
0.275
0.013

4 xlp

0. 838
Q. 550
0.104
0.003
3 x10

1.0
Q. 628
0.390
0.067
Q. 002
3x10

Q. 293
Q. 169
0.022

4 x1Q-4

2 x1p-'

1.5
0.464
0.289
Q. 050
0.002
3xlp '

0.217
0.126
0.017

3 x 1O-4

10-8

2.0

0.365
0.228
0.040
0.001
2x10 '

0.171
0.099
0.013

2 x1p-4
10-8

2. 5

0.300
0.188
0.033
0.001
2xlp '

0.141
0.082
0.011
2 x1p-4

1p-8

3.0
0.254
0.159
0.028
0.001

] Qm

Q. 119
0.069
0.009
2 x1p-4

108
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only the diagonal element of the Green's function,
which is the only one needed in the one-site ap-
proximation, but also any element. The proce-
dures are illustrated by reference to an impurity
in a "hydrogen metal. " Finally, we have dis-
cussed the Koster-Slater method in terms of atomic
orbitals.
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Transition-Matrix Theory of Low-Energy Electron Diffraction
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A transition-matrix formulation is presented for calculating the scattering amplitude of an
elastically scattered beam from a crystal with perfect two-dimensional periodicity in the sur-
face plane. The scattering amplitude is expressed in the transition-matrix expansion for a
general potentia1. When applied to the muffin-tin potential model, Beeby's multiple-scatter-
ing low-energy electron diffraction (LEED) theory, Kambe's modified Korringa-Kohn-Rostoker
theory, Shen's application of the Shen-Krieger variational LEED theory, and the transition-
matrix LEED theory can be transformed to give the identical exact solution of this problem.
In analogy to the pseudopotential formalism in the energy-band theory, the scattering ampli-
tude can be written in Born expansions for an effective potential which is, in general, weaker
than the crystal potential for the nearly-free-electron model. It is shown that the infinity of
the tangent of a phase shift can result in a resonance peak in the reflectance.

I. INTRODUCTION

The diffraction of low-energy electrons (LEED)
is an important subject because of its potential as
a method for studying the bulk and the surface
structure of a crystal. A LEED experiment is
performed by allowing a beam of low-energy elec-
trons to interact with the crystal, which is formed

by bringing together 10 atoms in one cubic cen-
timeter. It is not possible to solve this entire
system of complicated interacting particles exactly
by many-body quantum theory. Thus, a few as-
sumptions are essential in the LEED theory. First,
no relativistic effect need be taken into account
since the energies of the incident electrons are
very low (~ 100 eV). (Relativistic effects may notbe


