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The ionic conductivity of four relatively pure crystals of potassium chloride has been mea-
sured over a wide temperature range. Precautions were taken to minimize the effects of sub-
limation at temperatures close to the melting point. The data have been analyzed in terms of
the conventional Schottky defect model allowing for transport on both sublattices and for both
nearest-neighbor and long-range (Debye-Huckel) defect interactions. The defect parameters
obtained are used to predict cation and anion diffusion coefficients. The cation diffusion co-
efficients are in excellent agreement with experiment, but both the enthalpy and entropy of acti-
vation for anion diffusion are higher than the values obtained from diffusion experiments by
Fuller. Possible reasons for these discrepancies are discussed.

I. INTRODUCTION

The ionic conductivity of simple ionic solids like
the alkali and silver halides has been studied inten-
sively in recent years. Such measurements provide
information concerningthe number of defectspresent
in a crystal, the mobility of these defects, and the
interactions between them. This information is
most conveniently summarized in terms of defect
thermodynamic parameters: enthalpies and entro-
pies of formation, migration, and interaction. In-
asmuch as the ionic conductivity can be computed
as a function of temperature from these parameters,
agreement between calculated and measured con-
ductivities provides tests both of the theoretical
model employed and of a priori calculations of de-
fect parameters using lattice theory. '

A method of calculating defect parameters from
conductivity measurements was first given by Koch
and Wagner. ~ This method is based on a very sim-
ple model in which only one kind of defect is sup-
posed to be mobile at low temperatures in doped
crystals and defect interactions are ignored com-
pletely. Improvements in this simple model were
effected by Teltow, by Etzel and Maurer, who
allowed for nearest-neighbor defect interactions
between divalent cation impurities and cation va-
cancies, and by I.idiard, ' who pointed out that
long-range interactions could be included by utiliz-
ing the Debye-Hiickel theory~ originally developed
for dilute ionic solutions. A technique for handling
defect interactions which is based on Mayer cluster
theory has been developed by Allnatt and Cohen. '

Although this theory indicates the temperature at
which the Debye-Huckel approximation is expected
to break down, convergence problems prevent the
development of a practical formula which could be
used as a "next best" approximation.

On the Koch-Wagner model, plots of log&o oT vs
T ' are expected to consist of two linear sections
separated by a curved region generally referred

to as the "knee. " Association of divalent impurity
cations and vacancies would cause the low-temper-
ature (extrinsic) region to be concave downwards,
while long-range interactions between defects would
cause the high-temperature (intrinsic) region to be-
come concave upwards. An additional cause of non-
linearity in the intrinsic region is the occurrence
of mobile defects on both sublattices. ' These per-
turbations reduce the effectiveness of the simple
graphical methods which had been traditionally
used to analyze conductance data. A better tech-
nique is to use a nonlinear least-squares computer
program to calculate best-fit values of the defect
parameters. This method was first applied by
Beaumont and Jacobs, "who were able to predict
anion migration parameters for KC1 which were
in reasonable agreement with those determined
directly by Fuller, '~ the calculations having been
performed' before Fuller's results were available
to them. However, despite this initial success with
computer fitting, their work contains some defi-
ciencies. (i) Because of anticipated difficulties
due to sublimation, Beaumont and Jacobs ceased
their measurements about 90'C below the melting
point, so that the full temperature range was not
explored. (ii) Although aware of the desirability
of including long-range interactions, they allowed
only for nearest-neighbor interactions (Teltow as-
sociation model) as a first approximation. (iii)
The residuals showed nonrandom dependence on
temperature. This last effect could be due to in-
adequacies in tI'e model used or in slow convergence
of the least-squares routine, or to both causes.
For these reasons we thought it desirable to rein-
vestigate the conductivity of KC1, including a
thorough examination of the high-temperature re-
gion and a critical analysis both of the model used
and of the computing techniques.

Recent work on the conductivity of alkali halides
in which there has been extensive analysis of the
data comprises the studies by Fuller et al. '
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(RbC1 and KCl), Allnatt ef af. ' ' (NaC1), Chandra
and Rolfe' ' (KCl and KI), and Bauer and Whit-
more ' (NaF). In addition, a thorough investigation
of self-diffusion in and conductivity of KBr has been

by Barr and Dawson. 33 34 Fuller and Reilly
analyzed data for RbCl above the knee in tex"ms of
an equation appropriate for "intrinsic" conductivity.
Such an equation is only approximate, however,
for even in relatively pure crystals the effects of
the adventitious divalent cation impurities persist
into what is generally termed the intrinsic region.
Their experimental data showed the usual intrinsic
curvature found for other alkali halides' but the
difference between the anion and cation activation
energies for RbCl came out to be anomalously high.
Dawson and Barra attribute this to the difficulties
of computer fitting an "intrinsic-only" section of
the complete conductivity curve. Fuller et al. '~

note that their parameters for KCl, which were de-
termined by fitting the intrinsic-only section of the
conductivity curve (& 560'C) using the approximate
four-parameter equation which neglects c, the con-
centration of divalent impurity, entirely, do not
agx'ee with those of Beaumont Rnd Jacobs, who
analyzed the whole conductivity curve (370-690'C)
using equations that are exact within the framework
of the simple association (Teltow) model employed.
This in itself is not surprising, but what is signif-
icant is that they extrapolated the conductivity curve
to high temperatures using the Beaumont and Jacobs
parameters to give a line lying significantly below
their own experimental points above 690'C. How-

ever, this discrepancy refers to a single run on

Harshaw KCl and no special precautions were ap-
parently taken to deal with the problem of sublim-
t1on.

In a latex paper, Fuller et al. 'ederive values
for defect parameters for KCl by combining con-
ductivity data (480-750'C) with the earlier dif-
fusion data. '3 The anion migration parameters
were not allowed to vary in the conductivity analy-
ses, while the parameters governing the formation
and association of defects were not allowed to vary
in the diffusion analyses. The results show the
same nonrandom features in the temperature de-
pendence of the residuals as was apparent in earlier
work on KCl. They also show that inclusion of
Debye-Huckel interactions reduces the percent
deviation, for example from about 4% to about 2%
maximum deviation for KCl containing 375 ppm of
SrC12. Perhaps the most striking featuxe of the
results is the catastrophic increase in the magni-
tude of the percent deviation in oT, 100x [(calc
—expt) jexpt], for pure crystals bebveen '700 and
760 'C.

This increase in the specific conductance at high
temperatuxes has been noted also for NRCl, ' for
which it was found that the inclusion of a small

Fx'enkel defect component reduced the nonrandom
behavior of the crT deviations to a significant extent.
Fuller and Reillya' have attempted to explain the
RnoIQRlous increase in tI1e specific conductance of
pure KCl at high ten1peratures by ascribing this
to a possible trivacancy contribution. However, to
take the difference between the calculated "best-
fit" crT and the experimental values as an estimate
of the trivacancy concentration may not be a valid
procedure, since these high-temperature points
were presumably included in the original best-fit
calculations.

An alternative approach to the problem of finding
the values of the defect parametex s from conduc-
tivity data. has been devised by Rolfe. This in-
volves doping with divalent anion impurity ions,
specifically CQ3=, in addition to the more usual
divalent cation impurities. Although attractive in

principle, this method suffers from the disadvantage
that anionic impurities tend to be rather insoluble
and it is therefore difficult to be sure that all the
measured impurity is in fact in solution. The same
difficulty also in principle applies to cation-doped
crystals, in that any analytical procedure gives the
total amount of impurity, whereas it is only those
impurity ions in solution on normal lattice sites
that introduce compensating cation vacancies.

The present investigation was confined to pure
(i.e. , undoped) crystals of KCl for the above rea-
son and also because it is not obvious that the same
model, e.g. , Schottky defects with association of
cation vacancies and divalent impurity ions, will
be equally valid for pure and doped crystals. For
example, divalent cation doping would increase the

trivacancy concentration but would decrease the
concentration of interstitial cations, if Frenkel de-
fects exist.

II. EXPERIMENTAL

The conductance cell and associated vacuum line
were essentiallythe same as those usedpreviously.
Conductance measurements were made with a trans-
former ratio arm bridge (Wayne Kerr, model 8221)
at a frequency of 10 /2m Hz. Frequent checks were
made to see if the measured conductance was fre-
quency dependent, but as no frequency dependence
was found it was concluded that polarization resis-
tance was negligible. A Wayne Kerr AF Signal
Generator 8121 and %aveform Analyser A321 were
used for these experiments. Various refinements
in the experimental technique were made. The
cleaved crystals were microtomed on their two

larger faces to provide a roughened surface to
which pure-graphite powder adheres rather readily.
After the graphite had been applied, the other four
faces were microtomed to remove any graphite pow-
der which might be adhering to them. Microtoming
provides more uniform dimensions and reduces sig-
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nificantly errors in the cell constant which is ob-
tained by measuring the crystal with a micrometer
both before and after the run. Post-run cell con-
stants were also determined by weighing the crys-
tals (see later). Pure-graphite discs were intro-
duced bebveen the crystal and the platinum elec-
trodes. The combination of rubbed graphite and

graphite discs provides excellent contact with the
electrodes and eliminates the small distortion of
the crystal (caused by the Pt/Rh thermocouple wire
brazed to the back of the electrode) which occurs
when graphite discs are not employed. Lead cor-
rections were determined as a function of temper-
ature and app1. ied in all cases.

Sublimation is a problem and, if not corrected
for, causes some irreproducibility in the measure-
ments at the highest temperatures, i.e. , in just
the range where we particularly wished the accuracy

' to be maintained. The technique finally adopted
was to anneal the crystal as usual at a temperature
of - 600 C until reproducible results were obtained
on thermal cycling. The temperature was then
raised to 690'C and the conductance measured at
approximately 5 intervals as the temperature was
decreased until the bridge measurement could no
longer be relied on to 0. 1% (G = 10 ' 0 '). Each
time the temperature controller was reset, mea-
surements of 6 were made periodically until a
constant value indicated that thermal equilibrium
had been established. The temperature and con-
ductance were then each measured in rapid suc-
cession, the measurements (emf, G) were then
repeated to ensure that no thermal drift had oc-
curred. Each measurement, therefore, took about'
30 min from the time that the controller was reset

to a new temperature. Frequent checks were made
for precipitation or other spurious effects, the
criterion for acceptability being less than 1% change
in 6 in 16 h at the same temperature. After com-
pleting the low-temperature measurements, the
temperature was then raised again to 690'C, peri-
odic check points being taken on the way up, and
the conductance measurements completed by taking
readings as rapidly as possible up to VVO 'C. In
some runs, sublimation altered the cell constant
slightly during the run. This is shown by a dis-
continuity in plots of log|ooT vs T (see Fig. 1)
at places where there has been a long interval be-
tween points due to an anneal at too high a tem-
perature or to taking measurements at high tem-
peratures in the interim. In such cases the change
in the cell constant g was determined from over-
lapping data and the appropriate value of g used in
converting the measured conductance values G to
specific conductance o. using the relation 0 = Gg.
The most reliable values of g were considered to
be those obtained by measuring the thickness of the
crystal with a micrometer and determining the area
indirectly by weighing the crystal (ignoring the
weight of carbon which is negligible). Figure 1
shows high-temperature data for two runs, one an
incomplete run on a Harshaw crystal and the other
a complete run (designated 102-2) on a zone-re-
fined crystal. For both runs, cr has been calculated
using a g factor determined by weighing the crystal
after the run. The agreement is very satisfactory.
Cell constants for the other three runs analyzed
numerically were, therefore, determined by nor-
malizing the data to run 102-2. This was done in
the following way. The top points in each run were
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FIG. 1. Conductance of KCl at
high temperatures. The closed cir-
cles are run 102-2; the continuous
line is the least-squares fit to the
top eight points for this run. The
open circles are run H3. There was
an interval of 16h between the points
on the dashed line and those which
lie very close to the least-squares
fit to 102-2, showing that an increase
in geometric factor of rather less
than 2% occurred during the 16-h
anneal (at 672'C) due to sublimation.
No such change in g occurs on an-
nealing at 600'C, or on thermal cy-
cling below that temperature, as
shown by the lack of any significant
discontinuity between the lines b and
CI

K



3760 P. W. M. JACOBS AND P ~

-gjlt.tfscdacs = Ri = e

c~/f, c,f„(c-c~) =K~ =12 e

cl —c2 —c—ck = c(1—p).

(2)

(3)

Equation (1) expresses the Schottky defect equilib-

fitted to linear equations by the method of least
squares. Because of the small temperature range,
this is a valid procedure (see, for example, Fig. 1).
The necessary corrections to the constant term
in these linear equations to make the conductivity
agree with that of run 102-2 at 753 'C (103/T
= 0. 975) were found and log~Do T then recalculated
using the revised g factors. Figure 1 also shows
that no change in g factor occurs even after a pro-
longed time interval at lower temperatures. The
points in run 102-2 were taken in the following
sequence: (a) V01-769 C, (b) 605-361 C, (c)
611-707 'C. The absence of any discontinuity be-
tween sections (b) and (c) shows the reproducibility
of the measurements and specifically that no change
in the g factor occurred during (b).

Four complete runs were made and analyzed, two
on a KCl crystal zone refined in pure graphite in an
atmosphere of HCl and two runs on a crystal grown
from 5N-purity KC1 (from Koch Light Laboratories,
Ltd. ) in &acuo in a crucible of graphite after pre-
melting under 1 atm of C12. These runs are desig-
nated 102-1, 102-2 (for zone-refined KC1), and
B4-5, B4-6 (for 5NKC1). In addition to separate
computer analyses of each run, a composite run
was constructed by combining the 92 points from
84-6 with those data from the other three complete
runs and the (intrinsic only) Harshaw run, which lay
on a common curve. In practice, this amounted to
only another 44 data points, showing how limited is
the temperature region in which the conductivity can
be described as intrinsic. The bvo 84-6 runs are
later distinguished by the number of points analyzed,
viz. , 92 or 136.

III. ANALYSIS OF DATA

A. Debye-Hiickel Model

Most of the calculations were based on the famil-
iar model in which it is supposed that the principal
defects are anion and cation vacancies, in concen-
trations determined by the Schottky defect equilib-
rium, and divalent cation impurity ions substituting
for K ions on normal lattice sites. The defect in-
teractions allowed for are the formation of vacancy
pairs (which contribute to diffusion but not to ionic
conductivity), association of cation vacancies with
divalent cation impurity ions on nearest-neighbor
cation sites, and long-range Coulomb interactions
through the Debye-Huckel approximation. Express-
ing all concentrations as site fractions, the equa. -.

tions appropriate to this model are

rium: c, and c~ are the concentrations of (unas-
sociated) cation and anion vacancies, respectively,
and g=h —Ts is thechangeinthe, Gibbs free energy
accompanying the formation of a Schottky defect pair,
apart from the configurational entropy contribution,
h and s being the corresponding enthalpy and entropy.
Equation (2) expresses the association of free-cation
vacancies with unassociated divalent metal impurity
ions to give complexes of concentration e„.
= —y+ Tg is the Gibbs free energy of association
apart from the configurational entropy contribution,
with X and g the corresponding enthalpy and entropy.
E& and Ez are equilibrium constants for the forma-
tion and association of vacancies, respectively, p
is the fraction of divalent impurity c which is in the
associated state, and the f 's are activity coefficients
given by

f& f& fu=—exp——e k/2ekT(1+ KR}. (4)

Here e is the charge on the proton, ~ ' the Debye
length given by

g =4m e Q&c&/2a ekT, (5)

a being the nearest-neighbor anion-cation distance,
and e the permittivity of KC1. Values of the lattice
parameter a were obtained by least-squares fitting
the data of Enck et al. 7 for the thermal expansion
coefficient. The equation used was

a= 314, 66 [1+(34, 94+ 0.01719 t) &&10~ (t —25)jpm,

o =Dc„eu„/2a', (8)

with the mobility u„ua of cation and anion vacancies

u, =go (4e a' v, /kT) e-~'~~',

=g, (4e rP va/kT) e

(9)

(10)

where 4g„4' are the Gibbs free-energy changes
accompanying the motion of a cation, or anion, ad-
jacent to a vacancy to the col of the energy barrier
in the direction of the vacancy. For want of better
information, the effective vibrational frequencies of
the ions adjacent to their respective vacancies v„

where t is the temperature in 'C. Values of the
permittivity were obtained by least-squares fitting
the data of Smith~a for the dielectric constant of
KCl to the equation

e/e 04. 753+0. 14748&&10 t+0. 48287 x10 t

+ 0. 20109 && 10 t ', (7)

with eo the permittivity of free space. g~c, denotes
a sum over the concentrations of the interacting
species; in this model g~c~= c~+ cz+ c —c„=2c,. In

Eq. (4), R is the distance of closest approach.
The specific conductance 0 is given by
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fj c,f,c, = Kr = 2 e '~ (14)

with c& the concentration of interstitial cations and

g~ the Gibb free energyof formation of a Frenkel
defect pair apart from the configurational contribu-
tion. The activity coefficient f, of interstitial cat-
ions is evaluated from (4) with R = —,

'
v 3a.

The conservation condition (3) is replaced by

Cy C2=C;+C CP q (i5)

and Eqs. (1), (2), (14), and (15)yield the cubic equation

c2 + c2 [K1K2 + cK1(K1 +KE) ] c2 1 (K1 +~E)

—Ko1K2(K, +Kg) '=0, (16)

which replaces (12). A limited number of calcula-
tions were also performed using a model which in-
cluded Frenkel defects on both sublattices.

C. Trivacancy Model

Only a linear trivacancy comprising two cation

v2 have both been assumed equal to the lattice fre-
quency v=4. 5 &&10~ sec . Any differences will be
incorporated in the migration entropies &s&, &s2.
go is the Onsager-Pitts mobility correctionoo

go = 1 —te K/SENT(1+ V 2) (1+KR) (V 2+ KR)]. (11)

In calculating the mobility correction, the values of
R used were R=WSa when cz&c, and R=2a when

C2 ~ C.
The method of calculation is essentially that de-

vised by Beaumont and Jacobs. Elimination of
c, and c, between Eqs. (1), (2), and (3) gives the
cubic equation for c2,

co + co (c+K1Ko) —K1co —KoK1 = 0. (i2)

Throughout this paper the omission of a prime on
the symbol for an equilibrium constant denotes the
corresponding concentration product, e.g. , E,
=K1 /f& fz c,cz. In——calculatingK, fromK, ', R= Wga in
formula (4), but in calculating Ko from Kz', R = 2a.
Equation (12) is solved by Newton's method for as-
sumed values of the parameters and log, 0oT is cal-
culated. The parameters are refined until

& = H(log1o c&)ea10 (log1o c7)smtl (i3)

is a minimum, the sum running over all the data
points.

B. Frenkel Defect Model

It has been suggested by Allnatt and Pantelis~~
that NaCl might contain Frenkel defects at high
temperatures. We considered that the occurrence
of (cationic) Frenkel defects would be less likely in
KC1, but felt that the possibility should be examined
in view of the results of the calculations on model
A. If Frenkel defects occur on the cation sublattice,
then the additional equilibrium condition is

vacancies and one anion vacancy was considered
since this was the type and configuration considered
most probable by Fuller and Reilly. ~ The equations
of equilibrium and conservation, with T denoting the
trivacancy, are

cr/c, c', = 3 e '&" = K'

Cg+ Cg —C2 = C Cg ~

(17)

(ia)

When these are combined with Eqs. (1) and (2), they
lead to the cubic equation

cz + co (K1Kz+ c —K+K1) —cz(K1KzKr+K1)

—E'g E2 ——Q
2 (is)

The binding Gibbs free energy of the trivacancy
(apart from configurational contributions) is —gz, ,
so that g~ is expected to be negative, or at least
very small if it is positive, if a significant number
of trivacancies are formed.

D. Excess Conductance Model

Since the determination of the conductance param-
eters as well as the tests made on the various
models considered in Sec. III depend on the validity
of the computing method, this was thoroughly

As will soon be apparent, none of the models A
through C is completely satisfactory. We therefore
examined a very general model in which the sum
over r in (8) includes an extra term (8/T) e e~' .
The carriers responsible for this term remain un-
identified, but they are presumed to be responsible
for any "excess conductivity" not included in model
A. The implication is that the carriers responsible
are completely decoupled from the other equilibria.

Barr and Dawson22'23 have identified a disloca-
tion component in anion diffusion in KBr. Such a
component could be due to the diffusion of pairs or
to single vacancies. If pairs, there will be no con-
tribution to the conductivity; if single vacancies,
then their contribution can be included approximately
by a variant of model D in which B is made propor-
tional to c2. Actually, an integration is required
with the argument equal to c„eu„, where both c,
and u„are functions of the distance from the center
of the dislocation. c„could be evaluated, but there
is no good theory for the mobility u~ as a function
of the distance from the center of the dislocation.
Also, the surface potential and dislocation density
are not known very precisely and would have to be
treated as additional parameters. In view of the
theoretical difficulties described above and because
the preliminary calculations with B~ c2 did not look
very promising, this dislocation model was not
pursued further.

IV. RESULTS

A. Test of Method of Data Analysis
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TABLE I. Results of feasibility tests of the computing method for analyzing conductance data. Pg and g are the enthalpy
and vibrational entropy changes accompanying the formationof a Schottky defect pair. -X is the enthalpy of formation of
a divalent cation-cation vacancy complex. c is the site fraction of divalent impurity ions. M~, Ag~ (M2, ~~) are the
enthalpy and entropy of migration for cation (anion) vacancies. y is the sum of the squares of the deviations between com-
puted values of logMOT and "experimental" values which, in this calculation, were obtained by adding random errors to
the values of gT calculated from the set of parameters designated II. 92 points were used in the calculations.

MaxlDlum
random

errors (~/~) in
o.r 103/r

Starting
parameters

&sg
(meV/K) (eV)

1 0 ~ 0 ~ ~ 0

2 ~ ~ ~ ~ ~ ~3,0.5 0
4 0 5 0
5 1 0 0
6 0.025 0.025
7 0.05 0.025
8 0.1 0.05

I
II
II
I
II
II
I
I

2.0672
2. 1884
2. 2123
2. 2052
2. 2036
2. 1794
2. 2180
2. 1957

0.3666
0.2380
0.2792 .
0.2491
0.2411
0.2318
0.3556
0.3216

0.4000
0.5627
0.5637
0.5672
0.5714
0.5590
0.5484
0.5472

6.6806
0.9743
1.0392
0.9200
0.8919
1.0033
1.5404
1.4873

0.7305
0.6670
0.6632
0.6653

- 0.6624
0.6694
0.6605
0.6631

0.2000
0.2008
0.1906
0.2035
0.2024
0.2013
0.1540
0.1602

1.2405
l. 2942
l. 2857
l.2867
l.2808
l.3002
1.2968
1.3044

0.7239
0.8924
0.8740
0.8869
0.8848
0.8974
0.8490
0.8638

0.1476
0.1451
0.5820
0.1582
0.1695
0.6383

checked at the outset. Basically, the method was
that used by Beaumont and Jacobs, ' except tha, t a,

more powerful least- squares program was employed.
However, a particular set of data was run on the
IBM 7040 computer at the University of W'estern
Ontario using the new program and the same set
was also analyzed on the Atlas computer of Man-
chester University using the Beaumont and Jacobs
pxogram. Essentially identical xesults were ob-
tained for the parameters. The cubic equation was
generally solved for ea by Newton's method; however,
as ca becomes very small at low temperatures, a
check was made to see if rounding errors were
affecting the accuracy of the results by solving the
equivalent cubic equation for e, . No diff erences
in the results were found.

Tests were then made of the ability of the pro-
gxam to converge to a particular set of "pexfect-
fit" parameters . It is not a sufficient test (al-
though this too was accomplished) to generate a
set of conductivity data at specified temperatures
from a set of starting parameters and then show
that a new set of parameters will converge to the
original set, because such data are artificially
smooth. W'e therefore generated a set of conduc-
tivity data from a set of parameters (the ones ac-
tually used being shown on the second line of Table
I) at values of 10 /T that corresponded to the ac-
tual temperatures used in a particular run (B4-6).
Random errors up to a specified maximum value
were then generated and added to the calculated
values of o T and the chosen values of 10 /T. The
maximum random error need not be the same for
oT and 10/T. The convergence of two sets of
starting parameters were studied using the gener-
ated data, including the random errors, as "ex-
perimental data. " One of these sets, designated
II, was the original set used to generate the data

and so mould correspond to a perfect fit to the
data if no random errors had been introduced.
The other set was chosen so as to correspond to a
very different start in eight-parameter space.
The largest change was in the concentration which
was off by a factor of more than 6.

It is difficult to decide on a reasonable magnitude
for the random errors. The temperature remained
stable to 0. 1 K during a conductance measurement.
(This was checked at every point and if a greater
variation was found, measurements were continued
until this condition was satisfied. ) This corresponds
to an error of 0. 01-0.02% in T and the same in
10'/T. Measurements of o' were made to four signif-
icant figures which means 0. 01-0. 1'% error. Both
these estimates apply to the expected random errors
associated with the determination of any one point
and not, of course, to the absolute accuracy.

The results of these tests are shown in Table I.
The starting parameters are on the first two lines.
Lines 3 and 4 show that with 0. 5% random deviations
in oT only, the parameters from set I converge to
as good a minimum as do the perfect-fit set II, and
that the converged sets show good recovery of the
enthalpies but lower accuracy in s and also c (5-7%).
This is to be expected from the form of the conduc-
tance equation. With 1% random errors in oT, the
sum of the squares of the deviations y was worse
by a factor of 4. When random errors are introdu-
ced into both variables, the concentration is off by
almost 50% with corresponding variations in s and
Ds„with which parameter e is strongly correlated.
The recovery of 4s& and the four enthalpies is still
uniformly good, however. Probably variations in
starting values should have been probed in more
detail. The recovery of c from a value off by a
factor of 6 to one only 50% away from the best-fit
value is, in fact, impressive as is the accuracy in
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the enthalpies, particularly &h, (0. 5-1%) and h

(&leuc). Since c is an unknown parameter, the slow-
ness of e to converge to its correct value while
still giving a reasonable fit to the data, e. g. , lines
7 and 8, is a worrying feature. But if one obtains
closely similar values for the entropies s and 4s,
from analyses on different crystals, then it may be
concluded that the minima found are the correct
ones. Reproducibility of converged values for the
concentrRtlon when R rRnge of stR1'ting VRlues ls
used, will also be a guide that a correct minimum
has been obtained. Finally, there is clearly little
point in expecting p to be less than about 2 &&10

for a 92-point run if the above random errors are
1eRllstlc.

B. Debye-Hiiekel Model

Because of the slow convergence of e when it is
far from the correct value, the first analyses on
each crystal involved finding the approximate con-
centration of adventitious divalent cation impurity
by varying the initial value of c over a wide range.
Final analyses were then made limiting e to a range
around this approximate value. The first conduc-
tance run analyzed was 102-2. As this refers to a
zone-refined crystal, c is low (&1&&10 s) and con-
sequently association is limited, resulting in a
difficulty of separating 4h& and y. However, con-
verged values of the other parameters did not de-
pend systematically on the values of these parame-
ters. It was clear from the slopes of the extrinsic
part of the plots of logypo'& vs T thRt &ky wRs
& 0. 7 ep. The technique Rdopted ln the systemRtlc
analysis of this run was therefore to fix hh& at a
series of seven values increasing in equal incre-
ments from 0. 670 to 0. 705 eV. As ~h& was increased, y
at first remained constant but then decreased rapidly
for ~h&=0. 695, 0. 705 eV. The mean value of X for

the first five runs was 0. 565 eV, which agrees well
with the value found for the two less-pure crystals
(Table II). p was about 3&&10 for this VV-point

run. MeRns of other pRlameters Rle shown 1n the
line I in Table II. All are means of the converged
results from seven computer runs except X, for
which the two obviously low values havebeendropped,
as explained above. The range of t.", for example,
was from 0. 1831 to 0. 2278~10 with no systematic
dependence on ~h~. A further series of seven runs
was performed in which ~kq was allowed to vary.
In four of these, the starting value of k was the
(rounded) mean from line I; in the last three the
initial value of h was varied over a wide range,
namely, 2. 25, 2. 35, and 2. 40 eV. Means of con-
verged parameters for the two sets appear on lines
II and III of Table II. Note the insistence of a value
close to 2. 30 eV for h, the good internal consistency
of the other parameters, the "high" values for the
anion migration parameters (tobe discussed later), and
the difficulty inpreventing 4A&fromdriftingupwards
in this run (with consequent low values for y) because
of the small degree of association. Means of all
the analyses for this crystal are give~ on the fourth
line of the table except for y and ~k&, for which it
is not justified to do so.

The next conductance run analyzed was 102-1,
done on a cleave from the same zone-refined crystal.
Initial tests in which c was varied by a factor of 5
from 0. 1 to 0. 5&10 gave a mean converged value
of c of 0. 237&10 . In the final set of six runs,
initial values of e were varied only over the range
0. 20-0. 28&&10 6. Means of the results for these
six runs are given in line IV of Table II. This run
contained insufficient extrinsic data to produce R

reliable value for X because there is so little associ-
ation in these pure crystals. Random errors were
evidently greater in this run since y was about 2. 5

TABI E II. SUmmary of conductance parameters from Debye-Huckel model. The symbols are defined in the caption
to Table I. The meaning of the numbers I-VII is explained in the text.

I
II
III

102-2 mean
IV
V
VI
VII

DH mean

(eV)

2.303
2. 294
2. 294

2. 296
2.30'2

2.301
2.299
2. 302

(me V/K)

0.427
0.435
0.416

0.427
0.391
0.374
0.352
0.358

X

(eV)

0.565
0.440
0.413

0.435~
0.594
0.567
0.577

0. 208
0 ~ 212
0.212

0.210
0. 256
0.587
0.912
0.850

(ev)

0.677
0.679
0.674
0.665

(mev/K)

0.215
0.222
0.235

0.222
0.220
0.231
0.232
0.226

(eV)

1.533
l.552
l.557

l. 543
1.420
l.340
l.230
l.303

(me V/K)

l.063
l. 072
l.079

l. 070
0.981
0.913
0.816
0.884

'i&~ held fixed at a series of values from 0.670 to
0.705 eV.

'%hen ~& is allowed to vary, a high value for M~, and
a correspondingly lour value for X, are produced for this

crystal because e is so small.
Insufficient extrinsic data to produce a reliable value

of X because there is so little association in the pure
crystals: not included in final means.
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FIG. 2. log~ooT vs 10 /T for a
relatively pure KCl crystal (c -2
x10 ~) in the extrinsic region. The
points scatter about a straight line
because association is so small: p
varies from 4x10 to 1.2 x10 over
the temperature range shown. The
slope of this line corresponds to Ng~
=0.668eV. Data are from run B4-1,
which was not analyzed in detail. be-
cause there were too few points
taken at high temperatures. Some
preliminary computer analyses gave
M~ = 0.667 eV, in agreement with the
graphical value and the result from
the 136-point composite run (line
VII, Table II).

IO /T,

x10 for 62 points.
Results of analyses for the two conductance runs

B4-5 and B4-6 on KCl grown in pure carbon are
given in the lines designated Vand VI. Each is the
mean of three computer runs in which c was varied
over a small range, + 11/c in B4-8 and + 18' in
B4-5. For B4-5, p was 9. 5~10 for 53 points and,
for B4-6, p was4. 9&&10' for 92 points. In line VIII
appear the means from six computer analyses of
the 136-point composite run. y was 2. 1 &&10 3.

These runs consist of two sets of three each, each
one of the three having a different input concentra-
tion. The other input parameters were the means
of results from runs other than B4-6, for the first
set, and from the 92-point B4-6 analyses, for the
second set. As there were no systematic differ-
ences in the final parameters the results for all six
runs were averaged.

The parameters from the four individual conduc-
tance runs given in Table II show a high

degree of concordance with one another. Greatest
variations are in the anion migration parameters,
which are all high. A check on the cation migra-
tion enthalpy is provided by plots of log&&o T vs
7.
' ' for pure crystals at low temperatures. Such

a plot is shown in Fig. 2. The slope of the line
yieMs a value for ~h& of 0. 668 eV, showing that
the computed values are satisfactory. The consis-
tency of the results for c may be tested by plotting
o at a temperature safely in the extrinsic region
vs c(1—P), where P is the degree of association
when a straight line is expected. Such an isotherm
for 10 /T= 1.500 K is shown in Fig. 3. The com-
puted concentrations for the three highest concen-
trations lie on a straight line while the lowest con-
centration (run 102-2) lies below this line. Because
of the strong correlation of s with c, a high value

0 8-

0.6

0 4
0

O
0 ~ 2

0.4 0-8
I

l.2

FIG. 3. Specific conductance a at 393.6 C (103/T
=1.500 K ~) as a function of the concentration of free
vacancies c(1-p). The linear relation found shows that
the values of c found from the computer analyses are
mutually consis tent.

of c means a high value of s, which is borne out by
the mean value for 102-2 of 0. 427 meV K ' com-
pared with the means for the other three individual
runs which range from 0. 352to 0. 391meV K '. The
concordance in values for bs, is an added indication
that the values for c are at least consistent and,
because four different runs are involved, likely to
be close to the actual values for the site fraction
of dissolved impurity. The means of the means
for the four individual runs are given in the last
line of the table so that they may be compared with

VII, the means for the composite 136-point run.
In all the above analyses, the entropy of associ-

ation was neglected. This is justifiable because
of the small concentrations involved. However,
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TABLE III. Comparison of conductance parameters from various models. —q is the vibrational entropy change ac-
companying the formation of a complex. h~, s~ are the enthalpy and vibrational entropy of formation of a Frenkel defect
pair. M&, ~& refer to the enthalpy and entropy of migration of interstitial ions. The first time they appear in the list
they refer to cations, the second time to anions. B and E are the parameters defining the unknown contribution to OT,
B e ~ . Remaining symbols are defined in the caption to Table I.

Parameter

VIII Debye-Hihkel
model with

nonzero entropy
of association

IX Debye-Hiickel X Frenkel defects,
interactions cation
suppressed sublattice

XIII Frenkel defects XIV Excess con-
on both due tance

sublattices model

I (ev)
s (meV/K)
X(eV)
q(meV/K)
C

W, (ev)
~,(me V/K)
m, (ev)
~2 (me V/K)
k~(eV)
s~(me V/K)
~,.(ev)
~, (me V/K)I.(ev)
s (meV/K)
~, (ev)
~&(me V/K)
B(n-~ cm-' K)
E(ev)

2.302
0.379
0.590
0.048
0.965
0.673
0.225
1.305
0.873

2. 302
0.350
0.571

0.764
0; 668
0.238
1.334
0.933

2. 226
0.244
0.563

0.976
0.675
0.228
0.978
0.570
3.614
0.094
0.530
1.574

2. 157
0.202
0.560

1.033
0.667
0.196
l. 251
0.850
3.655
0.256
0.303
1.213
3.808
0.235
0.567
0.704

2. 222
0.231
0.561

1.002
0.676
0.226
0.943
0. 544

l. 94 x10i~
3.184

to check that this was not distorting the parameter
values, an analysis of the composite run was per-
formed with a finite q. Results are given in column
VIII of Table III. The converged value of g was
0.048 meVK ' and any improvement in the fitmar-
ginal and probably due merely to the increase in
the number of parameters from eight to nine.

The effect of including long-range interactions
through the Debye-Huckel model was also tested
by suppressing that part of the calculation. The
results of this test are shown in column IX of
Table III. The results of this test are frankly dis-
appointing since they show no significant changes
either in the parameters or in y (2. 14X10 3).
The improved fit generally attributed to the inclu-
sion of Debye-Huckel interactions may be due sim-
ply to prolonged computing leading to a better mini-
mum.

C. Frenkel-Defect Model

The cation migration parameters determined
from the Debye-Huckel model are reasonable, but
the anion migration parameters seem too high. It
may be argued that the presence of the extrinsic
region will help to fix the cation parameters and
that any discrepancies between the experimental
and theoretical conductivities at high temperatures
will therefore be forced into the anion parameters.
In order to test whether KCl at high temperatures
contained a small number of Frenkel defects in

addition to the predominant Schottky defects, the
data for the 136-point composite run was reana-
lyzed allowing for the presence of Frenkel defects.
Debye-Huckel interactions were again included.
These calculations showed that it is unlikely that
the anomalous high-temperature conductivity of
KCl (as evidenced by the values obtained for the
anion migration parameters from the Schottky de-
fect model) can be explained by the presence of
Frenkel defects. It is true that good fits to the
composite-run data can be obtained, y= 1.6 to
2. 2 &10 3, and that the anion migration parameters
are now closer to diffusion values but the Frenkel
parameters show unacceptable behavior. In column
X of Table III, k~ is 3. 6 eV (close to a calculated
value" of 3. 53 eV) and sz is small as would be
expected, but ~s; is far too large. If attempts are
made to reduce 4s, by varying starting values,
then an alternative minimum can be obtained with
&s;=0.6 meV K, which is still rather high, but
only at the cost of either a substantial decrease
in the migration enthalpy 4h; coupled with either
a big increase in the formation entropy s~, or a
substantial decrease in the enthalpy of formation,

The wide disparity in these sets of parameters
and their unacceptable character lead us to the
conclusion that cationic Frenkel defects are not the
explanation.

A few calculations were also done on the B4-6
data assuming Frenkel defects on both sublattices.
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The results are given in column XIII of Table III.
Strangely, the anion vacancy migration parameters
are not lomered as much as for the single-Frenkel-
defeet model. The anion Frenkel defect parame. —

ters do not seem too unreasonable although the
migration entropy is rather high and the formation
enthalpy more than 1 eV lower than the calculated
value of 5. 40 eV. However', the extl emely high
cationic interstitial mobility which results from
these calculations, coupled with the failure to re-
duce significantly the anion vacan. ey migration
parameters, lead us to reject this model. We
also feel that because 16 parameters were used
and because the calculations mere not pursued in
great detail, the results for the double-Frenkel-
defect model should not be used quantitatively, al-
though the qualitative conclusions drawn about the
model are probably valid.

D. Trivacancy Model

Calculation based on EII. (19)were unsuccessful. A

poor fit to the data for the composite run can be ob-
tained but g ~ comes out to be positive, i. e. , the
binding energy of the trivacancy is negative, mhieh

is physically absurd. Also, the trivacancy migra-
tion enthalpy seems too lom at 0. 20 eV. If h& and

s& are set equal initially to —0. 8eV and —0. 1 meV
K ', the program makes them small and positive,
0. 014 eV and 0. 004 meV K ', with a corresponding
migration enthalpy 4k-& of 2. 26 eV. This kind of
erratic behavior, the physical unacceptability of
the parameters, and the poor fit to the data lead us
to reject the trivacancy model.

E. Excess Conductance Model

This model mas tested using the data, for the com-
posite run. Convergence was slow; but a reasonable
fit, y= 1.68&&10 for 136 points, was obtained with
the parameters designated XIV in Table III. The
anion mobility enthalpy &ha is 0. 943 eV, more in
Line with diffusion values. If the initial values of
B and E are decreased to correspond more closely
with those found by Dawson and Barr for extrinsic
diffusion in KBr, then the calculation becomes ill
behaved: With initial values for 8 ~ 5X10 0 cm
K and E &1.46 eV, ~h~ and h increase as the calcu-
lation progresses, but if initial parameters are set
so that 8= 1x10 0 cm K, E=1.2 eV, then 8 is
driven negative. We conclude that a fit to the con-
ductivity data for KCl cannot be obtained mithparam-
eters similar to those appropriate for extrinsic
diffusion in KBr, although a rea, sonable fit can be
obtained with the parameters cited in Table III,
column XIV. A fem calculations were also done

making the preexponential factor 8 proportional to
c2 in a crude attempt to check if the migration of
anion vacancies down dislocations or grain bounda, -
ries mas responsible for the extra conductance.

The fits mere very poor. Convergence mas not ob-
tained and as the anion migration parameters drift-
ed slowly upwards the calculations were not con-
tinued. One may conclude, though, that including
a term B'e~ e " does not allow a good fit to the
KCl data with reasonable anion migration parameters.

V, DISCUSSION

A. Comparison with Diffusion Data

The primary advantage of the method of analysis
employed is that the parameters obtained from
fitting the conductance data to various models can
be used to predict anion and cation diffusion coeffi-
cients as functions of temperature. Diffusion coeffi-
cients D„ for species r mere calculated from the
modified Nernst- Einstein relation

D„=2a~f„(kTje') o„.

The value 0. 7815 mas used for the correlation fae-
tol' f„foI' both cR'tioll vRcRIlcies Rill RI11oll vRcRIlcles.
When this work mas first analyzed, the only cation
diffusion data available were that of Aschner.
When the calculations had been completed, two fur-
ther investigations appeared in the literature.
Excellent anion diffusion data are available from the
work of Fuller, ' who also separated the vacancy-
pair contribution so that we have D = D, —D~ mhere
D is the contribution to the total anion diffusion
coefficient due to single vacancies and D~ is that due
to pairs. The cation diffusion data of Aschner mere
vacancy pair corrected using the equation for D~
given by Fuller. ' This is not quite correct if the
jump frequencies of anion and cation vacancies in a
pair are unequal, making the ratio of the correlation
coefficients different from unity and temperature
dependent. Figure 4 shows the plot of Aschner's
pair-corrected data as well as the least-squares
fits to Log&OD„ for corrected and uncorrected data,
using only the points at temperatures such that 10 j
T &1. 17 K '. Aschner's crystals mere rather im-
pure and there is a danger of impurity effects on the
three lom-temperaturepoints. Also shown arepredic-
ted Lines corresponding to the parameters from Lines

VII (Debye-Huckel model with g = 0), X (best fit to
the Frenkel model), and from the work of Fuller
et al. ' and Chandra and Rolfe. The latter two

lines pass acceptably close to Aschner's data points,
particularly if one neglects the three at the lowest
temperatures, although the slope of both lines is
greater than our least-squares. fit to the Aschner
data. The line X represents a total cation diffusion
coefficient due to single cation jumps, i. e. , vacan-
cies plus interstitials, and, hence, it is not a
straight line. The line marked XIV is that calcula-
ted from the parameters obtained from the excess
conductance model. When our calculations were
complete, tmo further papers on diffusion in KCl
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FIG. 4. Logarithm of the cation
diffusion coefficient for KCl as a
function of reciprocal temperature.
The points are Aschner's (Bef.
32) experimental data vacancy-
pair corrected using the equation
of Fuller (Ref. 12). The line A'
is least-squares fit to Aschner's
pair-corrected data. The line A
is a least-squares fit to Aschner's
uncorrected data. Line 9 is from
the data of 86niere et a). (Bef.
34). Lines C and F have been cal-
culated from defect parameters
given by Chandra and Bolfe (Bef.
19}and by Fuller et aE. (Bef. &6).
Lines VII, X, and XIV havebeen
calculated from the parameters
so designated in Tables II and GI.

I.O

were published, Parashar's crystals are clearly
very impure and show a good deal of association.
Because of the limited intrinsic region (perhaps
twopoints), no meaningful comparisons canbe made.
The data of Beniere et al. are remarkably self-
consistent, and although they agree quite well with
Aschner for 1.07&10'/T&1. 17, their line has a
much higher slope than the least-squares fit to
Aschner's data. The Beniere line B in Fig. 4 has
not been corrected for vacancy pairs, and in their
paper they state that the excellent linearity found
in plotting log,+, vs T shows that the pair con-
tribution is negligible. Beniere's method of analysi.
rests heavily on the agreement between their values
for the extrinsic activation energy for conductance
of pure KCl, KCl+ 6. 1&10 SrCla and cation diffu-
sion in the SrCl2-doped KCl. However, this value,
0. 79 eV, is much too high. The slope of the (ap-
proximately) linear portion of the conductance curve
gives an upper bound to ~h&. In Fig. 2, we show
the relevant portion of the conductivity curve for

one of our pure crystals. The straight line corre-
sponds to an enthalpy of migration of 0.668 eV. In
general, the extrinsic slope of the conductance curve
when multiplied by 0 is nk, + yp/(1+ p) and we con-
clude that the neglect of association by Beniere
et a/. is not justified. Even in KCl containing 0. 9
& 10 divalent lmpur lty the degree of association
P is 0. 104 at 418.4 'C (10 /T= 1.446 K ') rising to
0. 508 at 260'C (10 /T= 1.8'76 K ').

Plots for the anion diffusion coefficient are shown
in Fig. 5. The points are Fuller's experimental
data including his estimated experimental error for
the primary data, 8,. The points plotted have been
vacancy pair corrected and so the experimental un-
certainty is actually larger than that for D„de-
pending on the accuracy with which the pair contri-
bution has been estimated. The line marked 8 is
that due to Beniere et al. after their own vacancy-
pair corrections have been applied. The line F is
calculated from the parameters obtained by Fuller
et f2/. ' from fitting their conductance and anion
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diffusion data and its agreement with the data points
does not, of course, constitute an independent check
on the parameters but merely confirms that the
fitting was carried out correctly. The line C shows
the diffusion coefficient predicted from the param-
eters of Chandra and Rolfe' while lines VII, X, and
XIV again show the predictions from the conduc-
tance parameters obtained using the Debye-Huckel,
Frenkel, and excess conductance models, respec-
tively. The best fit to the Fuller data is given by

X, but we regard this as fortuitous since the cation
interstitial parameters appear unreasonable; in
particular, the migration entropy is much too high.
A definitive check on Frenkel disorder could be
obtained if very precise cation diffusion coefficients
were available up to the melting point, but such
data would be extremely difficult to acquire. The
parameters from the excess conductance model,
line XIV, correspond to values of D that agree
quite well with the experimental data of Fuller et
al. The Debye-Huckel line VII intersects the center

of the D experimental data but has too high a
slope.

B. Reliability of Calculations

Apart from the reproducibility of final values for
parameters achieved from different starting points
in parameter space and in different calculations on
different crystals (Table II), one should obviously
seek to confirm that the experimental data have
been adequately fitted by the particular model used.
This may be gauged by y or, in more detail, by
difference plots of logyp(oT), —log&0(o T), against
T ', where e denotes the experimental value and
c the calculated value. The program tests de-
scribed in IV show that a value of ~||) ( -2 &10~ can-
not be expected when realistic random errors are
included in synthetic values of logmoT and T . For
comparison of runs involving different numbers of
points L, the variance o= [y/(L —I)]' is a more
useful quantity. For the four runs analyzed sepa-
rately, 0~10 was 2. 0, 6. 4, 4. 3, and 5. 4; for the

X IV

X

I

CO

cu

0
a I I

FIG. 5. Logarithm of the anion
vacnacy diffusion coefficient for
KCl as a function of reciprocal tem-
perature. The vertical lines show
Fuller's (Ref. 12) experimental
data, vacancy pair corrected using
Fuller's equation; the experimental
uncertainty is that quoted for the
primary data D,. Line B is from
Bbniere et al. (Ref. 34) and has
also been vacancy pair corrected.
Lines C and F have been calculated
fro.m defect parameters given by
Chandra and Rolfe (Ref. 19) and by
Fuller et al. (Ref. 16). Lines VII,
X, and XIV have been calculated
from the parameters so designated
in Tables II and III.
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I There appear to be three possible explanations

to the relatively poor agreement of the experimental
values of D with those predicted from the Debye-
Hiickel parameters if we accept the validity of the
computing method, as seems quite justifiable from
the above considerations. First we may be under-
estimating the long-range defect interactions.
Whereas the Debye-HQckel formula is extremely
simple to apply, it is by no means obvious what the
next-best approximation should be. Certainly, a
simple numerical formula is lacking. However, the
effect on the parameters of including the Debye-Huckel
corrections is small, so that it is doubtful if a more
sophisticated approximation for the long-range
interactions would improve matters. Second, there
may be an additional contributor to the current at
high temperatures. This species is unlikely to be
trivacancies, nor is it likely to be cation inter-
stitials because of the unrealistic entropy of mi-
gration that results from the best fit to the Frenkel
model. The values of 8 and E from the excess
conductance model are not much help in identify-
ing such a species since quite widely different
pairs of values for 8 and E give almost as good
fits. This is not too surprising in view of the small
temperature range over which this contribution is
effective. For instance, for the fit Xnt the trans-
ference number of the unknown species t„goes from
0.01 at 560'C to 0.28 at 770'C, while over the
same range t goes from 0.23 to 0.4V. The one
thing that does seem tolerably certain is that para-
meters similar to those which characterize Barr
and Dawson s~3 extrinsic acion diffusion in KBr will
not fit the high-temperature conductivity of KCl.

The third possibility is simply that the contribu-
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FIG. 6. Plotsof10 [log~o(oT)e logio(0'T) ]vs 10 /T for the
computer fit to B4-6 (92 points), using the Debye-Huckel
model. The dashed lines shower the deviations to be ex-
pected for a 1% discrepancy in O.T.

composite run, o= 3. 9&&10 . These values may be
compared with 0&&10 =1.3, 1.4, and 2. 6 for lines
6, '7, and 8 in Table I, and show that the fits ob-
tained are realistic. A plot of log, o(o T), -log, o

(oT), vs T is shown in Fig. 6 for a typical run.
The behavior of the deviations approaches that
expected for randombehavior (cf. Refs. 11and 16},
although there is some indication of a low-period
oscillation which might point to either inadequacies
in the model or to incomplete convergence, or to
both these factors. Figure V shows the high-tem-
perature portion alone on a larger scale and illus-
trates the fit to the 136-point composite run ob-
tained with the Debye-Huckel model and the excess
conductance model. The deviations are smaller
for the latter but the trends are similar.
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FIG. 7. Plots of (loggo(O. T)~ -log)0(aT)~]
&&103 vs 103/T, for the high-temperature
portion of the 136-point composite run.
The dashed lines shower the deviations ex-
pected for +1/0 discrepancy in OT. Open
circles, Debye-Hiickel model; filled cir-
cles, excess conductance model.
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D~ = 987 exp( —2. 49 eV/kt) . (23)

E
O

IO
C)

O

O

l2
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IO /T, K

FIG. 8. Logarithm of the anion vacancy diffusion coef-
ficient for KCl as a function of reciprocal temperature.
UII represents diffusion coefficients calculated from
parameters derived from fitting the conductance data to
the Debye-Huckel model. (Numerical values are in Table
II. ) The vertical lines show the uncertainties in D; these
have been calculated from the quoted uncertainties in D,
(Ref. 12) and in D& (Ref. 16).

D~ = 8560 exp(- 2. 654 eV/kt),

D~ = 5150 exp( —2. 62 eV/kt),

(21)

(22)

tion of vacancy pairs to anion (and cation) diffusion
in KCl may not be well known and thus the error
bars on the anion vacancy diffusion coefficients in
Fig. 5 too conservative if we employ only the un-
certainty in D, . The three equations that have been
given for the pair contribution D~ in cm sec ', are

The same data are involved in the first two equa-
tions; they differ because (21) is from a fit to dif-
fusion data only while (22) results from a combined
fit of conductivity and diffusion data. Equation (21)
was the one used to calculate the values of D in
Fig. 5. No error limits were available for the pair
correction so that the error bars in Fig. 5 are
simply Fuller's own estimates of the error in D, .
However, if we calculate new uncertainty limits for
D based on the published uncertainties for D~ in
Eq. (22),"and the original error limits for D„
then Fig. 8 shows that the predicted diffusion coef-
ficients from the Debye-HGckel model are rather
more compatible with the experimental data if the
revised, and more realistic, uncertainties in D
are used. It will thus not be possible to decide
unequivocally between the Debye-Huckel model and
one which involves a further transport mechanism
until more precise values of D and D, are available.

D. Summary of Defect Parameters

The best-fit parameters from the Frenkel calcu-
lation and the excess conductance calculation are
summarized in Table IV, where they may be com-
pared with the Debye-Huckel results VII and also
those published by Fuller et al. ,

' Chandra and

Rolfe, ' and Beniere et a/. There are obvious
discrepancies. The Schottky parameters obtained
when an additional conduction mechanism is allowed
for are consistent with one another; in particular,
the anion migration energy, 0. 94-0. 98 eV, agrees
with the diffusion value of Fuller and with conduc-
tance value found by anion doping (0. 99 eV) but is
still higher than the two values found from a com-
bined analysis of conductance and diffusion data.
The value of 0. 85 eV is, however, not to be relied

TABLE IV. Summary of Schottky defect parameters for KCl. Symbols are defined in the caption to Table I.

Source

UII

Ref. 11

Ref. 12

Ref. 19

Ref. 34

h (ev)

2. 226
+0.039

2. 222
+0.034

2.302
+ 0.020

2. 26

2.31

2.49
+0. 03
-0. 02

2.64

s/k

2. 83
+0.43

2.68
+0.42

4.16
a0. 29

7.56

7.64
+0, 24
-0. ff

9.61

10.90

zI, (ev)

0.675
+0.006

0.676
+ 0.006

0.665
+ 0.006

0.705

0.76
+0. 02
-0, Ol

0.73

0.79

2. 65
+0. 21

2. 62
+0. 19

2. 62
+0.20

1.89

2. 56
+0. lg

0. 04

2. 70

2. 84

m2(eV)

0.978
+0.073

0.943
+0.032

l.303
+0.012

1.04

0.95

+0, 01
-0, 05

0.99

0.85

&2/k

6.65
+0.92

6.31
+0.38

10.26
+0.19

6.28

4.19

3.95
+0. 7f
-0, 57

4.14

2.47
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on because of the approximate method of analysis
used. The anion migration entropies come out
higher from the analysis of conductance data on pure
crystals alone (this work) than from analyses based
on anion and cation doping or on a combination of
diffusion and conductance data, ' and this is particu-
larly marked for the Schottky model with Debye-
Huckel interactions. As pointed out in Sec. V C,
there is a good deal of uncertainty in the anion par-
rameters due to doubts about the exact vacancy-pair
correction. The best comparison is, therefore,
that in which a predicted diffusion coefficient is
compared with experimental values including realis-
tic uncertainty bars (Figs. 6 and 6). This compari-
son is, of course, precluded if the diffusion data
have been utilized in the analysis. One might ex-
pect that an analysis based on anion doping would
give the best results. In fact, the agreement is
rather worse than that obtained from the present
analysis of pure-crystal data using either the Debye-
Huckel or the other carrier models. The main
reason for this is probably the small temperature
range over which the CO,

= ion is soluble in KCl. In
addition, the method-of analysis was approximate
since the cubic equation was not solved. '

The discrepancies in the formation and cation
migration parameters can be explained as follows.
The use of any information other than the intrinsic
conductivity of a pure crystal tends to peg the pa-
rameters most concerned. If the informationis re-
liable this is, of course, a good thing since it eases
(even makes possible) the analysis for the other
parameters. We avoided cation doping since it is
not clear that the same model holds for pure and

doped crystals. The inclusion of a small amount
of cation. extrinsic conductivity is unavoidable ex-

cept in very specially purified crystals, is desirable
to aid data fitting, and should be unobjectionable
theoretically, However, in such analyses the cation
parameters tend to be fixed by the extrinsic portion
so that anyuncertainties go into the anion parameters
(cf. Table II). We conclude that, as far as numeri-
cal values of parameters are concerned, the cation
migration and formation parameters in line VII are
to be preferred. If subsequent work confirms an
additional transport mechanism, then the formation
parameters will be somewhat high. No precise
values can be given for anion parameters at present;
although the anion diffusion coefficients calculated
from the parameters in Ref. 16 (given in line 6 of
Table IV) naturally agree best with the experimen-
'tal diffusion coefficients, the parameters form a
self-consistent set and we doubt that the cation mi-
gration and the formation parameters are correct.
Because anion diffusion data were used in the fitting,
these parameters get to be pegged and discrepancies
go into the cation migration and the formation pa-
rameters. The same is true for using anion-doping
data. If the Schottky defect model were completely
adequate for KCl, then one should expect to get
better agreement between the results from the three
different approaches and this is perhaps the most
convincing argument for the inadequacy of the model:
Schottky defects, nearest-neighbor &4 '-cation-va-
cancy and anion- vacancy-cation-vacancy pairs, and
long-range interactions via the Debye-Huckel ap-

proximationn.
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