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Some Implications of an Expression for the Response of the Electron Liquid*

Flavio Toigof and Truman O. Woodruff
Department of Physics, Michigan State University, East Lansing, Michigan 48823

(Received 8 February 1971)

The pair correlation function, the screening of a fixed impurity charge, the correlation en-
ergy, the cohesive energy of alkali metals, and the plasmon dispersion relation in the small-k
limit are calculated using an expression for the dielectric function derived in a previous
paper. Results are compared with those obtained from other theories.

I. INTRODUCTION

1-G(R, (u)QO(R, (u)
'

where Qo(k, ~) is Lindhard's~ function. For com-
putational reasons we gave explicit results only
for G(k, 0), on the assumption that the term (A3)
in I can be neglected. The first noteworthy feature
is that it satisfies the compressibility sum rule

limkm e(k, 0) =
p 7T Cp

(1.2)

with a = (4/Qv)'~', and k in units of kr (where C is
the compressibility of the electron liquid and Cp
that of the gas) more accurately than do all other
available approximations in which the sum rule is
not explicitly imposed. This note summarizes the
results of calculations based on &z for some other
properties of the electron liquid (i.e. , the degener-
ate gas of interacting electrons): the pair correla-
tion function, the screening of a fixed impurity

In a previous paper' hereafter referred to as I,
we derived an expression [denoted henceforth by
e&(k, &u)] for the dielectric response function of the
electron liquid by means of a momentum-conserv-
ing decoupling for the Green's functions involved.
(Decoupling by this method is equivalent to imposing
the f sum rule on the response function. ) This ex-
pression is of the form first suggested by Hubbard,

charge, the correlation energy, the cohesive energy of
alkali metals, and the plasmon dispersion in the small-,
k limit. Inaddition we show that in the large-k limit,
e,(k, u&) includes the effect of a correction to the
screening in the random-phase approximation
(RPA) previously calculated by Geldart and Taylor. 5

In the following it is assumed throughout that
G(k, &u) is only weakly dependent on &u so that the
dielectric function may be written as

e(k, (u} = 1 + Qo(k, &a) )/[1 —G(k) QD(k, (o)], (1.3)

g (r) = [1/N(N —1)] (@0
I Q 6 (r + r, —r

& ) I 40 &

gft f

is related to the static form factor

(2. 1}

S(k) = (1/N) (4'0
I Pa P. Iq'0&-

as follows:

(2. 2)

g(r) = Z [S(k) —1]e' '"+1,N - 1 gyp

that is, changing the sum into an integral,

(2. 3)

with G(k) =G(k, 0).
This approximation has been widely used in the

literature ' ' due to the mathematical difficulties
inherent in the computation of the (d dependence of
G. The complete expression for G(k, &u) is given
in I.

II ~ CALCULATION AND RESULTS

A. Pair Correlation Function g(r)

It is well known that the pair correlation function
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FIG. 1. Pair correlation function

g b) vs k~ for r,= 1 and r, = 2. Curves
1, 2, 3, 4, 5, and 6 are, respectively,
RPA, Hubbard, Antoniewicz and Klein-
man, STLS I, STLS IV, and present
theory. Curves 1 and 2 from Ref. 9.

-0.22-0.28

—0.65

(3.4)

Also familiar is the relation

S(fc) = (1/N) J S(k, (s))d(()

where S(k, &u) is obtained from the dielectric func-
tion via

Sk'
S(ks (s)) =

4 I I lm eg ~) ~ (3.6)

It is then easy to calculate the pair correlation
function if e(k, (d) is known. In Figs. 1-3 we com-
pare our result with results obtained by other
authors"' using different dielectric functions.

It will be noted that the present g(r) becomes
slightly negative at x = 0 for r, = 3, but is much less
negative than the corresponding function in all other
theories except that of Singwi et aL. 6' It is worth
remarking that in STLS I (Ref. 6) g(0) was positive
for r, up to 5, but the compressibility sum rule
was badly violated, while in STLS IV (Ref. 8),
where the compressibility sum rule is almost sat-
isfied, g(0) becomes negative for r, ~3. It seems
then that thus far it has not been possible to satisfy
both the compressibility sum rule and the require-
ment that g(0) be positive in the metallic range
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FIG. 2. Same as in Fig. 1 for r, =3 and r,=4.
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FIG. 3. Same as in Fig. 1 for r,=5.
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FIG. 4. Screening density ~p(y)(kp
vs k~r at y, =3. Curves 1, 2, 3,
and 4 are, respectively, Hubbard,
STLS I, STLS IV, and present theory.

0

2& r, & 6. In our form of the theory this shortcom-
ing has two possible origins. The first and more
obvious is that in calculating the frequency moment
of the higher-order Green's function we have re-
tained only the term corresponding to the kinetic
part of the Hamiltonian, thus neglecting possible
correlations of higher order in the Coulomb poten-
tial. The second is the fact that in S(k, &u) we need
the full (d dependence of G(k, (d), while we have used
G(k, 0) in the definition of e(k, &u). We are now in-
vestigating both these possibilities.

B. Screening of a Fixed Impurity Charge

In linear response theory the number density
fluctuation induced in the electron liquid by a unit
fixed impurity charge is

(2. 7)(p(k, 0) )= 1 —[1/e(k, 0)],
where e(k, 0) is the static dielectric function.
Equation (2. 7) implies for the screening density
at a distance r from the impurity

k~' 1
ltp(v) =, k sin(kr) i — }dk, (2. 8)2r2r e k, 0

C. Correlation Energy

Hubbard's formula connecting the correlation
energy per electron with the dielectric function
can be transformed into

where r is in units of k& and k in units of k&. In

Figs. 4 and 5 we compare our results with those
obtained by some other authors at r, = 3 and r, = 6.

gpss 2 g y r, dr, Ry 2. 9

0.25
with

0.20

A

O. I 5

40

y(r. ) = - -.' f [S(k) - 1]dk,

where k is in units of kz as usual, and a = (4/9v}"'.
We notice that Eq. (2. 9}may be written as

(2. 11)

O. I 0

0.05 10

with V „(r,) = (4/vo()[(') —y(r, }]. With our values of
v(r, ) (Table 1) it is easily seen that V „satisfies
Ferrell's ' condition

0
3

qFf

FIG. 5. Same as in Fig. 4 at y8= 6.

TABLE I. Values of y 6, ).

y 1 2 3 4 5

P bs) 0.45598 0.49409 0.52164 0.54372 0.56227
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TABLE II. Correlation energy (Ry/electron).
I.O

Present theory
STLS I
STLS IV
Hubbard
Nozihres and Pines
RPA

-0.134
-0.124
—0. 125
-0.131
-0.115
-0.157

-0.095
-0.092
-0.097
-0.102
-0.094
-0.124

-0.079
-0.075
—0. 080
-0.086
-0.081
-0.105

-0.068
-0.064
—0. 070
—0. 076
—0. 072
-0.094

-0.061
-0.056
-0.063
-0.069
-0.065
-0.085 0.5—

RPA

d v,.„„(x} (2. 12)
0

The values of the correlation energy obtained from
e, are compared in Table II with those obtained by
other authors.

Putting our values of the correlation energy in
the expression for the cohesive energy of alkali
metals obtained in the approximations discussed
by Pines and Nozieres, ' the values reported in
Table III are obtained.

FIG. 6. Coefficients of the leading term in the plasmon
dispersion (in units of its RPA value) vs r, . Curves 1,
2, 3, and 4 are, respectively, the results of RPA, Hub-
bard, STLS (Ref. 6), and STLS (Ref. 7). Curve 5 gives
the results of this paper. The experimental values (for
Be, Al, Sb, Mg, Li, and Na in order of increasing r~)
are taken from Ref. 12.

D. Plasmon Dispersion Relation

From expression (1.1) for the dielectric function
it follows that in the small-k limit one has

P/Ps~„= I -$[(4ur, /v)]y . (2. 16)

2

e(k, v) &=01 —
g 1+~k —yk +O(k ),~,(0}»4o.r,

(2. 13}

where u&~(0) =(4vne /m)' is the plasmon frequency
at k =0, k is in units of k» and

G(k)y=lim k2
P ~ 0

is 4 in the present theory.
Equation (2. 13) implies for the plasmon disper-

sion relation

In Fig. 6, the values of P/PR» obtained using y = 4

are compared with some previous theoretical re-
sults and some experimental points. ' Though the
comparison with the experimental points may not
be very significant due to the absence of knowledge
of the influence of the ion lattice, it is nonetheless
interesting to observe that the underestimate of the
dispersion in the Hubbard and STLS I approxima-
tions is removed. This correction of the under-
estimate can be attributed to the fact that the pres-
ent dielectric function satisfies quite well the com-
pressibility sum rule and then seems to be good at
small wavelengths.

III. CORRECTION TO RPA IN THE LARGE-k LIMIT

(u~ (k) = u&~ (0) + P 5k /I (2. 14)

and

Rb Cs

TABLE IH. Cohesive energy of alkali metals (kcal/mole).

In this section we make a connection with the
paper by Geldart and Taylor~ in which the correc-
tion to the RPA polarization in the large-k limit,
due to Hartree-Fock exchange and self-energy, is
calculated.

First of all, we notice that the function F„a (k)
=F„(k)+Fe (k) defined in Ref. 5, in the notation
established in I, reads

Present theory
STLS I
STLS IV and
Nozihres and Pines

Experimental

—38.4
—36. 0

-24. 9
-23.9

—38. 1 —26. 4

-38.4 —25. 9

—21.5
-19.9

—20. 6
—17.8

-20. 1
-17.6

—22. 6 —20. 6 —20. 4

-21.5 -19.5 -18~ 7
where

k Q„(k, 0)
ar, 1 —Po(k, 0) (3. I)
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3nr, 2qa 4+k 1p'(f'0)= ' dq'dq' 1 = k k4m Pjg(' k + q) —qp

1+ ', , 8&(q,) 8&(q,) 8&(q, +k) 8&(q, +k), (3. 2)
2q, k+0' Iq, +q, +kl'

as defined in Eq. (4. 5) of I.
In the large-k limit we can write

1 1 2q, k (2q, k)
2q& k+k2 ~k k~ k4 (3. 3)

so that the leading term in Po(k, 0) is

3nr, 1 dq, dq, 16 I - (k a, )' 16 (k q,)(k qa)P,(k, 0) = ; P 61
i,, "I, I dq, dq I- —

-' I' -P dq, dq, I- —- I'16m k Iq&-q, i k qg- qa
(3.4)

p (k 0)
40nr, 1

, . 9 ~k'

If we observe that

(3.5)

Qo(k, 0) =—16 nr, 1
Q~oe 7l

the correction to the RPA polarization may be
written as

2 k2 5 4m Sar
a- &rs

Equation (3.6) is the same as Eq. (6) of Ref. 5
apart from a constant. This difference can be
seen to be due to an error contained in the calcula-
tion in Ref. 5 of the integrals in Eq. (3.4). It ap-
pears from Eq. (3. 6} and the compressibility re-
sult (which gives the Hartree-Fock value" ) that
the present treatment is equivalent to the Hartree-

We notice that, apart from a constant, this expres-
sion is exactly the one obtained by summing Eqs.
(2} and (4) of Ref. 5.

The evaluation of the integrals is rather tedious
but can be performed analytically; it gives

I

Fock time-dependent approximation for both large-
and small-k values.

IV. CONCLUSION AND SUMMARY

In this note a number of properties of the elec-
tron liquid have been considered; for each property
calculations based on the dielectric response func-
tion calculated in I have been performed, and the
results are compared with the results of such cal-
culations based on different forms of the response
function and also, where possible, with data derived
from experiments. The reader will notice that e,
leads in each case to results which agree with ex-
periment and satisfy general requirements, such
as sum rules, at least as well as any other avail-
able response function. For some properties ~,
leads to results which satisfy all known require-
ments better than any other available form of e.
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