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Vfe hRve constrQcted Rn g5 ggggo macroscopic LagrangiRQ theory of linear Rnd nonlinear elec-
trodynamics for an anisotropic dielectric possessing acoustic, ionic, electronic, Rnd other in-
ternal excitations. This theory ean vrith modest effort predict the symmetry, frequency dis-
peI'sion, Rnd internal mechanisms for susceptibilities governing Rll orders of direct Rnd iD-
direct interactions between these excitations and t'he electromagnetic field. Application is
IQRde to optical hal Inonic generation, Rnd the direct Rnd indirect electro optic Rnd photoelastic
effects. The theory starts arith a Lorentzian microscopic formulation in terms of moving,
massive point charges in a vacuum. It is converted to a long-wavelength macroscopic theory
via a continuum limit. A Lagrangian is constructed from the vacuum electromagnetic La-
grangian, the usual interaction bebveen the matter charge current and the electromagnetic field,
a kinetic energy of the matter's internal motions and a matter savored-energy term. The stored
energy must be invariant under arbitrary body rotstions, displacernents, and spatial reflec-
tions and is therefore a function of the basic invariants: the finite strain tensor Rnd body com-
ponents of the excitation fields. Parity-violating terms are also considered. The stored en-
ergy is expanded as a polynomial in these basic invariants vrith coefficients, called material
descriptors (since they describe intrinsic properties of the crystal), which are restricted in
form by the crystal space-group symmetry. Effective-local-field effects are shmvn to be in-
cluded in the stored energy. Equations for the electromagnetic field, the acoustic field, Rnd
the internal excitations follow deductively from the Lagrangian. Elimination of the internal
excitations leads to electromagnetic and acoustic equations vrith piezoelectric, photoelastic,
electro-optic, frequency mixing, Rnd other eouplings. Among the linear results are a new
eigenvector formulation of crystal optics, a generalized Lyddane-Sachs- Teller relation, and
R dyadic GI een's function for radiations in crJJstals of arbitrary Rnisotropy. Constitutive
relations for linear Rnd nonlinear susceptibilities in terms of the material deseriptors indi-
cate the mechanisms 1Dvolved, All Indirect contributions to RQy DGQllQ8Rr 1Dteraction arise
automatically, and their symmetry, @which often differs from that of the direct interaction, is
predicted, The nonlinear results include previously ignored rotational contributions to photo-
elastic interactions of all orders.

I. INIODUcTION

Lasers have led to the diseovexy of a vast number
of new nonlinear optical interactions —optical har-
monic generation, two-photon absorption, self-
focusing of light, self-induced transparency, ete.
They have also led to R renewed interest in, and
extensive studies of, a number of nonlinear optical
intel Rctlons known fox" decRdes —the lineRr electI'o-
optic (Pockels) effect, the quadratic electro-optic
(Kerr) effect, acousto-optic diffraction, BriDouin
scattering~ and Baman scattering.

Baaed on the experimental results, many of these
interactions have been given a phenomenologieal
formulation in which R tensox' of Rppl opl lRte syIQ-
metxy is assumed to lead to mixing of the input
fields to give R nonlinear polR1 lzRtlon which dx'ives
the wave equation. Theox'etical justifications for
such formulations have been given for many of the
nonlinear interactions. However, formulations
for some interactions, such as the photoelastie in-
tex'action which governs both acousto-optic diffrac-
tion and Brillouin scattering, have notbeen derived
fIom a basic point of view. Such derivations have
often been inhibited by the complexity of the task

when a fully quantum-mechanical treatment was
attempted. What we wi.sh to show here is that a
first-principles classical treatment can be carried
through to yield a prediction of the form of the in-
teraction.

The immediate motivation of this work was the
desire to obtain deductively the form of the non-
linear polarization governing acoustically induced
optical harmonic generation. The experiment
consisted of mixing an input optic wRve with Rn in-
put acoustic wave to yield Rn output optic wave at
a frequency displaced fxom the optical harmonic
by the much lower acoustic frequency. As such it
is a fogy-wave acousto-optic interaction. Because
it is a high-order interaction, a number of multi-
step indixect contributions to the effect exist be-
sides the direct interaction which mixes the waves
ln one 8tep. Fox' this 1 eRson lt 18 Ilot RppR1 ent
what form the nonlinear polarization should have
when approached from a phenomenologieal point of
view. A deductive derivation is needed.

Since we are interested in the interaction of
visime light or longer-wavelength electromagnetic
radiation with ultxasonie waves having fx'equencies
as high as, say, 10'0 Hz, the theory can be a long-
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wavelength, that is macroscopic, theory. Because
the material velocities we are concerned with are
acoustic velocities which are -10 ' times the ve-
locity of light, the theory can be nonrelativistic.
Also we believe that a basic deductive-type theory
at which we aim should begin from a microscopic
point of view in order to account properly for the
various material motions and resonances (elec-
tronic, ionic, excitonic, etc. ). The fruitfulness of
this approach is illustrated by the results we have
obtained for the form of the photoelastic interac-
tion~ and of the acoustically induced optical har-
monic generation interaction. Our interest lies
particularly in those phenomena which involve the
anisotropy of crystalline solids and so the develop-
ment will take a form applicable to materials of
arbitrary anisotropy.

Our approach is to construct a microscopic '

Lagrangian consisting of a particle Lagrangian for
all the material particles of the crystal, a field
Lagrangian for the electromagnetic field in a vacu-
um, and a field-particle interaction Lagrangian.
The field Lagrangian and the field-particle
Lagrangian for nonrelativistic charged particles
are both known from classical electromagnetic the-
ory. The kinetic energy of nonrelativistic parti-
cles, which is part of the particle Lagrangian, is
also well known. There is a potential energy of
the particles, that is, the stored energy of the
solid, which does not arise from classical electro-
magnetic forces, but rather from quantum-me-
chanical effects. The explicit form of this stored
energy, thus, cannot be written down on the basis
of this classical theory. The energy, however,
must be expressible as a function of the configura-
tion of the solid. This configuration is describable
in terms of displacement gradients and of internal
displacements that are generally, but not invari-
ably, associated with contributions (ionic, exci-
tonic, electronic) to the polarization. The energy
will be expressed in terms of these variables and
their first derivatives, since in the long-wave limit
higher derivatives make progressively smaller
contributions to the energy. In addition, the stored
energy must be invariant against body rotations
and displacements, and symmetry operations of the
crystal space group. Thus the energy must be
written in terms of an independent set of rotational
and displacemental invariants constructed from the
above-mentioned variables and their derivatives.
We extend the treatment of Toupin's classic paper
by using the finite strain tensor and body compo-
nents of several polarizationlike displacements as
the relevant invariant variables. The stored energy
can then be expanded as a power series in these
independent variables with coefficients called "ma-
terial descriptors, " in Toupin's terminology. 4

These are here matrix-tensor quantities of known

symmetry but of unknown numerical value. They
characterize the solid under study and are not func-
tions of any of the characteristics (e.g. , frequency
or wave vector) of any applied influence. Their
numerical values can be calculated only from
quantum mechanics; here, we will regard their
numerical values to be determined by comparison
with experiment. It is hoped that a consequence of
this work will be to focus attention on, and to lead
to a quantum-mechanical calculation of, those ma-
terial descriptors which on the basis of this work
are found to be responsible for particular interac-
tions.

The choice of polarizationlike coordinates among
the expansion variables of the stored energy is a
logical procedure needing no further justification.
Nevertheless, let us point out three important
consequences of this choice which contrast sharply
with the results that would be obtained if the elec-
tric field were used as an expansion variable, a
procedure that occasionally is used in the litera-
ture. First, it is apparent that the several polar-
izationlike coordinates can give a more detailed
and hence more nearly correct expression for the
stored energy when compared to the single electric
field. Second, the eventual elimination of the po-
larizationlike coordinates in interaction tensor ex-
pressions in terms of the input electric field leads
to the appearance of susceptibilitylike functions
which contain all of the predicted frequency depen-
dence (which arises naturally from the dynamical
nature of the equations) of the material tensor being
calculated. Third, since the elimination just
spoken of can introduce an input or intermediate
elastic field, as well as an input or intermediate
electric field, all multistep indirect contributions
to the over-all interaction arise automatically and
in a way that none can be forgotten.

Once the microscopic Lagrangian has been con-
structed, the development becomes entirely deduc-
tive. The continuum limit, in which sums over
energies of discrete particles are replaced by in-
tegrals over a material continuum, is first taken
and then the Lagrange equations formed using the
particle positions and the scalar and vector poten-
tials of the electromagnetic field as the independent
variables. This yields a set of electromagnetic
field equations and a set of dynamical equations
governing the modes of motion (including reso-
nances) of the material medium. The equations
are coupled by field-particle interaction terms.
Widely applicable techniques are presented for the
solution of nonlinear optical or acousto-optical
problems. In the process, general expressions
for the constitutive relations (explicit expressions
for the polarization, current, and charge as functions
of the field variables) are obtained. Constitutive ex-
pressions for linear and nonlinear acoustic prop-
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erties are also obtained. Application of this theory
to the photoelastic interaction and to the acous-
tically induced optical harmonic generation' inter-
action have already been published.

It can be seen that the theory presented here has
much in common conceptually with the Lorentz
"electron theory" of matter but represents a con-
siderable generalization over it by inclusion of
crystal symmetry, anisotropy, nonlinearity, elastic
deformation, ionic mode polarization, etc. %e
believe that the present theory is as basic as a
classical theory of wave interactions in dielectrics
can be. Nevertheless, it is best described as an
intermediate theory because, even though it is more
basic than a phenomenological formulation based
on experimental results and intuitive ideas, it is
less basic than a completely quantum-mechanical
theory.

%e believe, however, that our classical approach
will have a wide range of applicability in linear and
nonlinear optics and acoustics. For nonlinear in-
teractions of light and sound fields, whose energies
are large compared to the quantum of energy,
quantization of the electromagnetic and sound fields
is unnecessary. %hen driven nonlinear processes
are considered the ionic motions can also be treated
classically. It is less obvious that the polarization
associated with an excitonic transition can be
treated classicaQy. However, Hopfield7 has shown
that the transition polarization operator has ap-
proximately boson character and has used this to
justify a highly successful classical analysis of
optical absorption associated with excitons.

Raman and Brillouin scattering differ from
acousto-optic scattering in that one of the input
fields is thermal rather than driven. A classical
treatment with the thermal occupancy ~(~)
= (e"" ' —1) ' is possible for the anti-Stokes line.
The Stokes line can also be treated classically a la
Einstein by introducing a thermal input larger than
that for the anti-Stokes line in the ratio (n+ l)/n
= e"" ', where I~ is the energy of the excitation
(phonon, polariton, etc. ) that is to be emitted. This
procedure is equivalent to the use of Nyquist's
theorem to estimate the thermal input (see, for
example, Barker and London ). This reasoning
justifies the comparison between experiment and
"classical theory" used in the past, and indicates
that the major task of a quantum theory is not to
reproduce the classical results with the ad hoc in-
troduction of nonlinear energies but rather the cal-
culation of the material descriptors describing the
strength of the nonlinear interaction.

The theory we develop here can predict the fol-
lowing with modest effort: (i) the symmetry of any
nonlinear, as well as linear, interaction of elec-
tromagnetic waves and various excitation modes of
the crystal such as acoustic, ionic, electronic, and

mixed character (e.g. , polaritons) vibrations;
(ii) the various multistep indirect contributions to
the over-all interaction, their symmetry, and their
relation to various linear and nonlinear interac-
tions; (iii) the frequency dispersion of the suscep-
tibility that governs any nonlinear interaction; (iv)
the form of any nonlinear, as well as linear, inter-
action susceptibility in terms of the fundamental
material descriptors. Since material descriptors
can be associated with particular interactions,
prediction (iv) indicates all the basic mechanisms
that contribute to an observed susceptibility. A
significant example of (i) is the prediction~ I that
the symmetry of the photoelastic interaction is
lower than that expected according to the Pockels"
phenomenological formulation, the accepted for-
mulation since 1889. Our theory predicted that the
measure of elastic deformation relevant to the
photoelastic interaction is the displacement gradient
since both strains and rotations affect the light
propagation in the crystal. This effect removes the
symmetry of the Pockels photoelastic tensor upon
interchange of its elastic indices. Experimental
verification of this has recently been obtained. '

An example of (ii) above is the prediction3 of five
indirect processes of significant size that contribute
to acoustically induced optical harmonic genera-
tion. Each was shown to have a distinct and lower
symmetry compared to the direct interaction. Each
had a different and explicit dependence on the wave
vectors of the interacting waves. An example of
(iii) and (iv) above is the prediction' of the form
of the susceptibility governing the photoelastic in-
teraction. Terms contributing to the susceptibility
which had different symmetries because they arose
from different internal mechanisms were shown to
have different frequency dependences. The fre-
quency dependence predicted is explicit because it
results from the solution of the time-dependent
dynamical equations and because the numerically
unknown material descriptors are frequency in-
dependent quantities. The theory can be extended
to predict the wave-vector dependence of various
susceptibilities. In a long-wavelength theory such
as this, wave-vector dispersion would result, for
example, from the addition, when symmetry al-
lows, of terms linear or quadratic in the wave
vector of the optic or acoustic wave. Effects aris-
ing from these terms (optical activity, for ex-
ample) are considerably smaller than frequency
dispersion effects. For this reason wehaveomitted
a derivation of wave-vector dispersion effects in

this paper even though polarization gradient terms,
from which the effects arise, have been included
in the stored energy.

Besides wave-vector dispersion effects, we omit
for simplicity a number of effects in this paper.
%e treat ideal dielectrics here, and so set the free
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charge equal to zero. The existence of electron
spin is ignored, and hence ferromagnetic phenom-
ena are excluded. Ferroelectric phenomena are
also excluded in the present treatment. [The contri-
butions to nonlinear susceptibilities calculated in
this paper (for second-harmonic generation, photo-
elasticity, etc. ) are all present in ferroelectrics,
but some additional contributions may be necessary
for some susceptibilities. ] Neither will we include
loss in the various vibration modes of the crystal.
Last, we exclude all thermal phenomena. We
surmise that all of these except the last involve
relatively straightforward, though sometimes com-
plex, extensions of the present treatment. The
inclusion of thermal phenomena will require inclu-
sion of statistical effects as well as the mechanical
effects treated in this paper.

It would take far too much space to describe here
all of the major advances in the subject that we are
treating and so we will cite here mainly those
papers that have had a direct impact on this work
and a few others that deal with closely related
topics. Of greatest importance to this work was
the paper by Toupin in which he developed a static
theory of an elastic dielectric. In that paper he
gave a rigorous discussion of the method of con-
structing a stored energy of the solid which pos-
sesses the four types of invariances mentioned
above. Later he developed a dynamic theory of
elastic dielectrics and applied it to a number of
phenomena including the photoelastic interaction in
isotropic media. Our present theory contrasts
to Toupin's dynamic theory in several ways. First,
Toupin's treatment began from a macroscopic con-
tinuum point of view in which an elastic dielectric
is assumed to be completely characterized by the
deformation gradient and the polarization. He
assumed that the polarization had an instantaneous
response time, that is, he did not introduce sepa-
rate ionic and electronic dynamic displacement
variables which contribute to the total polarization
with response times governed by the infrared and
ultraviolet resonances of the medium. Toupin's
procedure thus is equivalent to assuming that the
dielectric tensor is independent of frequency. In
Toupin's treatment, which begins from a set of
conservation laws, it is necessary to make what he
calls "special assumptions" concerning various
physical quantities entering the conservation laws
including the body force and the rate of work done
by the electromagnetic field on the body. These
assumptions are not independent, however, and
must be chosen consistently. Toupin has done this.
Toupin's theory yields a constitutive relation which
contains terms of lowest (electric dipole) order.
His treatment of the Faraday effect and magneto-
elastic dragging, however, employs the ad hoc
addition of a term of magnetic dipole order to the

constitutive relation (and nowhere else). In con-
trast, our theory begins from a microscopic dis-
crete-particle point of view, a procedure which we
feel is an important aid in finding the proper form
of various interactions. We introduce a complete
set of coordinates to characterize all modes of
vibration of the medium. This leads to a deductive
prediction of the frequency dependence of the di-
electric tensor as well as other measurable tensors
characterizing the material. In our Lagrangian
approach only the Lagrangian need be constructed;
all other quantities such as body forces, work
done on the body by the field, etc. , are obtained
deductively. We feel this method reduces the
chances of error as compared to the conservation-
law approach. Our constitutive relations are also
obtained completely deductively from the Lagrangian
including higher-order (magnetic dipole, electric
quadrupole, etc. ) effects. Thus when we include
magnetic dipole effects in the Lagrangian, terms
will appear in the center-of-mass force equation,
the energy-conservation equation, and the equation
of motion of the internal coordinates which are
automatically consistent with one another.

Born and Huang's monograph on crystal lattices'
gives a fine discussion from a general point of view
of the linear elastic and electromagnetic properties
of dielectric crystals. '4 They devote only a little
space, however, to considering nonlinear interac-
tions (Raman and Brillouin scattering) and their
treatment of Brillouin scattering is not sufficiently
fundamental to obtain the contribution from rota-
tions to the light scattering. '

Penfield and Haus" have recently written a mono-
graph on electrodynamics of moving media including
effects from elastic deformation and thermal
phenomena. Their major interest is in resolving
the long-standing controversy concerning the form
of the Maxwell stress tensor. Their emphasis
thus is on relativistic correction terms. By includ-
ing relativistic effects, ferromagnetism, and
thermal effects their work relates to a wider class
of phenomena than our present work does. How-
ever, except for a few special cases they make no
attempt at deriving constitutive relations. This
contrasts it to our work, one of whose major con-
tributions is an ab inito classical derivation of
the various constitutive relations. DeGroot's re-
cent monograph on thy derivation of the Maxwell
equations from electron theory contrasts to our
work in a somewhat different manner. He con-
siders the material properties that enter the Max-
well equations from a microscopic point of view
but does not consider at all the dynamical equations
which govern the various modes of vibration of
the medium, as our work does. His interest was
not in a derivation of the constitutive relations but
in obtaining expressions for the material properties
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whose Lorentz invariance can be demonstrated.
Like Penfield and Haus, De Groot's interest is in
resolving the controversy over the relativistic
(- v~/c ) terms in the Maxwell stress tensor. It
is interesting to note that Blount' has just proposed
a resolution to this controversy based on the dis-
tinction between real and crystal momentum.

A classical nonlinear one-dimensional oscil-
lator model introduced by Bloembergen has been
found to give a useful qualitative understanding of
various nonlinear optical phenomena by Garrett
and Robinson, ' Garrett, 30 Robinson, ' and
Kurtz and Robinson. Review works by Bloem-
bergen, '8 Butcher, Terhune and Maker, and
Kleinman ' and papers by Armstrong et al. and
Pershan treat the progress in understanding of
no~~linear optical interactions from viewpoints quite
different from that developed here.

The organization of this paper is as follows: In
the last part of this introductory section, we write
down Maxwell's equations with their source terms,
which we shall see are consequences of our
Lagrangian and are not being separately assumed.
This is done because the resulting equations are
immediately recognizable, and it becomes clear
that the main task consists in deriving the constitu-
tive relations for the various multipole contribu-
tions to the source terms by solving the matter
equations of motion which are also consequences
of our Lagrangian. In Sec. II we develop a micro-
scopic Lagrangian and obtain a set of associated
microscopic equations of motion. In Sec. III pas-
sage to the continuum limit is made. This leads
in Sec. IV to a macroscopic Lagrangian, the cor-
responding macroscopic electromagnetic field,
and matter equations. We turn in Sec. V to a study
of the stored energy and the invariance require-
ments it must obey: rotational, displacemental,
translational (homogeneity), and space-group in-
variance. In Appendices A and Bwe expand the charge
and current densities in multipole form, i.e. , into
electric dipole, magnetic dipole, and electric
quadrupole contributions. In Sec. VI we make the
corresponding multipole expansion of the electric
and magnetic forces. In Sec. VII we take up the
question of local-field corrections and show that
explicit corrections need not be made since the
local fields are included in the parameters describ-
ing the internal energy. In order to obtain useful
equations, we make an explicit separation into
center-of-mass motion (elastic equations) and in-
ternal motion (equations governing the various de-
grees of internal polarization). This is done in
Sec. VIII and Appendix D. In Sec. IX we consider
explicitly the nonlinear interaction energy and the
forces that arise from it. We can then make a
separation of linear and nonlinear terms in both
the matter equations and the Maxwell equations.

The associated macroscopic equations for the elec-
tric field E and the displacement field u are pre-
sented in Sec. X. We then summarize the linear
acoustic equations of motion in Sec. XI including
the piezoelectric corrections to these equations.
The linear optical equations of motion are presented
in Sec. XII. In order to facilitate the solution of
the nonlinear equations that will follow in Secs.
XIG and XIV and later papers, we must invert the
n dyadic that appears on the left-hand side of Eq.
(1.18). This inversion is accomplished in several
ways in Appendix F. The most practical inversion
procedure makes use of the eigenvectors of e.
But these eigenvectors are merely the electric field
directions of the modes of propagation of a free
electromagnetic field in a crystal (the ordinary and
extraordinary waves in a uniaxial crystal) and of
the usually omitted longitudinal mode needed to de-
scribe the driven response. Section XIIcontains a,

discussion of crystal optics in the eigenvector
terminology, a discussion of propagation in the re-
gion of exciton and phonon (polariton) dispersion,
and an examination of the validity of the Lyddane-
Sachs-Teller theorem in anisotropic media. We
prove that for special orientations the usual form
of the Lyddane-Sachs-Teller theorem exists, but
that for arbitrary directions of propagation a mod-
ified theorem must be used. Our modified theorem
is slightly more explicit than the one introduced by
Cochran and Cowley, and is established in an
elements"y way using the zeros and poles of the
longitudinal dielectric constant. Also in Sec. XII
we examine the dielectric tensor of the medium
above and below the piezoelectric resonance and
evaluate the contribution to it from this resonance.
Section XIII presents an iterative method of solving
the nonlinear equations. As examples of the method
we derive for a dielectric the form of the optical
mixing tensor, the harmonic generation tensor, the
clamped and unclamped electro-optic tensor, and
the direct and indirect photoelastic effect. Section
XIV presents a technique of solution using a new
dyadic Green's function evaluated for materials of
arbitrary anisotropy and useful when only a finite
volume can radiate the output wave.

Since the primary probe in a nonlinear optical
experiment is the light field, we summarize in this
Introduction the Maxwell-Lorentz equations that we
obtain in Sec. II from our Lagrangian for a dielec-
tric. Our theory is indeed more in the spirit of
Lorentz than of Maxwell because we have electro-
magnetic fields that propagate in a vacuum which
contains certain charges and currents. Thus the
fundamental Maxw ell-Lorentz equations take the
form
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SB(z, t)vxEz t+ ' =0, (1.2) j = ' +Vx(M')~, (l. 18)

v E(z, t)=q(z, t)/~, ,

V ~ B(z, t) =0, (1.4)

(P')'=~, (7-7) E,

(M ) = (v —1 ) ~ H = (1 —q
-

) ~ B/po

(1.14)

(1.15)

where the charge density is found to be

q(z, t)=q,„.-v P'(z, t), P'-=P--,'v Q

(1.5)

in terms of the polarization P and the quadrupole
tensor Q. The current density is found to take the
form

~I
QP

3 jfpeq+ + V M

where ~ is the dielectric tensor and ~ is the mag-
netic permeability tensor of the dielectric medium.
In writing Eq. (1.14), we have discarded a possible
permanent polarization (ferroelectricity). In Eq.
(l. 14), the frequency is assumed sufficiently high
that the piezoelectric term that would ordinarily
be present can be omitted. This term is discussed
in detail in Sec. X of this paper. Inserting the
.above separation into linear and nonlinear terms
into Eq. (1.11), we obtain

M'-=M+Pxx--, ' [(v Q)+ Q ~ v]xx,

where M is the magnetization associated with mov-
ing charges only since electron spin is not included
in this paper.

The derivation of the results Eqs. (l. 5)-(1.7)
is given in Sec. IV and Appendices A and B. In
these Appendices, we do not merely derive the form
of the charge and current, but show that it has the
above form with specific expressions for the po-
larization, quadrupolarization, and magnetization
in terms of the variables characterizing the ma-
terial medium. Without benefit of the specific ex-
pressions P, Q, and M, it is possible to define D
and H in the conventional manner:

eE ej2 ~ NL
vx [v ~ (vxE)]+ ~ y ~

c et Bt

(1.16)
in which all linear properties of the electromag-
netic medium are contained on the left-hand side
and all nonlinear properties are displayed on the
right-hand side. If we use the abbreviated notation

k=-sV, (1.1V)

the contribution of each single frequency cu in j"
to the output field E can be obtained by solving

n (k, &u) ~ E = &/eo, (1.18)

where we define
ID= &OE+ I

H=B/go-M'.

(1.8) n(k, (u) ~ E=--n'sx[7„' ~ (sxE)] —~ E, (1.19)

s=-k/k, k= ~k~, n-=ck/(u,

The Maxwell forms of the electromagnetic equations
are then obtained:

V'D= a'g, e.=O, (1.10) +(P —
g (v Q) —2 Q ~ v)xx]] . (1.21)

8D
VXH — --- =jf =O . (1.11)

The current of moving free charge in Eq. (1.11) is,
of course, not necessarily zero, but this paper is
restricted to nonconducting dielectric media. By
the elimination of the magnetic field between Eqs.
(1.1) and (1.2), we obtain an equation for the elec-
tric field in the form

21 8E 83vx (vxE)+—2 et2 0 et (1.11')

3=3 +3 y (1.12)

We can now separate Eq. (1.11') into linear andnon-
linear contributions by writing

The form (1.18) is particularly suitable when the
nonlinear polarization is decomposed into Fourier
components in time and plane waves in space.
When magnetic effects can be neglected, the tensor
a reduces to the particularly simple form

n (k, (o) = n ( 1 —s s) —7c ((u) . (1.22)

II. MICROSCOPIC LAGRANGIAN AND EQUATIONS OF
MOTION

We consider a crystal as a mechanical system
consisting of a set of point particles of fixed charge
e and fixed mass m at position x" . The index
n has three integral components that name the
primitive cell n (the smallest volume unit of struc-
tural repetition), and u is an index that labels the
type of particle. The particles reside in a vacuum
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and are subject to mechanical forces (of quantum-
mechanical origin) that can be obtained from a
potential energy V((x~ ]), where (x~'] denotes the
set of positions x for all values of n and n. The
particles are also subject to forces arising from
electric and magnetic fields, either of external
origin or produced by the charges themselves.

The total Lagrangian L of the system can be de-
composed by

L -LI +LF+L (2. 1)

a field Lagrangian expressed in rationalized
mks units of the form

I.r= f S~dz= —,'c, f [E'(z, t) —c'0'(z, t)]dz,

(2. 3)

into a nonrelativistic particle Lagrangian of the
form

(2. 2)

S~+ 2, yield the electromagnetic equations'0

V ~ E(z, t) =q(z, t)/eo,

(2.11)

where the charge and current densities have been
defined in Eqs. (2. 8) and (2.9). The remaining
Maxwell equations (1.2) and (1.4) follow auto-
matically from the definitions (2.5) and (2. 6).

The Lagrangian LI, +LI leads to the familiar
equations of motion for the mass points

0 0

m x" (t)=-
ex

+ 8 [E(x" (t), t)+x" (t)xB(x" (t), t)], (2.12)

with the expected electric and magnetic forces and
a force arising from the gradient of the potential
energy

and an electromagnetic field-particle interaction
Lagrangian of the form

na g na

III. PASSAGE TO CONTINUUM LIMIT

(2. 13)

+Z e'x" (t) A(x'(t)) . (2.4)
na

Here dz =-dg&dz2dz3 is the volume element in the
laboratory coordinate system. The electric and
magnetic field vectors E and B are understood to
be expressed in terms of the scalar and vector po-
tentials 4 and X by means of

( )
eA(z t)

et
(2.6)

(2. 6)

Equation (2.4) can also be used to define the inter-
action Lagrangian density

ZF, = —q(z, t)4(z, t) + j (z, t) ~ A(z, t), (2. 7)

where the charge density q(z, t) and the current
density j(z, t) are defined by

q(z, t)= 2 e 5(z —x" (t)), (2. 6)

j(z, t)=Z e x" (t) 5(z —x"'(t)), (2. 9)

where 5(z —x" ) is a product of three Dirac 5 func-
tions, one for each component of the argument.
The subscript F in Eq. (2.7) denotes that this in-
teraction density is in a form suitable for obtaining

the electromagnetic field equations. The La-
grangian equations of motion for the generalized
coordinates C, A applied to the Lagrangian density

When we replace the discrete lattice system by a
continuum, the particle index n is retained as a
sublattice index but the index n, which names the
cell, is replaced by a continuous variable X. In
other words, the original names n which were
uniformly and discretely spaced are now replaced
by names X which are uniformly and continuously
distributed. We shall refer to X as a material
coordinate because it rides with a particular mass
point. Thus we make the replacement

x~'(t)-x (X, t) (3.1)

of a set of discrete positions by a set of functions of
the continuous variable X. We shall use the nota-
tion x& to represent the jth component of the posi-
tion of sublattice n expressed in a Cartesian frame
called the spatial frame. We shall use the notation

X& to represent the 2th Cartesian component of the
name X in what we shall call the material frame.
It will be noticed that upper case Latin letters will
be used to denote the components in the material
coordinate system and lower case Latin letters
will be used to denote components in the spatial
coordinate system. Greek letters are reserved
to name the different sublattices or degrees of
fr eedom.

It is particularly useful to regard the spatial
and material frames as independent ' in order to
be able to discuss the invariance of the potential
energy under separate rotations of the spatial
frame (infinitesimal rotational invariance) and dis-
crete rotations of the material frame (crystal sym-
metry invariance). After the symmetry properties
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of the potential energy are established, it is then
convenient to refer all quantities to a common
Cartesian frame. Indeed, if we define the center-
of -mass position by

T= —Z m [x" (t)]2- —,
' Q p" [x (X, t)]'dx,

(3.4)

x(X, t) =-Z m x (X, t)/Z„m", (3.2) where

it is customary to regard the material coordinate
X as an unstrained or equilibrium position of the
center-of -mass variable x.

The distinction between the spatial and material
frames is a familiar one. '~ A time derivative hold-
ing a position fixed is an ordinary partial derivative
with respect to the time but a time derivative
holding X fixed is referred to as a material time
derivative or a substantive time derivative. It is
the time derivative as one moves along with the
particle. The relation between material and spatial
time derivatives is explored in Appendix C.

In addition to maintaining the distinction between
material and spatial frames, Truesdell,
Truesdell and Toupin, "and Toupin write all
equations in a covariant form applicable to arbitrary
coordinate systems, e.g. , spherical or cylindrical
coordinate systems, in addition to Cartesian coordi-
nate systems. We could do the same by suitably
maintaining upper or lower positions of the com-
ponent indices to denote contravariant and covariant
components, respectively. However, no new physics
follows from such a procedure, and for simplicity
we shall restrict ourselves to Cartesian frames and
use subscripts to denote all Cartesian components.
Superscripts can then be reserved for sublattice
~ames hke n. We shall follow the Einstein summa-
tion convention with regard to our Cartesian sub-
script indices but summations over sublattice
indices such as & must be indicated explicitly.

The passage to the continuum limit is effected by
replacing sums by integrals:

m
p

00

sx"(x, t)
Bt

(3.5)

IV. MACROSCOPIC LAGRANGIAN AND FIELD
EQUATIONS

In order to complete our analysis, we must write
down a form for the potential energy. We write
the potential energy as

V=@ fF(x (X, t), x', „(X,t))dX, (4. I)

where Z is the stored energy per unit mass, and

p is the unperturbed mass density of the medium.
The potential energy Z is a function of all the con-
tinuum position variables x, P=-l, 2, . . . , N, and
their first derivatives:

P, „(x,t)= , ', -a=I, 2, 3.sx'(X, t)
A

(4. 2)

define the mass density p and the particle velocity
x . We use N to denote the total number of dif-
ferent particles both ions and electrons in the prim-
itive unit cell. After the expression of our theory
in terms of center of mass and internal coordinates
the 3N degrees of freedom will include three de-
scribing the center-of-mass motion, and 3N- 3
describing internal degrees of freedom that may
carry polarization. These latter degrees of free-
dom can be given a more general interpretation.
For example, excitonic contributions to polariza-
tion' (in addition to the usual ionic contribution)
can be described by such internal degrees of free-
dom.

Q z(x~™(t))-—„Q z(x~ (t))~x

Iix Xg (3.3) p' -=Z. p = (Z. m )/n, . (4. 3)

The ( j notation of Eg. (2. 2) is implied but omitted
in Z. The mass density p is defined by

where we have multiplied and divided by the cell
volume 4X=- ~z AX24X, = Qo in order to make use
of the usual replacement of a Riemann sum by an

integral. If the functions I' contain no Fourier
components outside the first Brillouin zone, then
this replacement is exact. It is then an example
of the use of the sampling theorem for band-limited
functions. In this paper, the replacement is a
good approximation because we are seeking to deal
with acoustic and optic waves whose wave vectors
are small compared to the zone-boundary wave vec-
tors.

As an example, we can replace the discrete kine-
tic energy T by its continuum limit:

Lp= f Zpdx,
where

(4.4)

Since we are seeking to obtain a long-wavelength
macroscopic theory, it is appropriate to neglect
the dependence of Z on higher derivatives than the
first in Eg. (4. 1). Indeed if wave-vector (spatial)
dispersion is to be completely neglected, it is ap-
propriate to neglect all first derivatives except
those of the center-of-mass equation (3.2). The
explicit separation of center-of-mass motion needed
to accomplish this will be carried out in Sec. V.
The particle Lagrangian density S~ is now defined
by
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The charge densities q are defined by

q =-e (4. V)

The standard Lagrangian equation of motion for
fields

d s(Sp+ 2p, ) s(Z~+ gp, ) 8 s(ZJ, + Zv, )
dt Bx Bx BgA Bx, A

(4. 8)
can be used to obtain the 3N matter equations of
motion in the form

z~ = —2 p"[x'(x, t)]' —p' &(x'(x, t), x', „(x,t)) .
e=i

(4. 5)

The interaction Lagrangian density can be obtained
from Eq. (2. 4) by converting the sum over n to an
integral with the result

l., = f Z„dX=Z. f q [x (X, t) A(x (X, t), t)

—e(x'(X, t), t)] dX . (4. 6)

of the space group that describes the symmetry of
the. crystal considered. This symmetry results
from the indistinguishability of atoms of the same
element in equivalent sites. We will assume for
simplicity that the medium under study is homo-
geneous; thus invariance against translations is
required. This leads to conservation of crystal
momentum. By translation we mean an operation
in the material coordinate system of the form
X-X+D, whereas by displacement we mean an op-
eration in the spatial coordinate system of the form
x- x+d. Invariance of the stored energy against
spatial inversion is equivalent to parity conserva-
tion. Since experimental tests of such a conserva-
tion law are perhaps not yet definitive, 36 we will
adopt a cautious approach and consider in Sec. V F
the consequences of its violation. Invariance of the
stored energy against material inversion of a crys-
tal is distinct from parity invariance and depends
on the presence or absence of the inversion opera-
tion in the crystal space group which distinguishes
centrosymmetric from acentric crystals.

~ ~

p"x =f"+q [E(x )+x"&&B(x )] .
Here the mechanical force f is defined by

B BZ

BX BX BXA XyA

(4 g)

(4. 10)

A. Displacement Invariance

A uniform displacement changes the position
vectors x and their derivatives x, A into

(5. 1)

q(z, t) =Z„q f 5(z —x (X, t))dX,

j (z, t) =Z, q f x (X, t)5(z -x (X, t))dX

(4. 11)

(4. 12)

in place of the previous discrete forms Eqs. (2. 8)
and (2. 9). In the long-wavelength limit, it is also
appropriate to make a multipole expansion of the
charge and current densities. This is done in
Appendices A and B. The expression of the charge
and current densities in terms of the polarization,
quadrupolarization, and magnetization have already
been noted in Eqs. (1.5) and (1.6).

U. INUARIANCE REQUIREMENTS ON STORED ENERGY

Among the conditions that the stored energy must
obey are invariance against uniform displacements
and uniform rotations of the whole crystal in the
spatial coordinate system. These are needed to
guarantee conservation of momentum and angular
momentum, respectively. In addition, the stored
energy must possess invariance against operations

It should be no surprise that, when the Lagrangiar.
equations of motion are used to obtain the equations
of motion for the scalar and vector potential, they
reduce to the Maxwell-Lorentz equations (2. 10)
and (2. 11)with the continuum forms of the charge
and current densities

Invariance of the stored energy under this displace-
ment leads to the condition

Z(x + d, x",„)= Z (x', x', „) . (5. 2)

If the displacement d is infinitesimal, we obtain the
associated derivative condition

=0.Bg
Bx

(5. 8)

p. =1, 2, . . ., N-1 . (5.4)

The second condition of Eq. (5.4) has been imposed
to guarantee that under the transformation (5. 1)
the y' variables remain unchanged and hence are
true internal coordinates. Thus only the center-
of-mass variable changes under the transformation
(5. 1):

x x+d~ (5. 5)

Thus if the stored energy is expressed in terms of
the new variables, invariance under uniform dis-

In order to display more precisely the influence of
the displacement invariance condition, we introduce
the center-of-mass coordinate x of Eq. (3.2) and

a set of internal coordinates (see Appendix D)

y'(X)= Z V"x'(X), Z U"=0,
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placements requires the stored energy to be inde-
pendent of the center-of-mass variable x, though
not of its derlvatlves:

&(x, x~™,~)=-&(y', x ~ y' ~) .

If all of the variables x" are given a. common in-
homogeneous displacement

x -x'+d(X), x-x+1(X), y'-y" (5.7)

Lthe last condition of Eq. (5.7) indicates why the
y~ are called infernal coordinates], then the change
in the potential energy associated with this inhomo-
geneous displacement can be calculated in terms
of the old stored energy Z and the new stored energy
ge

(5. S)

(5.9)

The equality between these two changes in potential
energy leads to the requirement

(5. 10)
BX 7A ~X~A

B. Rotational Invariancc

Since the kinetic energy, field energy, Rnd inter-
action energy are manifestly invariant under arbi-
trary infinitesimal rigid rotations of the body, our
entire LRgrRnglan cRn be IQRde invR1 lRnt by re-
quiring the stored energy to be rotationally invar-
iant. This last objective can be accomplished by
finding a complete set of rotational invariants con-
stxucted froIQ the ol iglnal position variables of
the problem. An arbitrary rotational invariant
must then be expressible as a function of these
basis invariants.

1. Center of Mass Only

For simplicity let us first consider the case in
which only one sublattice is present, so that we Deed

only considex' the centex-of-mass variable and can
1gnox'e lnterDRl vR11Rble. ID th18 cRse the theory
of finite elastic deformations will be obtained. The
stored energy Dow depends only on the three vector
variables x,&, x z, and x 3. We can construct in-
variants under a rotation of the x frame by fox'ming

the scalar products

C AB
=x A'x g = 2E~ + 5 AB

SiDce the deformatioD tensor +Age 18 symmetric 1D

the indices A. Rnd B, this leads to a set of six iD-
dependent invariants. The quantity E» on the
right-band side of Eq. (5. 11)is the measure of fi-
nite strain 1QtI'oducedby GleeD into the theory of
nonlinear elasticity.

Do these six invariants C» constitute a complete
set? It is well known that with three vectors we
cRD Rlso forIQ RD invariant by n1eRDs of the tllple
product or the determinant of the components of
these vectors:

Z(X, t) =detx, ,„=po/p(X, t) . (5. 12)

The quantity 7 is the Jacobian of the transformation
from the X frame to the x frame. As such it is the
ratio of the undistorted density p to the distorted
system density p(X, t). It might appear that J is a
new invariant, independent of the previous six, but
the rules of determinantal multiplication yield the
result

J =detCA~ . (5. 13)

Thus 8 is expressible up to a + sign in terms of the
finite strain tensor E~.

For R solid completely describable in terms of
the center-of-mass variable x, rotational invariance
of the stored energy requires that the latter be ex-
pressible in terms of the complete set of invariants

x(X, t) -=X+ u(X, t), (5. 15)

where u is commonly called the displacement vec-
tor, since it represents the displacement of the cen-
ter of mass from its equilibrium or undistorted posi-
tion X. In this notation the finite strain tensor re-
duces to the conventional form

1 1
EAB 2(aA, B+as, A)+ & &, Aai, Ba (5. 16)

In the infinitesimal case, E» reduces to the usual
expression for infinitesimal strain:

S~s= ~("~,s+ "s,x) ~ (5. 17)

%e have adopted the convention that the system is in
equilibrium in the absence of strain. (See Sec. IX. )
Thus if we expand the stored energy in powers of
strain, the lowest-order term must be a quRdratic
therm

~(xi& ~) -~(E~s)- .&e~zs Ee~Ens+ (5. 15)

The coefficiente&z» is the usual definition of the
stiffness tensor.

~(x,~) = ~i(&~e)+~~a(E~s),

where the magnitude of J but Dot its sign can be ab-
sorbed into ~&. If, however, one is not concerned
with pR1'lty violationsq discussed ln Sec. V F~ the
second term in Eq. (5. 14) can be omitted.

To make connection with the ordinary theory of
linear elasticity, we choose in the following equa-
tions a common Cartesian coordinate system for
the materia, l frame X and the spatial frame x. In
this common frame we can write
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2. Seve@a/ InterwaL DispLacenzents A~=uiRi~=Fa(C ')a~. (5. 25)
We now generalize the stored energy of Toupin

by introducing a set e= 1, 2, . . . , N of internal dis-
placements

u'(X, t) =x'(X, t) x(X,-t) . (5. 19)

They are called internal displacements because for
a pure deformation, i. e. , x'(X, t) independent of n,
the u (X, t)= 0. Stnce the three-dimensional space
is already spanned by a set of three independent
basis vectors x, &, x,2, x,3, the only new basic in-
variants that need be introduced are scalar products
of the new vectors with these basis vectors:

Just as the invariant in Eq. (5. 22) can be written in
more than one way by a rearrangement of the non-
linear terms in the expansion of the stored energy,
so too the use of the variable A does not change the
physics but merely rearranges the terms in the non-
linear expansion in a more convenient way so that
nonlinear effects involving strain arise only from
cubic (or higher-order) terms in the expansion.

If the stored energy is permitted to depend also
on the derivatives of the various internal displace-
ments, then we can define the additional set of in-
variants

Qf
~ ~ai

~ u ~ (5. 20) ~a;c =&&au&, cg — 8
(5. 26)

In order to show that the scalar products between
these new vectors do not introduce new invariants
we invert Eq. (5. 20) to obtain

u =xg, ; r„. (5. 21)

= r„(C -') r', =r„[(1+2E) ']„r',
E~ rg+ 4rgEgcEcg rg

(5. 22)
We see that these invariants are not new but are ex-
pressible in terms of previous invariants. It might
seem that we could also introduce as new invariants
triple products of any three u vectors. However
knowledge of the scalar products of these u vec-
tors with the three vectors x &, x 2, x, permits us
to express the u vectors in terms of the x, &. All
triple products can then be expressed in terms of
these scalar products and the one triple product
J. The latter can be omitted in the parity con-
serving case, or retained, more generally, as
discussed in Sec. VF.

Let us digress, for a moment, to introduce the
rotation tensor of finite elasticity theory

R;„=xi a(C )a~.-1/2

To first order in displacements

(5. 23)

R;„= (5 ia+ u; a) [(1+2E) " ]a„
(5 ia + u i gaia ) (5BA Ea A)

1
5iA+ 2(ui, A uA, i) (5. 24)

reduces to the familiar expression for the rotation
tensor in the infinitesimal case. Since the tensor
C is invariant under rotations of the spatial frame,
we see from Eq. (5, 23) that R;„has precisely the
same transformation properties as x;,&. Thus we
can equally well define a set of invariants

If we then form the scalar product of a pair of such
vectors, we obtain

e 8 n 8u,. u,. = r, r,x,.x, ,

so that the stored energy can finally be written in
the manifestly invariant form

~ ( AB& AAy Bic) (5. 2V)

Note that Aa;c &&Aa/&Xc. The latter involves sec-
ond derivatives of x; whereas the former does not.
The semicolon notation was chosen because A&, c
is in fact a covariant derivative with respect to Xc.

The above choice of variables is not unique. One
choice might appear to be better than another in
the sense that a single term in one choice of vari-
ables requires an infinite expansion in the second
choice, as in Eq. (5. 22), with numerical coeffi-
cients that do not decrease. This possibility, how-
ever, is more apparent than real because the max-
imum strain that a crystal can sustain without frac-
ture is of the order of 10; thus expansions in the
above variables converge quite rapidly. Thus a
truncated power expansion in the A's [see Eq. (9.1)]
and a truncated power expansion in the r's will
agree if terms of the same order are kept in the
underlying variables u, and if the expansion co-
efficients are appropriately related.

From Eq. (5. 28) we obtain the transformation prop-
erties of the invariants in the form

[A™(X,t)]'= S A,""(S-'.X, t),

[EAa (X)]'= S„cSaaE ca(S ~ X).

(5. 29)

(5.30)

C. Crystal Symmetry

Under a space-group operation of a crystal con-
taining a rotation matrix S as the rotational portion
of the space-group operation, a particle of type &

at reference position X is carried into a particle of
type S(&) at position S X. Thus the new displace-
ment of a particle of type & at X is determined by
applying the appropriate rotation S to the displace-
ment that the particle previously had when it was at
the position S ' ~ X and had the type S '(c.) = T(o'.):

[u; (X, t)]'=S;iu;' '(S ' X, t) . (5. 28)
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Tlllls a body symmetry ope1'at1011, Eq. (5. 28), wl11cll

acts on the spatial components behaves as if it were
the associated material coordinate (name-changing)
transformation on the A's and E's. What is to be in-
variant under a crystal symmetry operation, of
course, is the total energy integrated over the crys-
tal. Hence we obtain the relation

j zdx= J' z'dx= j z'd{s-'. x), (5. 31)

Nl 0, 8 Y 08 T(e)
~+ABCDAA AB ECD ~HABCDSAA' AA' SBB'
e8 eg

X AB aScce SDDrEc'sDt, (5, 33)

Let us change the summation variables on the right-
hand side of Eq. (5. 33) from n, P into S(&), S(P) so
that T(S(o.)) = n, T(S(P))= P. Comparing correspond-
ing terms we find that crystal symmetry has im-
posed the condition

~at/ ~S (e) 8 (8)- cABcD-ggA B c D SA ASB~B ScrcSD D (5. 34)

on the expans1on coeff~c~ent IIABcD S1mxlar sym
metry conditions can be imposed on all of the terms
in the polynomial expansion which we display in
Eq. (9. 1).

D. Homogeneity

Homogeneity is a crystal or material symmetry.
For a crystal it constitutes invariance of the stored
energy under an arbitrary discrete lattice transla-
tion. In the continuum limit, it reduces to invari-
ance of the stored energy under an arbitrary in-
finitesimal X-X+dX translation of the material
fxame. As s consequence, the stored energy can-
not depend explicitly on X. Invariance under the
translation X-X+ dX leads to crystal momentum
conservation just as invariance under the d~sPlace-
ment x x+ d yields real momentum consexvation.

E. Elimination of Redundancy

The set of N+ 1 vector variables u, x is redundant
and should be replaced by the nonredundant set x, y~

where the y are the N —1 internal vector variables
of Eq. (5. 5). We can thus define a nonredundant
set of rotational invariants

where Z' is the stored energy written as a function
of the primed variables on the left-hand side of Eqs.
{5.28)-(5. 30). Comparing corresponding integrands
we thus obtain the invariance relationship

~(&AB AA AB c)

( AA' Is' A'B'y SAA' A' 1 SBB' CC' B'C')T(e) T(g)

(5. 32)
Let us examine a particular term in a polynomial
expansion of Z. For this term, Eq. (5. 32) leads
to the symmetry requirement

N-1

AA =u; H;A= Z V A"„,
p=i

(5. 3V)

Thus a typical term in the stored energy becomes
N

~ HABCD AA AB ECD ~ HAB CD AA AB ECD r
0.8=1 tf v=1

(5. 38)

N

HABCD= ~ HABCD p'
el=1

(5. 39)

Similar remarks apply to all the terms in the stored
energy of Eq. (9. 1).

The symmetry of HABCD [see Eq. (5. 34)] l~~ds
with the help of Eq. (5. 39) to the corresponding
symmetry

&{e)&0) IP BVIABCD=~HA'B'C D ~
eg

XSA ASB BSc cSD D (5 40)

The inverse of Eq. (5. 39), using Eq. (D5), can be
written

HAB CD= Z ABCD U U (5. 41)

The limits in Eq. (5.41) extend from p or v=0 to
N —1, but terms in which p or v (or both) are zero
vanish if one uses Eqs. (D13), (5. 39), and displace-
ment invariance Eq. (5. 2) in the form

(5. 42)

so that the stored energy can be written

~ = ~ (&AB, AA, AB:c) .
We use (in this paper only) later letters of the Greek
alphabet &, Ltl, v, etc. , to denote nonredundant internal
variables and reserve early letters o, P, y, etc. ,
for A' S.associated with sublattice positions such as
x oru

We sometimes refer to the AA as polarizatlonllke
variables even though they more properly describe
body components of internal coordinates (components
relative to axes that rotate with a rotation of the
body). These variables become body components of
the true polarizations only when multiplied by the
appropxiate charge. Internal coordinates are used
rather than polarizations since we must describe all
vibrations in the solid including infrared-inactive
ones which have no associated charge or polariza-
tion.

Let us now consider the symmetry requirements
analogous to Eq. (5. 34) on the material descriptors
for the stored-energy expansion into nonredundant
invariants. Under the transformation (D17) the
sublattice invariant AA of Eq. (5. 25) is related to
A"„of Eq. (5. 35) by

AA +fA3'f AB C +$B3'4 C (5. 35) Equation (5. 41) permits us to eliminate H '
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from Eq. (5.40) with the result
w 'v'H~ ~D —~ H~8138 ~8D8 S~8~S~ 8~ Sg8 CS~& D

P 8-VB

AB, c 111 Eq. (5. 36) alld obtain

~=z(E~, inc) . (5. 46)

y&u pu'8(u) P @8'+v'8 (81

g

For the sPecial case in which the operation S does
not interchange the sublattices [S((y)= n, S(P)= P],
Eq. (5. 43) reduces to

gV gV
+&BCD +AaB ~ CaDr Sg gSB iB

SCARC

SDiD . (5, 44)

This symmetry requirement is the same as for an
ordinary fourth-rank tensor, i. e. , the superscripts
p, , v can be ignored.

F. Spatial Inversion Invariance

Our discussion of the stored energy to this point
has assumed sPatial inversion invariance (parity
conservation). Parity-violating terms can be con-
sidered by writing a stored energy in the form

&'~=P [~l(&8B, i~c)+l)~8(E~B, A,")],
where q is a pseudoscalar which takes the values + 1

for right- and left-handed spatial coordinate sys-
tems, respectively. We can, for example, visuabze
li as the sign of the Jacobian J' of Eq. (5. 12), the
magnitude of J having been absorbed in ~q in accord
with Eq. (5. 13). The term in ZB is understood to
be a small term arising from parity nonconserving
terms in the microscopic Hamiltonian.

If we think of matter as having a handedness (i. e. ,
chirality) associated with parity nonconservation,
the symmetry operation of material inversion, ,
which inverts both spatial and material coordinates
as in Eq. (5. 26), reverses this handedness. Thus
j,f Z& j,s invariant under a particular space group,
Za is invariant only under the subgroup of this space
group whose rotations are proper. Equations (5. 34)
and (5. 43) determine the symmetry of the material
descriptors in Z3 just as they do for those in Zq.

Now, however, only the proper symmetry elements
are used.

This reasoning leads to the interesting conclusion
that crystals which are centrosymmetric when par-
ity is conserved may be acentric when parity is
violated. Such crystals could then possess odd-

rank tensors (arising from the Z8) that are prohibited
under parity conservation.

G. Neglect of Vive-Vector (Spatial) Dispersion

Bince the objective of this paper is to create a
macroscopic theory, that is to say, a theory which

is appropriate for wavelengths much larger than the

size of the unit cell in the crystal, it is appropriate
to take the limit ka - 0, where 0 is a typical wave
vector and a a typical cell dimension. In the pres-
ent language, this wouM consist in neglecting all
material derivatives. Thus we discard the variable+

VI. MULTIPOLE EXPANSION OF ELECTROMAGNETIC
FORCES

We can rewrite Eq. (4. 9) in a form

p x (X, t)=F (X, t)+f '(X, f), (6 1)

which separates the force into a mechanical part f,
and an electromagnetic part f '. In this section our
objective is to expand the electromagnetic force in
powers of the internal displacements u' so that the
result can subsequently be described in terms of the
various multipole moments of the charge distribu-
tion or portions thereof. Thus the electromagnetic
force can be written in the form

~ ~

f ' = q [E(x+u') + (x+u ) & 5(x+u )]

=q E(x)+q (u &)E(x)+8 q"u u:V VE(x)
4 0

+q (x+u")&&&(x)+x~(q u' V)B(x)

+q'u &&(u V)B(x)+ ~ ~ ~, (6.2)

where the ith component of the last term of Eq.
(6. 2) is given by

&oaq +7((~ff8, ~ = 8 ~(~8(+d~){q +)~((m)&8 ~

+8 &18mq '(8 (( fl1 ( .

In the above equations, we use V to stand for partial
derivatives with respect to x rather than X. The
derivative 8„ in Eq. (6. 3) is written using the

lower-case letter to remind us that the derivative
has been taken with respect to a spatial rather than
a material variable.

If we sum Eq. (6.1) on the index n, we obtain the
equation of motion of the center of maes

p'x(X, t)=f {X,f)+f'(X, f) . (6.4)

Making use of Eq. (4. 10) for the force f and the
displacement invariance conditions (5.3) and (5. 10),

e find for the force on the center-of-mass variable

Since Z does not depend on the center-of-mass var-
iable x, but only its first derivatives, the latter can-
not be neglected. The dependence 'on E&~, indeed, is
what yields the usual theory of nonlinear ("finite")
elasticity.

In summary, the theory, from this point on, us-
ing Eq. (5. 46) neglects spatial or wave-vector dis-
persion. A theory including wave-vector disper-
sion and dispersive effects such as optical rotation
obtained by using Eq. {5.36) and the methods of this
paper will be presented later.
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f (x, t) =Z f "(x, t) = p' (6. 6)

+m, (x)a, ,(x), (6. 6)

where p represents the dipole moment, m repre-
sents the magnetic dipole moment, and. q repre-
sents the electric quadrupole moment, all taken yer
unit volume in the material frame. The di.pole and
quadrupole moments are defined in Appendix A and
the magnetic dipole moment is defined in Appendix
B and these are simply sums of the corresponding
terms in Eq. (6.2). When these moments per unit
volume in the material frame are divided by the
Jacobian, they reduce to the dipole, quadrupole,
and magnetic dipole moment per unit volume in the
spatial frame and so become the ordinary polariza-
tion, quadrupolarization, and magnetization. If
Eq. (6.4) is divided by the Jacobian and evaluated
at the spatial point z =x(x, t) and the lemma of Ap-
pendix C used to convert all material time deriva-
'tives (d/dt) to spatlR1 'tillle del'lvRtlves (8/Bt) oil tile
right-hand side, then we obtain

[p(x, t)x,.(x,t)];(-„,) -,

= [y(x, ().g]E(x, () ~(—ipx(pxx)]xa
~x

0

+(1 i)(xx5)+(x&&B)(v P)+-, (Q:vv)E

~Qag 8 ~

+~1»,1+r &1,1
'

+~s~~n~S (@r1&s)»,~9g 8ZN

p(x, t)f (x, t)
0

P) x(X, &)=s

(6. V)

All but the last term on the right-hand side repre-
sents the electromagnetic force density in a dielec-
tric medium in the customary form. It is amusing
to note that the eonveetive contribution to the cur-
rent V x {P&&x) which arises from the electric dipole
moment and a corresponding convective contribution
to the quadrupole current appear automatically
when we make this transformation from material
to spatial time derivatives. Thus these terms do
not need to be derived by special arguments as in
Panofslly Rlld Phllllps 01' by' RppeRling to Lorentz

A similar sum over n on the electromagnetic forces
yieMs the total electromagnetic force

I'=Z f =f[p(X) i]E(x)+-[q(X) VV]f(x)

+p(x)&&5(x)+x&&[p(x) v]5(x))
+-.' &„,[(d/dt)q, .(x)]a, .(x)

transformations. The reader is referred to
PenfieM and Haus and to de Groot' for reviews
of electrodynamics including such electromagnetic
force terms as presented in Eq. {6.7). The force
equation (6. f) agrees to terms of order v/c (all
that can be expected for our nonrelativistic treat-
ment) with the force in the Amperian formulation
given by Penfield and Haus. 3

A comparison of our Eq. (6. V) with Toupin's
work entails several considerations. First, we
shouM ignore the electric quadrupole and magnetic
dipole terms of our Eq. (6. V) in the comparison
since Toupin has omitted such contributions. Next,
the last term of our Eq. (6. V) is identical with the

divergence of Toupm's local stress. " F rt er, if
we make an adl.abatlc approxlmatxon I our 1Qternal
coordinate equation (8. 1), by which we mean the
neglect of the inertial force term, and if we truncate
the Lagxang~an at the electric dipole level, then
our Eq. (6. V) and Toupin's Eq. (5. 2) agree. It
shouM be remembered, however, that the portion
of the total force in these equations which is "me-
chanical" or "electromagnetic" is somewhat arbi-
trary and is subject to the definition given to these
terms. In order to explain the Faraday effect,
Toupin makes an d I c add. t on to h.s const t t ve
equations. His extra term appears automatically
Rs R p &&8 'tel'm ill olll' Eq. (8.3) fol' tile llltel'11R1

coordinates (other terms of comparable order also
arise in that equation). This term can be shown
to arise from the magnetic contribution M ~ 8 to the
interaction Lagx'Rngian. Such a term also makes
contributions to the body force, the energy balance
equation, and the stress tensor which do not appear
in Toupin's treatment.

The term M~8„, has an interesting form, which
contrasts with the corresponding electrostatic term
I',F, , This difference arises because the mag-
netic dipole is generated by a current loop (electron
spin is ignored in this paper) rather than a pair of
magnetic poles. A summation of the forces over
the elements of a current loop directly yields the
force Jt/ryan g.

VII. EFFECTIVE FIELD CONTRIBUTIONS

Up to this point our handling of the electric field
in the particle equations (2. 12) and (6. 2) has ignored
self-field and local-field questions. In this section,
we wish to clarify both of these issues. First,
in calculating the electric field which acts on par-
ticle 11o. in Eq. (2. 12) the self-field of the particle,

hicha s sf ts harge, stbeo .tted.
Second tile procedure of Eq. (6.2) ill obtaining R
multipole expansion of the eleetrie and magnetic
forces might be objected to since it involves ex-
panding the electric and magnetic fieMs under the
assumption that these axe slowly varying functions.
In truth, of course, the electromagnetic fieMs are



M. LAX AND D. F. NE LSON

slowly varying if one compares corresponding
points in adjacent cells in a crystalline lattice, but
within any cell these fields ean vary rapidly. As
a result, there are, in fact, local-field contribu-
tions.

We will henceforth use the term effective field
to refer to that field acting on a particle which in-
cludes the local-field contribution but excludes the
self-field contribution. Such effective field con-
tributions imply, for example, that the electric
force which acts on a sublattice n is not q E but
should be replaced instead by

q E-q (E+Z, 1" p'), (V. 1)

where p =q uo. Matrices L are parameters that
describe the strength of the effective fieM. We
note, however, that if we were to add to the stored
energy an additional term

pop QP LRo, po
e8

Zqqu L o uo
2 eg'

(V. 2)

then this would lead to additional terms in the force
equation of the form

fact, guaranteed that we are computing just these
macroscopic fields.

Of course, some of the force terms involved field
derivatives, and in the presence of effective field
contributions we must, for example, make a re-
placement such as

q'(u" ~ V)E-q (u ~ V)E+Z, q (u ~ V) L' ' p',
(V. 5)

where the parameters L ' 8 are not necessarily
identical with L '~. All such effective field con-
tributions to the forces must in fact be derivable
from stored-energy terms. Vfhen we insist that
these stored-energy terms have a rotationally in-
variant form, then these terms must have the same
form as terms already present in the stored energy
and can again be absorbed. This means that all of
the terms of the stored energy Z are now under-
stood to contain modifications associated with ef-
fective field contributions. A correction such as
shown in Eq. (V. 5) which involves gradients of the
polarization will not appear, however, unless
polarization derivatives are included in the stored
energy, so that a fully consistent theory including
effective field contributions may require the use of
the stored energy of Eq. (5. 36) which includes
wave-vector dispersion effects.

fi ai (P ~ical) ~q L 'p (V. 3) VIII. EQUATIONS OF MOTION IN INTERNAI.
COORDINATES

in precise agreement with the effective field con-
tributions of Eq. (V. 1). Equation (V. 2) can be re-
written in the rotationaHy invariant form

P ~local 2
~ q q AALABAB
og

(V. 4)

indeed Eq. (V. 4) reduces to Eq. (V. 2) when rota-
tions are not present.

The addition of a term of the form (V. 4) to the
stored energy simply produces a modification of a
term of the same form which is already present in
the potential energy. If the parameters of the ex-
pansion of the stored energy are fitted against ex-
periment the effective field contributions are all
automatically included in these parameters and ef-
fective field contributions need not be sepa. rately
stated. A corollary to this is that long-wavelength
electromagnetic fieMs cannot be used to measure
separately the effective fields in Perfect crystals
although short-wavelength fields (e.g. , x rays or
neutrons) can be used. The absorption of the ef-
fective field into the stored energy means that the
E and 8 fields used in this paper are in fact the
long-wavelength (conventional, macroscopic) por-
tions of the corresponding total electric and mag-
netic fields. Our use of the continuum forms of
the charge and current density, Eqs. (4. 11) and

(4. 12), in the Maxwell-Lorentz equations has, in

By using Eqs. (Dl) and (D12) of Appendix D and
Eq. (6. 1) we find that the matter equations of mo-
tion in the internal coordinates can be written in
the form

m"y" (X, t)=Z. V "[P x (X, t)]=f"+f"',

valid for &=0, 1, 2, . . . , N —1, where

(6.2)

flic
—Q y0llf08

=(q'E(x)+[p'(X) ~]E(x)

+ -' [ q
"(X) iV]E(x) + q" x( X) && B ( x)

+p" (X)&B(x)+x(X)&&[p"(X) ' V]B(x)],
+-,' &g„,q„",(X)&, ,(x)+m", (X)B„,(x) .

(6. 2)
The above equations are valid for p = 0, the center-
of-mass case, as well as p4 0. For the case
&40, and in the absence of wave-vector dispersion,
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the second term in E(I. (8.2) vanishes. The ef-
fective charge q~ of the pth degree of freedom is
defined by

(8.4)

and the electric dipole moment p appearing in the
force e(luation (8. 3) is defined by

m=-.' Z' q"" (y"xy" ) = m'= MZ,
VX

(8. 14)

IX. NONLINEAR INTERACTIONS AND FORCES

where J= I ()x/() X I 18 the JRcoblRn Rs l)efol'8 Rlld

P, Q, and M are the usual polarization, electric
quadrupolarization, and magnetization of the medium.

gs Q qe uve yes Q qsv'yvv {8.6)

where a primed eum indicates omission of 0 from
the summation variables. Note that this dipole
moment is not the same as q" y~. Instead, we see
that the dipole moment of the /th degree of free-
dom hae contributions from the dieplacements of
other internal coordinates. Similarly, we define
the elements of the quadrupole moment of the pth
degree of freedom to be

As discussed in Sec. V, the stored energy can
always be expressed as a single-valued function of
a set of basic rotationaQy invariant variables E»,
&sc as shown in E(I. (5.46). For our purposes, it
is sufficient to expand the stored energy in poly-
nomial form

P~ + +A A+ +AB +AB

+g (?,0)ffsv ps gv+g (1,1)ffs
PV

and the magnetic dipole moment of the pth degree
of freedom to be

+ ' IIAacD&AB&cD+& ' &Aac Jt AAB Ac
(0,3) (3 0) VV)t P V

P VX

++ +ABCD A B +CD

{8.V)

The set of effective charges q"" (dipole moments
per unit change of internal coordinate) is defined
by

sv g e yes yev vga (sv) (8. 8)

and the corresponding effective charges appropriate
to quadrupole and magnetic dipole moments are de-
fined by

st g eyes yev ye1 (svgg) {8.9)

The parentheses displayed in E(ls. (8. 8) and (8. 9)
are to remind us these effective charges are sym-
metric on all interchanges of the indices enclosed
in the parenthesee. Moreover, we obtain the
special relations

q%0 qOP qP qP vO qOP v qV Ov qPV (8. 10)

()» g) 8(SZ/Sx A)
B2 x=p +

exA
(8. 11)

where the electxomagnetic force f ' is defined by
E(I. (6. 6). The electric and magnetic moments
and the quadrupole tensor can now be expressed in
terms of the internal coordinates by

p=Gq"y"=p'= p~, (8. 12)

(8. 13)

If we specialize E(I. (8. 1) to the center-of-mass
e(luation (p, = 0) and make use of the fact that the
center-of-maee charge q = 0, we obtain the center-
of -mass equation

+~ +ABC DE ~ A EBC EDS
~ (1,3)

+ Q (4, 0)ffsvtgv As pv p1 Av
ABC D A, B C D

+Z "'"&Aacaa AA Aa &c EBB
pvX

+& ' '&Aacaaa J(A+B&cD&aa+' (9. 1)
QV

The terms in E(I. (9.1) are written up to the fourth
order, but terms no higher than the second in the
strain field E» have been retained. Clearly, ad-
ditional strain texms can be added, but our primary
interest in this and subsequent papers mill be in the
intense fields associated with laser beams so that it
is more important to retain high-oxder nonlinear-
ities in the A polarization variables. The H coef-
ficients, called material descriptors, contain nu-
merical presuperscripts (m, n) where m denotes
the number of polarizationlike factors A" and n de-
notes the numbex of strain factors E in the term in
question.

%e can define the natural state of the medium as
the equilibrium state where no external field or
stress has been applied. In the absence of initial
stress, such as produced by bending a bar into a
circle and welding it into a single piece, both the
stress and strain will be zero in the natural state
in a nonferroelastic material. Similarly, if the
material is not ferroelectric or antiferroelectric,
etc. , no spontaneous polarization contributions
p" or dieplacemente y~ will be present. Thus, the
electromagnetic field will vanish. In order for the
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natural state to be an equilibrium state, all forces
must vanish, which implies that

&Z ~Z =0
~~C ~+AB

(9. 2)

in the natural state, i.e. , where Ac=E» =0. We
can thus conclude, since we use a natural state as
our reference state, that the coefficients of the
linear terms, " 'H~ and ' '"H», must vanish. A
similar choice was made by Toupin.

By assuming the existence of a stored energy,
[Eq. (9. 1)] we have automatically introduced param-
eters H which are independent of frequency. When
we calculate various higher -order susceptibilities,
these will be related to the H parameters by various
frequency factors, closely related to the linear
susceptibility. The frequency dependence arises
from a solution of the dynamical equations of the
particular problem. The H parameters play a role
analogous to the frequency-independent Miller 45

constant 6 derived from second-harmonic generation
coefficients (see Sec. XIII).

As we demonstrated in Sec. V, for example Eq.
(5. 22), there is more than one way to construct a
set of basic rotationally invariant variables, so
that the choice of these basic invariants is not
unique. However, any complete set of basic in-
variants is expressible in terms of any other
complete set. Thus it is adequate for us to rep-
resent the stored energy in the form of Eq. (9. 1).
A different choice of basis invariants-for ex-
ample, the use of the parameter I' of Eq. (5. 20)
in place of A of Eq. (5.25)—in the current expansion
consists essentially in a rearrangement of the terms
in the expansion Eq. (9.1). The present choice in
terms of A was made to reduce the number of ap-
pearances of low-order H coefficients (m, n small)
in nonlinear effects to a minimum and so simplifies
the form of results. We have already shown, how-
ever, that certain nonlinear effects must in fact
arise from the quadratic terms. Indeed, the rota-
tional invariance of the theory assures that the ro-
tation associated with an acoustic shear wave pro-
duces a change in the dielectric tensor in addition
to the change brought about by strain. This causes
the photoelasticity tensor to lack the symmetry
upon interchange in its two elastic indices assumed
since the work of Pockels.

The solution of the nonlinear dynamical equations
for the polarizationlike variables y" by an iteration
procedure automatically leads to all the two-step
and higher-step contributions to whatever tensor
is being calculated. This is another advantage of
our formulation of the energy in terms of yolariza-
tionlike variables and strains rather than fields
and strains. If fields were used, multistey contri-
butions would have to be introduced in an ad hoc
manner. For example, the term involving ' '"H

describes a one-step interaction in which a light
wave is scattered by a sound wave. Our more de-
tailed analysis of the photoelasticity tensor, how-
ever, shows that the same scattering can also be
produced by combining the terms ' ' 'H and ' '"H.
This two-step internal process ean be interpreted
as the creation of an internal displacement field
by a ' H interaction followed by a ' H interac-
tion of this low-frequency internal displacement
field with the input electromagnetic field to produce
the scattered electromagnetic field. The "'"H
interaction is related to the piezoelectric tensor
while the "' 'H interaction is related to the electro-
optic tensor. (See Secs. X and XIII. ) It will some-
times be possible to express the two-step effects
in terms of tensors deduced from other experi-
ments. When this is so, we will refer to it as a
two-steyindixect effect; when it is not, as a two-
stey internal contribution to the direct effect.

In order to evaluate the forces in Eqs. (8. 2) and
(8. 11), we need the following derivatives:

8Z BZ
BJ p Ri+ p (9. 2)

eZ ~ „BZ 8R ~~
Xf g+8E„' ~ BA ax) ~

(9.4)

By utilizing the definition (5.28), the rotation tensor
can be expressed in the form

RjB=Xj D[(™1 +2 E) 'j']DB

+j,D(5DB EDB + 2 EDC +CB

2 EDA EAC ECB+ ) p

so that its derivative can be written to second or-
der in the displacement u as

BR~~
2(5(j 5AB 5 jA 5(B)

Bx) g

+ A [5jA(85(C CB (,B) 5(j SAB

+ 5(B(MjD SDA 2((j,A) 5AB SCD 5iC 5jD ]

r3+ L2 5jD( Dc (((, (B 5 c )A + 5 i (D 5 c )A((m cs m~B )~

3+ 2 (ij,D(5 i(D 5 C )A SCB+ SDC 5 ( (C 5 B)A)

5
2 5jD(5( (D 5 F)A FG GB + SDF5( (F5G)ASGB

+ SDFSFG5((G5B)A) ] ' (9 8)

Note that 5«SGBxS». (See Appendix E. ) In the
absence of wave-vector dispersion, the force
on any internal coordinate y" is given by the first
term in Eq. (8. 2) which we can rewrite in the form
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0f( ft(A P HABC AA @BC
(1,1) (o.8)

0»
(ft(A 6(A) P 8AA"

6(A ( +ABC EBC+ 2~ NABAB)

~iA iA. 2 +f A & iB+A 8 & iB+0 8+if A

+ 26(B3BcscA -u(, B SBA+ ~ ~ ~ (9 9)

where we have used the abbreviation Z to represent
the portion of Z above and beyond the quadratic
terms:

P ~ P ~ + AB AAAB AB CDEAB @CD

where SBA is the infinitesimal strain defined in
Eq. (5. 17). Note that &(BuA B&uA ( [see Eq. (E5)
of Appendix Ej.

By using Eq. (9.4) the force in the center-of-
mass equation (8.11) can be written more explicitly

f( 8 BZ
r =

P ~XA ~&f,A

BZ „~Z BAyB 8 5 BZ
—(((,BA +Zyj, A Av +( (B+&(,B) E eE cD,A+~ eE eAv c,A

~@AB g B ~&f A AB CD p AB C

9+ 8 8+gB
+f A 8 CD p B C

u(X, t) =u(x, f), (9.11)

y'(X, f) = y (x, f) .
Having made this transformation, we write the
mechanical equation for the internal degree of
freedom y" in the form

g2 ll$( 2+ (20)Ifvv v (11)ffv
et2 + v ib J5+ ibc+b, c

The matter equations of motion (8. 1) are written
with the variable X as independent variable. Since
these equations are coupled to the electromagnetic
field and it is the electromagnetic field at the posi-
tion x of the particle which is relevant, it is con-
venient to introduce x as the independent variable
of the matter equations. To differentiate between
the same physical quantity with x as independent
variable rather than X we add a caret as in

tion

n ( 1 —s s ) ~ E —E —p D
/&, = (p/c, .

Here we have explicitly displayed the linear portion
of the polarization I'~ since the latter at low fre-
quencies will contain a piezoelectric contribution to
be evaluated in Eq. (10.10). This piezoelectric
contribution is not important in the optical region
but will be in the low-frequency region. (P is the
effective nonlinear polarization defined in Eq. (1.21).

From Eq. (9.7) we obtain the nonlinear internal
force term of Eq. (9.13):

0~~ 0-P ~(A
A 8AA~

+(BC [EBC 2(((b,c +wc, b)l

—2+ "2)HvB"y," (R;B —5;B)

We have segregated on the left-hand side of Eq.
(9.13) all of the linear terms and have collected in
the force Ef, on the right-hand side, all nonlinear
terms to be given below. Similarly, we write the
equation for the center of mass in the form

0 &f ~ (0,2)~ " ~ (1,1) ~u
P gtz 2 afcd +c,da ~p cai gc,a G f 2

where all nonlinear terms are collected in G;.
Equations (1.18) and (l. 21) for the electromagnetic
field can be combined to give the driven wave equa-

where the electromagnetic force f "' is given by
Eq. (8. 3). The last term in Eq. (9.16) arises from
kinematic corrections associated with the transfor-
mation (9. 12). These kinematic corrections are
evaluated in Eq. (E16) of Appendix E. With the
help of Eq. (E5) the third term on the right-hand
side of Eq. (9.16) can be reexpressed with the
help of

l
EBC —2(u() c+uc 2)
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= cgc DQJ c+0(Rc,c Q0, c)

+interchange of B with C and 5 with c
A A

= c (II,I 0 +Sly 0 Qc 0+ ' ' ' ) & (Ql c+ Ill I QI c + ' ' ' )

IA A ~ A.

+ (0uc, y&y, +cue, ucc0ua, c+' )

+interchange of b with c . (9.17)

Similarly the nonlinear force that enters the center-
of-mass equation of motion can be written in the
form

s(p'E), v ~ s(p'E)»&D
t -@~,BA ~E +~ S~,A

AB u B &jA

, v . »;D 8'(P'~) E,L "(P'~)+~ 3g g BAN gE CD A+~eh+ 8A& CA
p. &f A B CD v B C

8(p z) 8 ecg
)

ECD, +
80(p0 g) 80(p0g)

++g, B gE 8E C&,A 8E phd AC, A

8'(p'~') E, 8'4'~') ~.+ jB g@ gE CD0A 8@ eh+ C ~A
AB CD AB C

+ HAfcD(ECD @ , c),cA
&0, 2)

+ ~ ' HcAI I(yyH&c), A yc, o 1+I&

~ c

-p' x, — "j . (9.18)
eg

The kinematic correction term Ithe last term in
Eq. (9.18)] is evaluated in Eq. (E15). We have not
chosen here to express these„forces completely in
terms of the variables y and u. That is done in
connection with the various applications we shall
prese~t in subsequent papers. The forms quoted
here are sufficiently general to permit the evalua-
tion of all desired nonlinear effects.

X. MACROSCOPIC NONLINEAR EQUATIONS OF MOTION

In Eqs. (9. 13) and (9.14), all mechanical and
field variables are evaluated at the point x whereas
the field in the electromagnetic wave Eq. (9.15) are
evaluated at the point z. Since the electric field
which enters the mechanical equations is f(z)
evaluated at z =x and the polarization which enters
the field equation involves y (z) evaluated at x = z,
the two variables x and z can be identified for pur-
poses of solving the coupled equations. They are
both spatial variables and we shall denote both by
z from here on. Since we are interested in in-
dividual frequency components of the fields, we can
simplify our equations by taking Fourier compo-
nents. Thus we shall write each fieM in the form

where all fields without carets are now understood
to be a function of a single frequency ~ as defined
by Eq. (10.1). I,et us now introduce a mechanical
admittance matrix Y by

e 2 T"'(&u)(2 ' 'H"" -m" e 5""5 ) =5 5

(1o.3)

From the symmetry of the ' 'o'H matrix we see that
the Y matrix has the corresponding symmetry

(lo. 4)

Comparison of Eqs. (10.2) and (10.3) permits us
to write an expression for y" useful in iterative
solutions of nonlinear problems (see Sec. XIII):

yl —E0+pTIl ((0) (q Ey — ' HyccB0 c+EI )

(lo. 5)

The djpo]8 moment per unit volume (in the material
frame) is therefore given by

P g
=+g q y~l = ~0 X 'J (~) & +18 cc(&)SC, c

+ ~0K„x&&(~)&,"/q', (lo. 8)

where the susceptibility y and the dielectri. c tensor
a are expressible in terms of the admittance matrix
by

X1~(~)-=~ q'" T1~"(~)q", ~U(~) -=5IJ+XU(~),

(lo. v)

and the piezoelectric tensor is defined by

e;0,((u) = —e0 Q q' T"„."((u) ""HI„. (lo. 8)

Clearly ' ' '&,'~, must be nonvanishing in a piezo-
electric material. It can vanish in a nonpiezoelec-
tric material (e.g. , the NRCI structure). How-
ever, when it does not vanish in a nonpiezoelectric
1I1Rtel'1RI (8.g. , tile dlR111011d stl'llctul'8) 'tile sllII1111R-

tion guarantees the vanishing of the piezoelectric
tensor in accord with the point-group symmetry of
the crystal. The partial susceptibility X

" in Eq.
(10.6) is defined by

xll = +g q To (~)q (10.9)

The polari. zation P; can be expressed in terms of
the dipole moment per unit volume P, (in the

y,'. (z, f) =y,' (z, (u) e '"', 11,(z, f) = u, (z, (u) e '"' .
(10.1)

Equation (9.13) can thus be rewritten in the form

(2 (2,0)Hvv v 05' c 5 q v
V

—Pl (d gy) gg

=q'E, —""H,;,u, , +E,', (1O. 2)
0



LINEAR AND NONLINEAR ELECTRODYNAMICS. . .

material frame) by making use of the gacobian: (10.13) can be rewritten in the simpler-looking form

Pf /cl ~0 gf j@j+8fgcQQ c+Pf (io. io) s )y(k, QP) Ey —8)qg R g /60 = s g /Eo, (lo. i8)

where the nonlinear contribution to the polarization
can be separated off in the form

I',""=(l ' —1)(coy„z,+e„,u, ,)+—-e,Q ~"„-',
p Q'

(10.11)
and the Jaeobian itself is expressible in terms of
the displacement field by means of Eq. (E9):

The electromagnetic wave equation (9.15) which
contains the piezoelectric contribution can be re-
written in the form

[V&&(V&&E) -(&u/c) ~ ~ E], —(&o/c)'e„, u, „/~,

o', /eo, (10.13)
C

where the effective nonlinear polarization (P of Eq.
(l. 21) is rewritten as

1 ~go Z
(P .=P) —— - + —& gq

Bing

(d ~Zy

x Mq +&„( Pqg —— " — . (1Q. 14)NL 1 s(%.& )

where the dyadic n is defined by Eq. (l. 22) but with
k a number here rather than an operator. Before
proceeding with a discussion of nonlinear equations
and techniques, it would be useful to indicate in our
notation the appropriate solution of the linear equa-
tions of motion.

XI. LINEAR ACOUSTIC EQUATIONS OF MOTION

We are concerned in this section with that simul-
taneous solution of Eqs. (10.13) and (10.15) (with
nonlinear terms (P and 9 removed) which resembles
acoustic waves. Thus we wish to eliminate the
electric field E from Eq. (10.15) by means of Eq.
(10.13). Unfortunately, this elimination requires,
in general, the solution of a complicated boundary
value problem. Measurements of sound velocity,
however, are usually made at acoustic wavelengths
small compared to the specimen size. In this limit,
the electromagnetic response to the acoustic dis-
placement fieM ean be approximated by that ap-
propriate for an infinite medium. In this case, we
can replace Eq. (10.13) by Eq. (10.18) appropriate
to plane waves with 5' =0. We can then eliminate
the electric field using Eq. (10.18) to obtain the
result

If we substitute Eq. (10.5) for the internal vari-
ables into Eq. (9.14) for the displacement field, we

obtain elasticity equations in the form

Inserting this result into Eq. (10.15), we obtain
an effective acoustic equation of motion

R ~ s& -ka&cu0 2

0 2
P +f ~eicos c Ce joe g ff

(lo. is)

where the usual stiffness tensor is now expressed in
terms of the fundamental parameters by means of

(0, 2) M (i, i) w vt (i, i)' &egce-~0~ '
&eN~Yeg ' &pc~.

(10.16)

The second term in Eq. (10.16) is the usual negative
internal contribution to the elasticity tensor pro-
duced by the coupling between strain and internal
displacements. This contribution does not depend
on the material being piezoelectric but merely on
having internal coordinates that couple to the strain.
For instance, this term makes a contribution in
germanium comparable to the first term. 46 The

'new nonlinear force 9 in Eq. (10.15) is expressible
in terms of the original nonlinear force by means
of

The above equations have not assumed that we have
an infinite medium or plane-wave solutions. If the
latter are assumed, the electromagnetic equation

To make this result useful we need an explicit form
for the inverse matrix n i. In Appendix F the in-
verse matrix is found to be

(I' ~ ss Y)

where the dyadic I" is defined by

r=-[n'1 —g ((u)] ' (11.4)

and the refractive index g in this acoustic regime
is defined by

a --ss/(s 7 s) . (ll. 6)

n =ok' /(dg =c/tip 10

Because of this enormous value of n, the inverse
dyadic of Eq. (11.3) can be replaced with negligible
error by its limiting value when n- ~:
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u, = (pp(op) 'e...((o)Z, , (12. 1)

When this displacement field is inserted into the
piezoelectric term in Eq. (10.18), we see that this
term is of negligible importance, that is, it is
smaller than the dominant terms by a factor (v„/c)
-10 '0. Thus the effective optical equation of mo-
tion (10.18) reduces to

o.'(k (u) E=O or (n I —v) E=n s(s E) .
(i2. 2)

The conventional discussion of linear crystal optics
(see Born and Wolf ) based on this equation con-
siders only the two freely propagating electric field
solutions. Since the third solution (infinite refrac-

Inserting this inverse dyadic into Eq. (11.2) we ob-
tain the final result

0 2 ~e„((u)~ss, e„„(&u)—P (d Q — C g+ — — Qc s x (~)s

(ii. v)

where the s; are components of a unit vector

s = kz / ~k~ ~, &u = u&„ (ii. 8)

in the direction of propagation of the sound wave.
Equation (11.7) demonstrates that for a piezo-
electric material the elasticity tensor is modified
by a term proportional to the square of the piezo-
electric constant and inversely proportional to the
dielectric constant. 7 It may not be generally ap-
preciated that this well-known piezoelectric modi-
fication does not have the symmetry of the fourth-
rank tensor c,&,&. Rather it has the symmetry of a
fourth-rank tensor which is a function of the unit
vector s whose direction is arbitrary. Thus the
piezoelectric modification to the elasticity tensor
may have components for which the original tensor
vanishes.

XII. LINEAR OPTICAL EQUATIONS OF MOTION

In this section we wish to obtain a set of effective
optical equations of motion by eliminating the sound
field from Eqs. (10.15) and (10.18) again with o'

and & set to zero. This elimination is easiest to
perform when the wavelength of sound at the fre-
quency ~0 of the electromagnetic wave is small
compared to the specimen size. In this case, the
piezoelectric term in Eq. (10.18) can be eliminated
with the help of Eq. (10.15) using a plane-wave
description in the latter equation. We have the
relationships

(dp ckp i c~|qg P (5 )

From this it is possible to deduce that the elasticity
term in Eq. (10.15) is about 10 'P smaller than the
inertia term. Thus the displacement field can im-
mediately be solved in the form

We find these eigenvectors more convenient than
those introduced by Kleinman. ~" corresponding
to the eigenvectors h" are defined by

(i2. 4)

As discussed in Appendix F, these eigenvectors
necessarily obey a biorthogonality requirement
of the form

h".X)'~5" (12.5)
Inspection of Eq. (12. 3) immediately reveals the
existence of one nonpropagating longitudinal solution
with infinite refractive index

h !Is, {1/n")=0 (12. 8)

The orthogonality relation (12. 5) now immediately
yields that the I)" vectors of the propagating solu-
tions are necessarily orthogonal to the direction of
propagation:

s S"=0, (i2. V)

If 8 4~, then the scalar product of Eq. (12.3) with
X)' yields

(I/n")'a)'X)'=u' (1 —ss) S'=0 gee
(12.8)

The right-hand side of Eq. (12.8) vanishes because
of Eqs. (12.7) and (12.5). Thus we conclude

S'~$, I)'~s, S ls, (i2. 8)
2where the propagating solutions S' and S are re-

ferred to as ordinary and extraordinary solutions
in a uniaxial crysta, l.

Equation (12. 2) can be used to show that the
eigenvectors possess components in the principal
coordinate system

gy i
[(n")'- ~, ,Pr' '

where the dielectric tensor g is diagonal in that
system with elements v, , Summation over i is not
implied in Eq. (12.10). The normalization factor
N" is chosen in accord with

(12. 10)

2 1/2
p~ Kq q8 ~

; f( '&'- i;1') (12.11)

tive index and hence not freely propagating) can
exist as a forced wa, ve and be important in coupling
various optical processes in high-order nonlinear
optical interactions, it is important for us to use
a formulation which includes this solution on an
equal footing with the other two. Thus we are led
to introduce the real electric field eigenvectors
h" = S'(s, &u) with eigenvalues [1/n" (s, &u)] defined
by

[1 —ssj 8"=(I/n")'7((o). h' (y=l, 2, ~) .
(i2. 8)
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to ensure the orthonormality condition

(12. 12)

Equation (12.12) is a biorthonormalitg condition
since it states that the three vectors 8', 82, andf ~ s are not orthogonal to each other but to the
corresponding set R, x), and s"~ K s as illus-
trated in Fig. 1.

If we solve Eq. (12.2) for E on the left-hand side
and take a scalar product of the resulting equation
with s, then we obtain an equation for s ~ E which
is satisfied provided

n2

s2
i

n —K
(i2. iS)

Equation (12.18) can be regarded as an equation for
the index of refraction using the dielectric tensor
K at a given frequency ~ for a given direction s
of propagation. An alternative form of Eq. (12.18)
can be obtained by subtracting 1/n2 from the left-
hand side and (1/n')(s', + s22+s,') from the right-hand
side with the result

2 2 2
KyySy K22S2 KSSSS+2 +2

K22 n Kss
(12.14)

It is clear that Eq. (12.14) is satisfied by n= ~, the
nonpropagating solution previously found in Eq.
(12.6). The two remaining solutions can be obtained

by rationalizing Eq. (12.14) with the result

agating wave roots. All of the above results are
valid in arbitrary crystals, that is to say, biaxial,
uniaxial, and optically isotropic crystals.

Although results for the uniaxial case can be ob-
tained from the general results above by taking the
appropriate limit, the limiting process can be a
tricky one and it is therefore efficacious to indicate
here directly the solutions for the uniaxial case.
The uniaxial case is described by the condition

K» = Ic» ) ss = (s ' c) q (i2. io)

(12.17)

These roots are labeled with superscripts 0 and e
corresponding to the ordinary (na independent of s)
and extraordinary (n dependent on s) solutions. If
the electric vector is in the plane perpendicular to
c then the dielectric tensor in Eq. (12.4) merely
produces a factor K, . Moreover, in this plane X)

must be parallel to . By Eq. (12.7), however,i & s so that 6 & s and 6 1c. This leads to the or-
dinary solution:

where c is a unit vector in the direction of the optic
axis. In this case, the quadratic equation for n

[Eq. (12.15)] factors readily and yields the two
'roots

Ku. Kss

4t 2 2 2an (KygS f + K22S2+ KSSss) + K~~K22K33

n'[~»~—»(l —s', ) + ~»~»(l —s', )+~„~»(I —~', )] = 0,
(12.15)

which is a quadratic equation in n for the two prop-

8'= (sxc)/N', F).'= v»$', (12.18)

since Eq. (12.2) yields n = v» independent of s. By
the orthogonality condition (12.12), the extraordinary
vector S' must be perpendicular both to s and to
h'. Thus it must be parallel to the cross product
of these two vectors and the extraordinary solution
is

8' = 7r
' .O', S' = s x (s x c)/N' . (12.19)

The normalization condition (12.12) permits us to
determine the normalization factors in the form

(N') = (n') [1 —(s. c) ], (N') = [1 —(s ~ c) ]/(n')

(i2. 20)

A. Polariton Dispersion Curves

FIG. 1. The biorthogonality of the electric field eigen-
vectors g" and the associated electric displacement
eigenvectors Q" =k ~ 8" is displayed, as well as the
orthogonality of the three vectors g), g), and the prop-
agation direction vector s.

The dispersion relation Eq. (12.15) conceals a
great deal of physics because the frequency depen-
dence of the dielectric tensor 7(&u) has not been
explicitly displayed there. Equations (10.7) and
(10.8) indicate that 7 will have resonances asso-
ciated with each internal normal coordinate, e.g. ,
ionic, electronic, or excitonic degrees of freedom.
When these resonances are taken into account, the
dispersion relation yields a branch associated with
each resonance, e.g. , an optical-phonon branch
and an excitonic branch in addition to the electro-
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2 I I 2 5 i 8n =(ck/&o) =K»=«»+y»+y~~ . (12.22)

As a specific example, we shall assume that the
dielectric tensor component ~» has in addition to a
relatively nondispersive electronic background
component ~», an ionic component y» associated
with optical-phonon polarization, and a component

g» associated with exciton polarization. In par-
ticular, each of these components can be assumed
to have a single pole in ~ as in

(2(2, 0)ff&g f 2) 1( i)2/ Ai/( 2 2)

(12.23)

y' = (2"'"H"—m'(u') '(q')'/e =A'/((u'- (o')

(12.24)

In this example, the interaction ' 'O'H,"~ between the
oscillators has been neglected. This interaction is
unimportant since these oscillators are well sep-
arated in frequency [see Eq. (13.32)). Our quali-
tative conclusions would be unmodified if such an
interaction were included. Using Eq. (12.22), we
see that

k-~ as v-v, or (12.aS)

magnetic and acoustic phonon branches previously
discussed.

If the coupling between the polarization of one of
these branches and the electromagnetic field is
neglected, the dispersion curve for that branch
crosses the one for electromagnetic waves. In the
"crossing region, " the interaction is important. It
causes a repulsion between the branches (eliminates
the crossing) and a mixing of the polarization mode
with the electromagnetic field to produce what is
usually referred to as a polariton. Away from the
"crossing region, "the interaction is unimportant,
and a given mode will be nearly electromagnetic or
nearly excitonic (or nearly phononlike).

To illustrate these ideas in a semiquantitative
manner, let us consider the case of a biaxial crys-
tal with s3= 1. The dispersion equation (12.15) now

factors into

«„(&u)[n' —K»((o)][n' —K„((u)]= 0 . (12.21)

If we seek a transverse solution in which 8 is paral-
lel to the x axis, then the corresponding index of
refraction obeys

plot of a dispersion curve, in other words, a plot
of co vs k. The result is that the dispersion curve
has two asymptotic regions that approach co; and

co„as k- does not depend on the detailed form
of the dielectric constant in Eqs. (12.23) and
(12.24). It depends only on the existence of poles

Kg)((0 ) = K»(Me) = (12. 28)

associated with the natural internal frequencies of
the system.

If we set the first factor in Eq. (12.21) equal to
zero, we obtain the longitudinal solution

E II y, «22(~) =0 ~ (12.28)

FIG. 2. Typical polariton dispersion curves. Fre-
quency is plotted versus wave number k for electro-
magnetic waves coupled to ionic motion i and excitonic
motion e. The large-k limit displays the longitudinal
resonances && and +,&

and the transverse resonances
~ and ~~ appropriate to ionic and excitonic vibration
with negligible electromagnetic contribution. By large
k we mean k large compared to the crossover region,
but still negligible compared to the Brillouin-zone bound-
ary. The longitudinal frequencies a&& and a~~ are shown
as independent of k which is appropriate for the case of
propagation along a symmetry axis. The solid curves
where labeled with slopes are predominantly electro-
magnetic in character.

Also Eq. (12.22) reduces for small &u to

&u = ck/ [K„(0)]'". (12.28)

If we interchange the indices 1 and 2 in Eq. (12.2&),
we obtain an alternative longitudinal solution obeying

s, = 1, E II x, «„(~)=0 . (12.30)

(o- ck/(«" )' ' (12.2V)

These conditions permit us to sketch in Fig. 2 a

In addition when co» cu, and co» ~„only the back-
ground contribution to the dielectric constant re-
mains and we obtain the dispersion relation

A comparison of Eqs. (12.28) and (12.30) shows
that we have a case in which the transverse solu-
tions are poles and the longitudinal solutions are
roots of the same function of frequency. Such a
relationship is what leads to the Lyddane-Sachs-
Teller theorem.
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B. Lyddane-Sachs-TeHer Theorem

If we have an arbitrary even function K(~) with a

finite number of simple poles ~~, and a finite high-
frequency limit, then it can be represented in the
form

=I+K A ((u' —(u') =i II ((u' —a) )+Q A~ II ((o, —a) ) II ((op —& ) (12.81)

where m=3M-3 is the number of nonacoustic de-
grees of freedom. The above result can be re-
written in the form

(12.82)

which makes evident the roots v„of the function of
~ as well as its poles. If we set ~ = 0 in Eq.
(12.82) we obtain

s K((o) s=o . (12.34)

Thus for a general direction of propagation gll the
natural internal vibration frequencies me ~oots of
a function (12.34). Since all these modes have a
longitudinal electric field component, it is not sur-
prising that their frequencies are given as roots.
In a general direction there are no solutions which
are purely transverse and no solutions which are
obtainable as poles of some analytic function. To
understand the behavior as the special direction
s2= 1 is approached Eq. (12.84) is rewritten in the
form

S12 K»((d) 2 sg2+ S2+
K»(~) K»(~)K»(~) K»(~)

(12.35)

so that when s2=1, s1=s3=0 the frequencies obey

K(O)
m m

i = II ~r II ~p (12.33)
j r=1 @=1

which yields a relationship between the ratio of the
analytical function of zero and infinite frequencies
and the set of roots and poles of this function. %hen
the poles correspond to transverse solutions and
the roots to longitudinal solutions of the same ana-
lytic function, Eq. (12.33) is then the usual state-
ment of the I,yddane-Sachs- Teller theorem original-
ly proven for cubic crystals. 8

Although we have demonstrated such a relation-
ship for a biaxial crystal with special directions of
propagation, this relationship is not valM' for gen-
eral directions in biaxial crystals. The internal
frequencies of vibration of the crystal are, in gen-
eral, given by the frequencies on the dispersion
curves as k approaches infinity. %e may obtain
these frequencies by letting n become large in Eq.
(12.14). If we multiply Eq. (12.14) by n and take
the limit as n- ~, we obtain the condition

( )
-=A 'Q [(o„(s)]', (12.88)

3 N-1
&= II II ~~&

/=i t=1
(12.so)

where co,~ is the observable transverse resonant
frequency associated with a wave polarized in the
principal direction j and propagating in either of the
other principal directions. As a symmetry direc-
tioll is Rppl'ORclled the generalized Iyddane-Sachs-
Teller theorem (12.38) reduces by the use of Eq.
(12.86) to the simpler form Eq. (12.38).

The form (12.38) of the Lyddane-Sachs-Teller
relation has been derived by Cochran and Cowley.
These authors express 4 as a product II~ Q~,
where the Q~ are all the resonant frequencies ap-
propriate to the same crystal in which aD electric
fields are suppressed (a condition which cannot be
realized experimentally in the infrared by boundary
conditions in normal-sized crystals). Our expres-
sion (12.39) for A involves readily measurable
frequencies.

The Cochran-Cowley derivation makes use of
the electrostatic approximation and makes extensive
use of the properties of determinants. Our deriva-
tion avoids the electrostatic appxoximation and

K22 ((0)
Kll((0)K»(&d)

Thus they are the roots of K»(&o) and the poles of
K,l(&u) and K»(a&), i.e. , the longitudinal and purely
transverse modes previously discussed following
Eq. (12.21).

By the reasoning that led to Eq. (Ia. 82) we can,
however, write

s K ((u) s II„[(o„(s)'-(u']

s K(~) s II,((u,
' —(o )

where &u„(s) now includes all resonant frequencies
of the crystal "transverse" as well as "longitu-
dinal. " (The quotes remind us that in a general
direction the modes do not have a pure transverse
or longitudinal character. ) The poles a&~ of
s ~ K (&u) s do not correspond to resonant frequencies
for direction s but instead are poles of the three
'tel'nls Kll((d), K»{(d), Rnd K»{(a1) contamed ill
s ~ ~ .s and are independent of the direction of s.
Thus
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achieves its simplicity by using only the existence
of poles and zeros of the longitudinal dielectric con-
stant s ~ (&u) s. We have, of course, made the

usual assumptions, made also by Cochran and

Cowley, that (i) x (&u) is an even function of
(ii) z (~) = finite = Y, (iii) Y(~) has a finite

number of poles on the real axis and no other sin-
gularities. The first of these can be justified by
time reversal. Assumption (ii) implies that there
is a frequency well above the ionic resonances,
but well below the electronic resonances (i. e. , in
the optical region) in which frequency dispersion
is negligible so that x '= 7 (optical) is the back-
ground dielectric tensor produced by the electronic
degrees of freedom. Assumption (iii} is merely
the statement that the infrared-active ionic modes
constitute a finite number of degrees of freedom
and that damping is neglected.

C. Piezoelectric Modification of Low-Frequency Dielectric
Tensor

At low frequencies, at which wavelengths can be
comparable to specimen dimensions, Eq. (12. 1)
is no longer valid and we must return to Eq.
(10.15) in the form

ticity equations, we can conclude that the stress
tensor must vanish everywhere within the crystal:

~ia ~aicd+c, d 8jai~j ' (12.46)

Thus we can solve for the symmetric part of the
displacement gradient in the form

+(c,d) ~cdab e jab +j ~
(12. 47)

where s is the compliance tensor, the reciprocal of
the stiffness tensor c. Since the electromagnetic
wave equation (10. 18) depends only on the strain,
Eq. (12.47) can be inserted to yield

~kg (+l) li (~H)+ e' d d b b/ 0' (12.49)

Here I. stands for low and H for high frequencies as
compared to the piezoelectric resonance frequency
of the crystal under study.

([n (1—ss) K ((0)j E j;= e'gdd Sdddy eydb @J/eo ~

(12.48)

The term on the right-hand side of Eq. (12.48} can
be interpreted as a piezoelectric modification of the
dielectric tensor"

0 2—P (d Qi=Tiaa ~
(12.40) XIII. ITERATIVE TECHNIQUES FOR SOLUTION

OF NONLINEAR EQUATIONS

where the stress tensor in the linear regime is de-
fined by

Tia ~ai cd', d ejai ~j (12.41)

The boundary condition at the surface of a traction-
free crystal can be written in the form

Tia n, =0, (12.42)

where the n, are components of a vector normal to
the surface of the crystal. In the vicinity of what
is known as the fundamental piezoelectric resonance
(pr) in a crystal of thickness I-, the wave vector
and frequency are given by

k-m/L, ~~„-nv„/L . (12.43)

T], , =0. (12.45}

When combined with the boundary condition Eq.
(12. 42) a.nd the uniqueness of solutions to the elas-

A comparison of the importance of the inertial term
to the elasticity term in the elastic equation of mo-
tion is given by

p QP B(/Cggdd kd kdQ~ p (d /p (vg) (W/L) (&d/Q)y~)

(12.44)

Thus we see that, if the frequency. co is much below
the frequency co„of the piezoelectric resonance, the
inertial term in the elasticity equation can be dis-
carded. In this case Eq. (12.40) can be rewritten
in the corresponding form

In this section we shall obtain the form of the
nonlinear polarization responsible for mixing of two
electromagnetic fields, at least one of which is op-
tical. This will include optical harmonic genera-
tion (where both fields have the same optical fre-
quency), optical mixing (where the frequencies are
different), the high-frequency (clamped) electro-
optic effect (where one frequency lies between the
ionic and piezoelectric resonances), and the low-
frequency (unclamped) electro-optic effect (where
one frequency is below the piezoelectric resonance
frequency). The difference between the low- and
high-frequency electro-optic effects involves the
piezoelectric and photoelastic eff ects illustrating
the effect of acoustic interactions on what otherwise
would be described as purely electromagnetic phe-
nomena. We have applied the technique to be used
here to the photoelastic interaction' and to acous-
tically induced harmonic generation.

The important nonlinear terms in the polarization
can be obtained through the use of the following ap-
proximations: (i) To obtain the mixing of two elec-
tromagnetic fields as discussed above, terms in-
volving a product of three or more fields in the
equations of motion must be discarded. (ii) Terms
arising from electric quadrupole, magnetic dipole,
and higher multipole moments are found to be
negligible in a dielectric in comparison to the in-
teractions considered here and are discarded from
Eq. (8. 3). (iii) Two field terms in the forces in-



volving a product of two displacement fieMs
[u(x, f)] can be immediately discarded since one of
these fields must be at an optical frequency and
hello 8 111lllllte fol' t116 illtel'Rc'tlolls collsldel'ed. (lv}
Remaining forces that involve the magnetic field 5,
such as p xB and gradient forces such as (p-V)R can
also be discarded, as they are of order (lattice con-
stant x wavelength) times the dominant forces. (v)
Correction terms that arise in the transformation
of time derivatives from the material to the spatial
frame (see Appendix E) are found to be negligible.
{»)Two field terms in which the acoustic displace-
ment is evaluated at an optical frequency can be
discarded as negligible. (vii) All terms in the
acoustic nonlinear driving force 5 enter the polar-
ization equations through a piezoelectric term in-
volving the displacement u at an optical frequency.
Since the latter is small, the nonlinear driving
term 6 gives a negligible contribution to the opti-
cal output and so can be neglected in this section.
(viii) The convective current term (i/a&}Zx (Pxu)
of Eq. (1.21) is omitted since it is of order u&„/(do

compared to terms retained. These approximations,
the terms discarded, and estimates of their size
are given in Ref. 2. With these approximations
Eq. (10.11) becomes

NL v v / v(P~=P,- = u"c~oX ~E~+~0~~"X~ I' /q
(13.1)

where with the help of Eq. (9. 16) we get

(2,1) Id%

+mbcd Xb +c,d

~ (2,0) vA,2~ Bdygy Qt g]

+md3 0+I:o,dl y

1 I
nrc, dl= 2 ("c,d ldd, c) . (13.3)

We are considering a problem in which we have
two driving fields: one at the frequency (do which
we shall normally consider to be an optical fre-
quency, and another at another frequency && which
may be optical or at a lower frequency. The latter
field is applied as an electromagnetic field in an
electro-optic experiment, and as an acoustic field
in a photoelastic experiment. It is then rigorous
to expand any field variable Z(y", u, E, or B) in
a Fourier expansion

Z(z, &)=
&

7" Z{z, f; m, n),
fft o

n-"-'o

where the individual terms have the form

(13.4)

Z(z, f; m, n)=Z(z; m, n)e """o'"""".
(i3. 5)

Reality Of 'tile Ol'lglllRl Variable Z ls gllR1'Rllteed by
the requirement

Z(z; -m, -n)=Z*(z; m, n) . (i3.5)

where all field variables are understood to be func-
tions of z and

We have included the factor —,
' in Eq. (13.4) so that

the magnitude of Z(z; m, n) represents the ampli-
tude at its associated frequency. It can be omitted
from the m=m=0 term. Other conventions have
also been used in the literature. 26

If the expansion Eq. (13.4) is applied to Eq.
(13.1) and the corresponding coefficients with the
frequency (do+(dz, i.e. , the (m, n)=(1, 1) coef-
ficients, are compared, we obtain the result

o (pl(I, I) = —(o)' n...(0, I) ~o Xl)((do)zl(1, o)

+ o ~o&.X;" (~a}&"(1 I)/q" (13 7)

where we have used the brackets to denote an anti-
symmetrization in the enclosed indices:

Similarly, the nonlinear driving force can be writ-
ten in the form

I 2
y" (( ))= (0

—or "',"H"',"~y,'((, 0)yy (0, 1) —0Z'0"C"„'„,y'O, O)u, , ,(0, ))

or ' yy y (»0)"& . &(0)) —0E ' 'c" y((0)a, „(0 ))), ((0 0)

where the interchange of the (0, 1) and (1, 0) argu-
ments has been omitted in the last three terms but
included in the first. This accounts for the extra
factor of 2 in the first term.

We now continue the procedure used in Sec. X
of eliminating the internal displacements y' in
favor of the electric field E and displacement gra-

dients u, „. This elimination is to be made by the
use of Eq. (10.5). Since the expression (13.9) is
already bilinear in the field variables, we must
omit the last term in Eq. (10.5). Moreover, the
second term in Eq. (10.5) can be neglected at the
optical frequency (do but must be retained at the
acoustic frequency +& when that is a low fre-
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quency. Thus we can write

J&(l, 0) = &OXgs((()0)&g(l, 0)/(t",

yg(0, 1) = &ox~I(») &a(0 I)/e"

(13.10)

+&OX(J(cu)E)( ~ 0)"((,&)+

+~OX()(.~)&~( o)((..)(o 1» (» 12)

where our subscript indices correspond to the fre-
queIlcies according to

(13.11)

When these results are inserted into Eq. (13.9)
and the latter in turn inserted into Eq. (13.V), we
see that the effective nonlinear polarization is ex-
pressible in terms of field amplitudes and displace-
ment gradients alone:

(P,.(1, 1)=2~,d, ,,z, (1, O) Z, (O, i)

j-(1,0)-(()„k-(0, I)-», f-(I, l)-(d, .
(13.13)

When Eqs. (13.10) and (13.11)are inserted into
Eq. (13.V), the coefficients in Eq. (13.12) can be
read off as

) Oa =
& &o + X' ((d)))X)(, ((()0) X~& (»)

v)t p

X( ) 0 +«z)= a X(y((do)6eu &0~ X(m((d)))X&(((do)
(3,1)Hvk

fjt, bed

(&,&)

+3~o Z X(" (~a)Xga(~0)"'"&""ogYy,'(»)
vA, u p

X( ) ~0+ X(m (~B)Xjb (+0)
Lcd) @g

We have used the symbol (t(c, d) to represent an
antisymmetrization operation defined by

electric fields is defined by means of the relation-
ship

«& d)f:-=l(f.u-fe) . (13.1V) (13.19)

The texms X,.&&,~~ and y,&r,~, are the symmetric
and antisymmetgic contributions to the direct pho-
toelastic tensor. We have previously emphasized
the importance of the heretofore neglected anti-
symmetric term' and note that when Eq. (13.1V)

is inserted into Eq. (13.16) we obtain the result
quoted in Eq. (4. 16) of our paper on the photo-
elastic interaction. ' In that payer we note that the
linear intexaction matrix ' ' 'H can be eliminated

by means of Eq. (10.3) of this paper. Neglecting
terms of order»/(do, Eq. (13.16) can be reduced
to the simple form

X()[cc) X~(t(c& d) (X(c(+B)6)4+X)a((do)6(dl '

(i3. iS)
We have already shown how Eq. (13.16) (ignoring
the minor difference between &oa and (do) can be
derived using elementary arguments relating X to
the change in the dielectric tensor of anisotropic
crystals under rigid rotations. Equation (13.18),
with predictable sign and magnitude, can be com-
bined with acousto-optic or Brillouin scattering
IQBRsurements of I X g»g l and txgy gy I to determine
the sign of X)»~ o

A. Optical Mixing Tensor

The tensor responsible for mixing two input

where the factor D is given the values

D= 1 if (do=», D=2 if (()04» . (13.20)

This factor takes into account the fact that when

~0 does not equal » two terms arise in this theory
whereas only one term can arise if + is exactly
equal to co„. The inclusion of the factor D then makes
the mixing tensor d"g "f"&a continuous function of
its frequency arguments. A comparison between
Eqs. (13.19) and (13.12) shows that the coefficient

d&» is indeed identical to the mixing tensor used
in Eq. (13.12) where the two frequencies weie as-
sumed to be different.

When both frequencies (do and (d„are identical
optical frequencies, (I"f f"" is referred to as the
second-harmonic generation tensor, and it is nec-
essarily symmetric on its last two indices. Thus
it has the same symmetry as the piezoelectric
tensor for the material in question. If ~0 and ~~ are dif-
ferent optical frequencies, (I"g "&~"~~' is referred to
as the optical mixing tensor. As discussed by
Gioxdmaine, "

coo —u& can be large enough for dis-
persive effects to destroy the symmetry on the in-
dices j and k, thus permitting d,» to exist for aH.

(and only for) acentric groups (including the acen-
tric, nonpiezoelectric group 432). If the low fre-
quency v~ lies above the piezoelectric resonances



LINEAR AND NONLINEAR EL EC TRODYNAMIC8. . . 3721

d&B ~0+A —d~O~B +A —d+B &A &0$)k y4 k ~ k (13.21)

follow from the symmetry of "'"H"","& under the in-
terchange of any lower pair of indices coupled with
the simultaneous interchange of the corresponding
upper pair. [This symmetry can be assumed with-
out loss of generality since nonsymmetric portions
of "' 'H do not contribute to the potential-energy
sum in Eq. (9. 1).]

In a dispersion-free region, in which X,
"

(td) has
the same value at the three frequencies &B, w0,
+» the just-described symmetry of the ' ' 'H""~&

immediately leads to the Kleinman" rule of sym-
metry with respect to any permutation of the sub-
scripts:

djgk d(f jk) (13.22)

This reasoning is the same as Kleinman's except
that many degrees of freedom can be involved.

Equation (13.14) can be written in a form

gott E Xte(tdB) Xttt(&0) Xtt~e(&A)5ette t
)t, u v

(13.23)

representing a generalization of the Miller relation-
ship" to the case of several degrees of freedom.
The partial susceptibility y associated with y is
defined by

(13.24)

where the generalized Miller 5 can be identified
as

of the crystal (of course, &0 is still optical) then
the tensor d"B"0""is referred to as the high-fre-j k
quency (clamped) electro-optic tensor still ex-
pressed in the form conventional to the optic mix-
ing tensor. If the low frequency» is below the
fundamental piezoelectric resonance, the tensor
plus the indirect electro-optic term (derived in
Sec. XIII B below) is referred to as the low-frequen-
cy (unclamped) electro-optic tensor in the optical
mixing form.

The form of the d,.» tensor given in Eq. (13.14)
is similar to, but somewhat more general than,
corresponding expressions used by Kleinman' and
Miller. ' Of course, the general symmetry require-
ments

single electronic (e) and a single ionic (2) contri-
bution to the susceptibility, Eq. (13.23) can be
rewritten in a form which generalizes that sug-
gested by Garrett and used by Boyd, Bridges,
Pollack, and Turner":

+ (Xve (tttB) Xso (tttO) Xte (tstA )

+ Xve (~B)Xst (~A) Xss (otto)

+X«(&A) Xss(ado) X e(~B) ]5eos*

g)LPV gg)tv g, Q VII,

abc bac "&ca (13.28)

Thus 6"' and 5"' must have Kleinman symmetry

~abc ~ (abc) & ~abc ~ (abc) & (13.29)

whereas the remaining 6's have piezoelectric sym-
metry

~eel ~eel get i geji
~abc (ab)c ~ abc ~a(bc) ' (13.30)

In the optical region, in which all frequencies
are well above the ionic resonance, only the first
term in Eq. (13.27) contributes since x is small.
Miller's rule ' states that although the optical mix-
ing tensor d varies by orders of magnitude from
one material to another, the (Miller) 5's vary much
less. It is large variations in the susceptibilities
that are responsible for the dramatic variations in
d. The Miller 5 which is essentially our '3' 'H is
a "chemical" property of the crystal which should
not vary strikingly as one moves through the Peri-
odic Table. Levine's bond charge model' has ac-
counted well for the variation of the Miller 6 in
different crystals.

If one of the frequencies, say ~A, is infrared,
and the other two are optical as in the Faust-
Henry experiment, or an electro-optic experi-
ment (discussed more carefully later), then the
only contributing terms are

+ interchange of e and i . (13.27)

By Eq. (13.25) 5,"se,"has the same symmetry as
(3,0)H)tu v .

abc '

5ttev 3 2 (3,0)Hxvv/(g e v) (13.25)

That the g
~ are partial susceptibilities is evident

from the relationship

(13.26)

Equation (13.23) has not been specialized to prin-
cipal directions of X as Miller did, since in mono-
clinic and triclinic crystals these directions are
frequency dependent. If there is (effectively) a

For all except triclinic and monoclinic crystals,
principal axes (for which Xt& is diagonal) are de-
fined by symmetry and the d„„are understood to
be expressed in such a.principal coordinate system.
Since all force constants are comparable H"- Hee
- m'(&0')', the effective coupling between electronic
and ionic motions
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(13.32)

is negligible. Thus the partial susceptibilities

e e
Xra= Xa. &ra, Xic=X.c~gc (13.33)

are also diagonal with respect to the same axes.
Faust and Henry in their experiment in which ~z
passes through the restrahl region of the crystal
obtain excellent agreement assuming (i) that the
partial susceptibilities are diagonal, Eq. (13.33),
(ii) that y' can be approximated as a frequency-
independent background, and (iii) that y' is de-
scribed by a single damped resonance. Theix' ex-
periment, in conjunction with clamped electro-
optic experiments, permits the determination of
the two Miller parameters 5'" and 5"'.

An experiment with two frequencies neax' the in-
frared resonance &; wouM depend on 5"'. How-

ever, the sum frequency wouM still not be much
above &; so that 6"' terms would also enter in ad-
dition to 5"' and 5"'. Nevertheless, measure-
ments at several frequencies can be combined with
harmonic generation and electro-optic data to de-
termine all four constants.

Extensive measurements of microwave frequen-
cy mixing have been made by Boyd, Bridges, Pol-
lack, and Turner with results expressed in terms
of all four parameters discussed here. Their data
in combination with second hax'monic generation
and electro-optic effect data were sufficient to de-
termine 5"', 5"', and a susceptibility weighted
combination of 5"' and 5"'.

8. Electro-Optic Tensor

In a piezoelectric material, the term in Eq.
(13.12) involving the strain components u&„d& con-
tribute to the electro-optic effect. Below the piezo-
electric resonance, we can use Eq. (12.4V) to cal-
culate the strain induced by an electric field. Since
the piezoelectric effect via Eq. (12. 4V) only induces
a strain and not a rotation, the last term in Eq.
(13.12) vanishes while the middle term yields the
indirect electx'0-optic effect. Thus Eq. (13.12)
becomes

&y (1, 1)=eo(2d*;b+X d& d)s dobeb b')&;(I, o)&b(o, 1)
(13.34)

where the first and second tex'ms are the direct
and indirect electro-optic effects. Note that only

the symmetric part of the photoelastic tensor con-
tributes to the indirect effect. Moreover, the in-
direct effect, in this low-frequency region, has
the same symmetry as the direct effect.

At frequencies well above the piezoelectric reso-

In a piezoelectric material a, strain induces an
electric field. Equations (11.1) and (11.6) yield
the induced field

(13.36)

is a unit vector in the direction of propagation of
the sound wave. If the electric field (13.35) is
eliminated from Eq. (13.12), the total nonlinear
yolarization induced by an applied electx'omagnetic
field and an applied aeoustie fieM is given by

2d&dbaba~+' = &o X.i~.~- - —"
~ ~ - e .~ E~ &, 0 &c,u 0 &

boa K ((dg) a, )

where X;&,~ is the sum of the symmetric and anti-
symmetric contributions previously defined:

X,ij cd gi j(cd)+ X, igk&..d 1 ~ (13.38)

As discussed in more detail elsewhere, ' the
piezoelectric correction to the measured photo-
elastic tensor does not transform as an ordinary
tensor of fourth rank, but rather as a tensor func-
tion of the uni. t vector a. As a consequence, the
indirect photoelastic susceptibility can have non-
vanishing components forbidden by bulk symmetry
to the direct photoelastic susceptibility. These
piezoelectric corrections must be subtracted off
from the experimental results to obtain the ma-
terial tensor g;;, . The situation we describe here
with regard to the photoelastic interaction is com-
pletely parallel to the situation of piezoelectric
corrections to the elasticity tensor (see Sec. XI).

XIV. FAR-FIEI.D DYADIC GREEN'S FUNCTION
IN ANISOTROPIC MEDIA

Vfhen the experimental geometry is such that the
electromagnetic field is not properly or convenient-

ly described as a plane wave, the electromagnetic
equation

nance, Eq. (12.4V) does not apply. The crystal
responds only weakly to the applied field as seen
from Eq. (12. 1), so that the indirect effect in Eq.
(13.34) should be omitted. In the piezoelectric
resonance region, where acoustic wavelengths are
comparable to crystal dimensions, neither Eq.
(12.4V) nor Eq. (12. 1) is applicable, and a bound:-

ary-value problem must be solved. In the latter
case, the indix'ect electro-optic effect loses the
(infinite medium) symmetry of the direct effect,
and dePends on the shaPe and orientation of the
sPec&pl e'pl .

C. Indirect Photoelastic Effect
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(2(-iV, (d) E(r (d)=.5'(r)e ' '/~() (14. 1)

is best solved by the Green's-function technique:

E(r, (d)= 5 G(r, r'). 6'(r')dr'e '"'/e() . (14. 2)

Here the dyadic Green's function is given by

+~ itj (r-x')e
G(r, r')= n), (d

dk
(2(I)

(14.3)

and the reciprocal of ~k, (d) has been given in
(F1'l) as

where j(=k R/kR=cos(k, R), R-=r —r', R= IRI,
and $ is an azimuthal angle about the direction of
k. Thus dk= k'dk d$ d jI. Writing f(p, ) briefly for
f(k, $, p), we can simplify the integration over )((

by integrating by parts:

t'+I df (~) +(2Bg
d((( . (14.6)

dp. QQ

The first term on the right-hand side is of order
1/kR. The second term like the left-hand side con-
tains a rapidly oscillating factor and can, , -by an-
other integration by parts, be shown to be of order
(1/kR) and hence negligible in the far field. We
note, however, that at )((=+1, the vector tI must
be parallel or antiparallel to R, and f(+ 1) is in-
dependent of $. Thus

k2dk I (f5 I dp, e'2""F(ks)
0

1 ~~ 8"(s, ())S"(s, (d) ss
~(k) N) z 1~2 [(ck/R) /B (s) M) ]—1 8 t ) ' s

(14.4)
where s= k/ Ik I is the usual unit propagation vec-
tor and g'(s, (d) are the eigenvectors introduced in

E(l. (12.3) for the driving fre(juency (d and the
propagation direction s. %e note that the denom-

inators in E(j. (14.4) vanish only when k is "on

the energy shell, " i.e. , appropriate to a free plane-
wave solution. A small negative imaginary part
-iq is understood to be added to these denomina-

tors, so as to yield the usual outgoing Green's
function. "

A common experimental geometry is one in
which the source polarization 6'(r') is conhned to
a finite volume (the region of overlap of the driving
fjeMs) and the point of observation r is in the far-
field ("Fraunhofer") region. In this case, the k
integral in E(j. (14.3) can be simplified by using
asymptotic methods. ' For any function

(14. 5)

efAR -5O'8
k'dk +(kR) . -E( kR-)

J, p ikR ikA

e khan=2II ' k dkE(kR) .ikB (14.V)

where R = R/ I R I is a unit vector in the direction
of r - r' and we have used the evenness in k of the
quantity in parentheses.

The Green's dyadic [E(j. (14. 3)j, evaluated with
the help of E(l. (14.7), becomes in the first far-
fieM approximation

G" (r, r') = Z h y(R, (d) $~(R, (d)(k")2g "(R),
(P "-122

(14. 8)

e"~a da e""~
(k ') —Irj 4IIR

g'(R) -=lim —,. J

k' =(dn" (R, (d)/C .

(14. 9)

(14. 10)

Jjg (i1' —r i)(P(1' )dl' (14. 11)

and Ilow k" = (dr("(r, (d)/c. lf, jn addjtjon, one js in
the Fraunhofer region r»k(r ), it is legjtimate
to make the customary sagittal approximation

(14. 12)

[with an error of order k(r') /r in the exponent] to
obtain

i(& r -f2jt)

E= 5 [k"(r, (d)] g'(r, (d)C",
(jj=1,2 4~~0 +

(14. 13)

ge —gy( &) fe -(O'PP ~ 2'~
( (14. 14)

With neglect of terms of order (kr) ', the magnetic
fieM is given by

e((k )' rut) [k8 ~-12
H=Q ' ( '")' rxg'("

g 4'tl'60 f' QP jLL,0
(14. 15)

The time-averaged Poynting vector —,'Re [E~xH] is

The noIlpropagating mode [last term jn E(l. (14.4)]
does not contribute to the far-fieM Green's dyadic.
The approximation involved in obtaining G, namely,
kR»1, is an excellent one in the optical region.
A second approximation to the Green's dyadic
G '2'(s, s ), valid when the source dimensions are

small compared to the observation distance (r' «r),
may be obtained by replacing R in E(j. (14.8) by
r = r/ I r I. In this case, the electric field is given
by

-$ cot

E(r, f)= Q (k")2 g "(r, (d) g "(r, (d)
V-"~22
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g g &'(k")'(k')' [-(ge. ge) ge(g, . -)]
yg 327T Epr

x Re[(C")*C'e'" ' '"], (14. 16)

where c is the velocity of light in vacuum. We are
concerned, however, with the component 5 r of 5
in the direction r of observation. If we make use
of Eq. (12.3) and orthonormality [Eq. (12. 12)]

(n')'Z"(r, ~)~ (I r~-) S'(r, cu)= 8'. 7. A'=5"',

parallelepiped (V= L& LZL3), the power into a de-
tector at r with solid angle dO is given by

dQ (d
S rr dQ=

327T E'pc

x Q (s ) ~g (& &)6'(0)~ V@

(14. 24)
where C is the reduction in power produced by
imperfect phase match

we obtain
(14. 17) sin(2 nk&L, ) sin(j &kaLz) sin(r2 nk~L3)

—,ak,L, —,M,L, —,~k,L,

(14. 18)
with no cross terms between the two polarization
modes excited by . The total radiated power in
watts is then given by

s F ([&'(& ~)]'IC" I'& (14 19)
S'il'E'pc

(p g 2

where (& denotes an average over all orientations
of the observation unit vector r.

A check on the numerical accuracy can be made
by specializing Eq. (14. 19) to the case of a point
dipole in an isotropic medium in which case 8"
is transverse to the direction r of propagation and

gy, p(1) (14.20)

where p"'= f e'dr' is the total electric dipole mo-
ment. The normalization requirement [Eq. (12. 12)]
requires 8" to be a vector of magnitude I/n, where
n =v" is independent of orientation. Thus

We wish to thank R. A. Toupin for useful cor-
respondence in connection with this manuscript.

APPENDIX A: CHARGE DENSITY AND POLARIZATION

By expressing the position x in terms of the in-
ternal displacements u

x (X, t) -=x(X, t) +u~ (X, t), (A1)

Eq. (4. 11) for the charge density can be written

q(z, t)=Z q" f 5(z —x(x, t)-P(X, t))dx. (A2)

A multipole expansion can then be accomplished by
expanding the 6 function in powers of u

5(z-x-u )=5(z-x) —(u V) 5(z-x)

(14. 25)
where &k'&= 0& —k&" is the degree of mismatch in
component i of the wave vector. We note that at
phase match (4 = 1), the power increases with V,
the square of the volume of the interaction region.
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and the total radiated power

(14. 21) +-', u u:VV(z-~) — ~ ~, (A3)

where the gradient operator, defined by
~4 n

(14. 22)

e '" ' +(r') = 5' (0)e'~"', nk= k —k " . (14. 23)

Here the driving k will be the sum of the k vectors
of the input fields and k" = 0"r is a vector in the
direction of observation r with a propagation con-
stant k' = k "(r, ur), that is, it is "on the energy
shell" for that frequency and direction of propaga-
tion. If the interaction volume is a rectangular

is in agreement with Stratton's formula with the
magnetic permeability of the medium set to unity.

The nonlinear polarization arises as in Eq.
(13. 12) from products of linear driving fields. If
these are describable by plane waves over the vol-
ume V in which they overlap, then the integrand of
Eq. (14. 14) is

The three terms explicitly displayed in Eq. (A5) are
the contribution to the charge density produced by
deformation, polarization, and quadrupolarization,
respectively.

The deformation contribution, given by

q~(z ) = Q„q' = 0
1

(A6)

vanishes in a charge-free dielectric. The polariza-
tion density or electric dipole moment per unit
volume in the spatial frame is given by

P(z) =p(X)/J'(X) ~;(z, ~)=; =p(z)/J (z, t) (A7)

(v)( -= (A4)
88g

acts on the spatial coordinate z. Equation (4. 11) then
yields for the total charge density

q(z) =q (z) -V ~ P(z)+-,'vV:g (z)+ ~ ~ ~ . (A5)
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in terms of the dipole moment p per unit volume in
the material frame. The correction factor 1/I in
Eqs. (A6) and (AV) accounts for the density change
associated with the elastic distortion. It is defined
by

x 6(z -x(X, t))dx . (B4)

Performing the summation over n and utilizing Eqs.
(A8) and (A9) for the polarization, we can reexpress
the polarization current in the form

3,(z, t) = I -, „—,[J(z, t)p(z, t)]

p(x)=Z p (x), p (x)=q u (x) . (A9)

Similarly, the quadrupole moment per unit spatial
frame volume is given by

Qo(z) = «~(x) /J(X) la&a, ~&=I (A10)

(A8)

where J(X) = det(xq ~) is the Jacobian of the transfor-
mation from the material to the spatial frame. The
total polarization can be written as a sum of contri-
butions from the individual sublattices in accordance
with

——[x (z, t) Z, (z, t)], (B6)

where we have followed the customary notation of
representing a material time derivative (X fixed)
of an arbitrary function by

f'(z, t) -=—f(z, t) = —f (x-(x, t), t)
x(R, t)=s

( ) f( ) (B6)

Of course, the velocity itself is the material time
derivative

in terms of the quadrupole moment tensor per unit
material frame volume q&&. The latter also can be
written as a sum of contributions over the different
sublattices in the form

ex(x, t)x z, t3-= (Bv)

q„(X)-=Z, q u)(x)u~(X) . (All)

APPENDIX B: CURRENT DENSITY

We rewrite Eg. (4.12) for the current density in
the form

j(z, t)=E.q f[x(x, t)+u (x, t)]

x 6(z -x(x, t) -u'(X, t)) dX

Since the Coulomb interactions in this paper are
originally those due to a set of nonoverlapping point
charges, it is appropriate to use only the traceless
part of q&~, as is conventionally done. 6'

In a similar way the quadrupole contribution to the
current density involves all terms bilinear in the
u and can be written in terms of the u in the form

(. ) g [ I (li, ll,'+ii, u', )8 X,u'li'8
)erg erg ezq

x 6 (z —x(X, t))dX . (B8)

After summing again over n the quadrupolarization
contribution to the current can be expressed in the
form

= 3n(z, t) + 3m(z, t) + jo (z, t) +3u(z, t) (Bl) 1
( 9) (B9)

ZJ rEQ

and note that this current density automatically
obeys the charge conservation relationship

8Q'
V ~ j+—=0,

et (B2)

with the charge described in Eq. (4. 11) and Appen-
dix A. After expanding the 6 function as in Eq.
(A3) the deformation contribution to the current be-
comes

j,(z, t) =Z. q f x (X, t)6(z-x(z, t))dX=0, (Bs)

which vanishes in a charge-free dielectric. The
polarization contribution to the current, which in-
volves the internal displacements u linearly, can
be written as

jp(z, t)=Z q f [u(X, t)-x(R, t)u (X, t) ~ V]

in terms of the quadrupolarization Q, &
of Eq. (A10).

The remaining term that arises in the unfolding of
Eg. (Bl) is the current associated with the magnetiza-
tion

[ ju(zy t)]g = Z q (up uy uy u$ )

x 6(z —x(X, t)) dX
eely

= (V M)) ——Eu» —M», (B10)
ezra 8$

wh~~e the magnetization tensor M and the usual
magnetization vector M are given in terms of the
internal displacements by
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1 ~ (I (lczlEy Q(s( )M„=-~„„M,=—
at

x(R, t)=I

(Bll)
Alternatively, the magnetization can be related to
its material form by

M(z, t) = [m(X, t)/ J(X, t)] i;(it, ) g . (BI3)

The magnetic moment per unit volume in the material
coordinate system is given by

m(X, t)-=Q m (X, t), m (X, t)=-,'4 (u" xu ) .
(B13)

By transforming material-frame time derivatives
into spatial-frame time derivatives (see Appendix
C), the polarization current of Eq. (B5) can be re-
written as

APPENDIX C: RELATION BETWEEN MATERIAL AND
SPATIAL TIME DERIVATIVES

Any physical quantity y(X, t) in the material
frame [e. g. , a dipole moment per unit material
volume p(X, t)] and the corresponding quantity
I'(z, t) in the spatial frame [e.g. , the polarization
P(z, t)] are related by

I"(z, t}=1 y(X, t) 5 (z —x(X, t)) dX

= y(X, t)/J(X, t)
~

„-(x,g) g
=—y(z, t)/ J (z, t) .

(Cl)
The spatial time derivative (i. e. , holding z fixed)
is then

z( (x z)) zx
&t dt

j~(z, t) = — ' + Vx[P(z, t)xx(z, t)] . (B14)

1 s(v ~ Q)
st

(B15)

W, =([(V Q)+ Q Vlxx), =&„„(Q~„„x,+Q,„x, ) .

It is thus possible to write the total current in a
form

(B16)

which is in agreement with Eq. (l. 6) used in the
Introduction. There and here the effective polariza-
tion is given by

The second term on the right-hand side of Eq. (B14)
is referred to as the convective current. A typical
derivation of this convective current considers the
time derivative of the integrated flux through a
closed surface. The convective current is that
part which arises because of the motion of the sur-
face. 4~ In our case, the convective current arises
because of a transformation from material time
derivatives to spatial time derivatives. This, of
course, contains the same physical content as the
previous derivation since the extra term arises be-
cause of the motion of one coordinate frame relative
to another which is a manifestation of the motion of
the body. A further use of the theorem to be derived
in Appendix C when applied to Eq. (B9}yields an
expression for the quadrupole contribution to the
current in the form of

y(X, t)x;(X, t) ' dX
8 f

}]i dy(X, t)
X(X, t) =Z

z z, (z, Z) Y(z, Z)

) ((:g)
&z( 2(z, t)

~

~

~

We rewrite this in the form of a continuity equa-
tion

(C3)

the right-hand side describing creation of I'. The
substantive or material time derivative on the
right-hand side is understood as usual to mean a
derivative holding X ("particle name") fixed, with
the result reexpressed as a function of the spatial
position z as in (B6). If we set r = (J'), we find
that the latter obeys the conservation-of-matter
equation

'(d ') s[J ';]
+ ' =0. (C4)

Thus it is appropriate to regard

i-'(z, t) =- n(z, t) (C5)

as a mass density (normalized to unit density in the
material frame). Indeed, if the conservation equa-
tion (C4) is assumed, it is a trivial matter to de-
rive the seemingly more general equation (C3).

If x, X, and z are measured relative to a com-
mon Cartesian coordinate system, we may apply
the identity (C3) to a vector I', to obtain

1P =P--,V ~ Q, (Blv)

and the effective magnetization is given by

M =M+[P —~(V Q)-z Q ' V]xx . (Bls)
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The curl term of Eq. (C6) illustrates the automatic
appearance of a convective contribution to a cur-
rent when material time derivatives are transformed
into spatial time derivatives.

If 1" is replaced by a component I &~ of a tensor,
we obtain a corresponding relationship

(C7)
Equations (B5) and (B9) were formed to correspond
to the left-hand sides of Eqs. (C6) and (C7), re-
spectively. Making use of these relationships we
obtain the previously quoted polarization and quad-
rupolarization contributions to the current in Eqs.
(B14) and (B15).

APPENDIX D: INTERNAL COORDINATES

Let us introduce a new set of coordinates y~:

(p )
~ x =~5„0""(m")~ y", (D9)

where 0 is an orthogonal matrix, that is, 0 '= 0.
By expressing the transformation matrices V and
U in terms of the orthogonal matrix

V= p
' U ~ m, V""= (m'ip ) U"' . (D12)

If we substitute the relationship (D2) into the ex-
plicit or second relationship (D12), we obtain the
condition

-1/2 1/2 -1 -1/2 ~ 1/2V= (p) 0 (m), U=V = (m) ~ 0 ~ (p)

(D10)
where

(p)"0 =5 p, (m)'"= m ' 5"",
the orthogonality of 0 leads to the relationship

N

y'(X) —= 2
' U" x"(X), p. =0, 1, 2, . . . , N —1. yuO

(Dl)

If we define the first row of the U matrix to have
the elements

This is perhaps the simplest representation of the
requirement that the variable y is the center-of-
mass position x. If we substitute Eq. (D13) into
Eq. (D4), we derive the relationship

U' -=p ip', Uoa 5o0 (D14)
then the first coordinate y is identical to the cen-
ter-of-mass coordinate x. The inverse transfor-
mation to Eq. (Dl) can be written in the form

N-1

x (X)= Q V y" (X), o. =l, 2, . . . , N ~

g=0

If we substitute Eq. (D2) into Eq. (D4), we obtain

goo 50v
p

If we use Eqs. (D2) and (D13), we can rewrite Eq.
(D5) in the form

The matrix Uand its inverse Vare related by both

N

8

Z V""U"+~=5".
v40 p

(D16)

Let us assume that this transformation is chosen
so as to preserve the diagonality of the kinetic en-
ergy

Let us note that the condition Eq. (D14) for p ooO

is what was used in Eqs. (5. 4) and (5. 5) to display
the fact that the variables y' for p, &0 are indeed
internal coordinates unaffected by a displacement
of the crystal as a whole.

With the help of Eq. (D13), Eq. (D3) can be
written in a form

N . N 1

5 p" (x ) = E 1'(y'), m —=p (D6)

This leads to the relationships

N

pot yo!O yotv ~lb 5 lbv

~=1
7)

which displays the internal character of u pre-
viously pointed out in Sec. VB.

The internal coordinates y" are not normal co-
ordinates unless they obey the eigenvalue equation

N-1

~ o Uo 0 Uo 8 a 5 OB

v-Q
(D8)

Alternatively, the invariance of the quadratic form
displayed in Eq. (D6) ensures that an orthogonal
transformation can be made from the set of vari-
ables (p")"'x to (m") '

2 Zq H j~g y y
= m (d (D18)

For all except triclinic and monoclinic crystals,
there exists a unique set of principal axes such
that

Htg~g = JJ~H (D19)

If the crystal space group possesses a subgroup G
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II)")"= H,"]"g]~ . (D21)

If, moreover, the subgroup 6 belongs to one of the
cubic crystal classes, then H~«" will be independent
of i and the transformation V " may be chosen to
diagonalize &'". In this case, the y' will be normal
coordinates. For the noncubic case, normal co-
ordinates sv" can be obtained by a transformation

of operations S that leave the sublattices invariant,
then as in Eq. (5. 44)

(D20)

so that H&~" transforms as an ordinary second-rank
tensor under this subgroup. If the subgroup G is
sufficient to require a second-rank tensor to be
diagonal in a special frame, then with respect to
these principal axes

Ey inverting the left-hand matrix factor (5&& —u~, z)
= (1. —u );;we obtain an explicit solution

BF BF BP
+ (ug, ~+up, pug, ~+ ~ ~ ~ ) .

A +a
(E6)

An example of Eq. (E6}particularly useful to us is
A tl

3 k, A 3 $, a+3 i,pug, a+ ~ ~ ~ ~ (EV)

As a second example, we rewrite the Jacobian in
the form

A

-1
u( g —(1 —u ) tg ug ~

= u( ~+ u( guy g+u( guy pug ~+ ~ ~ ~

(E5)
With the help of this solution, we can rewrite Eq.
(E2) as an explicit transformation from a material
to a spatial derivative:

chosen to diagonalize 8~«" for each i.
APPENDIX E: KINEMATIC CORRECTIONS

(D22)
Z=det(5&z+u, z)

1= 1+u; z+ 2(u; zu& z —u, zu, z)+ detu, „, (EB)

where

Kinematic corrections are corrections which
arise as a consequence of the transformation be-
tween the material and spatial coordinate systems.
A general function E of the material coordinates
can be rewritten as a function E of the correspond-
ing spatial coordinates

F (X, t) = F (x (X, t), t) .
When we use a common Cartesian coordinate sys-
tem for both spatial and material systems, there is
no distinction between a vector component y, and a
corresponding vector y&. There is nevertheless a
distinction between derivatives with respect to the
spatial and material coordinates. In particular,
we have

&E ~E ~x, &E ~E ~F
gX 8~ x jA j,Ai g~ g~ j,A p

. (5 +u &=- + u
A j A a j

(E2)

where u is the displacement vector defined in Eq.
(5. 15}. This equation appears to transform a gen-
eral material derivative into a general spatial de-
rivative; unfortunately, the correction factor on
the right-hand side of Eq. (E2) contains the term
u&, A which has the same form as the terms we are
trying to eliminate. If we specialize Eq. (E2) by
replacing E by the variable u;, we obtain

It is understood that for purposes of the summation
convention I= i, J=j, e g u, r =u1 1+u2 2+u3, 3 ~

Equation (E5) permits 8 to be transformed to the

purely spatial form

=1+up, (+ 2('u, , uq, q+u, qu), )+ ~ ~ ~ . (E9)

Some additional kinematic corrections arise in
an attempt to replace the accelerations by spatial
rather than material second time derivatives. In-
deed a general material time derivative can be ex-
pressed in terms of spatial time derivatives by
means of

dF (X, t) BP ~ BF
~X]

(E10)

dX„BX„(x,t) BX„(x,t} (E11)

which can be rewritten in the form

Here again the hidden difficulty is that the right-
hand side contains a velocity x& which itself is a
material time derivative. In order to evaluate this
latter derivative we specialize Eq. (E10) by setting
E equal to the variable XA and make use of the fact
that the material time derivative of a material co-
ordinate vanishes:

u( g= u( y(Bye+ uy g) = u( ~+ u( pug g . (E3) BXg(x, t)
X$ Xg t

Equation (E3) constitutes a matrix equation for the
unknown u& A. This matrix equation can be re-
written in the form

With the use of the displacement u defined in Eq.
(5. 15) we obtain

(5,&
—u, &}u& „=u, , (E4)

~XA 8uaX„=x,—u, (x, t), (E13)
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Equation (E12) then becomes

~gff
x, = (6,„+u,,„)

1 2p= o. =I' +n
1 'ss ~ I"

1 —g s ~ 1 ~ s (F4)

Bg~ a a w ~gg
+ (a( N+ Q( gay, ~+ ' ' )

Q g. ~ 9 Q ~g] g ~gg

gt2 +uj a gt2
+ (E15)

By choosing F in Eq. (E10) to be the velocity x;,
we obtain

8 (8g, - eg, ~ ~u, . au,
"&=sf~~ st +"'" sf +"

s~, sf +"'" st

I = I /n'- ~/n'. (F5)

The first term in Eq. (F4) becomes negligible. Be-
cause of a fortuitous cancellation in the denomina-
tor of Eq. (F4) the numerator and denominator of
the second term in Eq. (F4) both behave as I/n~.
Hence, with error of order 1/n, we obtain

In Eq. (11.2), the term giving the piezoelectric
correction to the elasticity tensor requires an eval-
uation of the inverse dyadic in the limit of large in-
dex of refraction. For large n, I' takes the form

after having made use of Eq. (E14). Similarly we
obtain the acceleration of the internal coordinate in
the form

~= —ss/(s ~ ~ s) . (F6)

j Xg

2 g 2 A
8 Pg 9 Qg ~~ 8Q~ 9$]

+ z y;&+2
&&

' + ~ ~ ~ . (E16)

In Eqs. (EV), (E9), (E15), and (E16), only bilinear
corrections have been displayed, but higher-order
corrections are readily obtained by the above
methods. These corrections generally decrease
by a factor kg in each order where 4 is the ap-
propriate propagation constant. In our macro-
scopic theory this factor is generally exceedingly
small. Indeed it would not be consistent to retain
corrections of higher order than displayed without
including wave-vector dispersion whose effects
are at least of the order ka (where a is a lattice
constant).

APPENDIX F: MATRIX RECIPROCALS

The solution of Eq. (10.18) for the electromag-
netic field requires us to calculate the reciprocals
of the dyadic n defined in Eq. (1.19). In other
words, we must find the dyadic or matrix P that
obeys the equation

(4'(, B+))=6((, (Fs)

a biorthogonality condition between the set of vec-
tors (4', ), and the set (B@,) . Reality of X, follows
directly from X& =(4'&, A4'&}/(@&, B4'&) and the fact
that the diagonal elements of a Hermitian operator
or matrix are real. We now seek a solution of the
inhomogeneous equation

We often desire to invert the matrix n to cal-
culate the response of the electromagnetic field to
a nonlinear polarization, and we wish to decom-
pose the solution into the two propagating and one
nonpropagating waves. Rather than using the
formal solution (F4) and then performing a decom-
position into eigenvectors it is more appropriate
to take the reciprocal of n directly by making use
of its eigenvectors. The method is a fairly gener'al
one. If we have a pair of Hermitian matrices or
operators A and B whosk eigenfunctions obey

A4~= A~BC),

then 0 = (4'&, A4, ) —(AC&, 4,) = (X; —A~&) (4&, B4'&)

implies as in the usual Hermitian case that the
eigenvectors 4

&
can be chosen to obey the weighted

orthonormality condition

2 ~ ~ 2~~
o.' ~ P =(n 1-~ —nss) P = 1 (Fl) (F9}

If we transfer the last term to the right-hand side,
we obtain

through the use of an eigenvector expansion

@=5, +)c; . (Flo)

2~ ~ 2 ~1
P =I' ~ [ 1+n s(s ~ P)], I' -=(n I —~ )

It is then possible to solve for the expansion coef-
ficients:

(F2)

By taking the scalar product of this equation with
the unit vector s we obtain

C,. =(X, -X) '(e, , Be,) '(e„C) .
Thus the total state vector takes the form

(F11)

s ~ P =s I' +n'(s I' s)(:s P ),
e = (A —XB} ' C =Q„+,(X, —X} '(+„B4,) '(e„c),

(F12)

which can be used to eliminate s ~ P with the result from which the form of the inverse operator can be
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seen. For the special case in which the symbols
take the meaning

X=(1 -ss), a= ~, ~=1/n',

the eigenfunction equation takes the form

(1 —ss) g" =(1/n")abc h" .
The biorthogonality condition Eg. (FB) then states
the orthogonality of the three field eigenvectors
8" with the corresponding electric displacement
eigenvectors x) "=- I(, ~ 8"

. [( / ')'-1](g'~")

or more explicitly in terms of the three eigenvec-
tors in the form

gpss

gaga
Q [(n/n')'- 1](g' x') ' [(n/n')'-1](g'P)

(F17)

(F15)

Equation (F14) is Eq. (12.3) that appears in the
dlscusslon of the clystal optics of an an1sotroplc
medium. For this case, the invexse operator can
be written in the form

The fact that one eigenvector is always longitudinal
as shown in Eg. (12.6) was used to obtain the last
term of Eq. (FlV). For a uniaxial crystal, the
indices 1 and 2 can be understood to refer to the
ordinary 0 and extraordinary e eigenvectors.

~G. D. Boyd, F. R. Nash, and D. F. Nelson, Phys.
Rev. Letters 24 1298 (1970).

D. F. Nelson and M. Lax, Phys. Bev. B 3, 2778
(1971).

3D. F. Nelson and M. Lax, Phys. Rev. B 3, 2795
(1971).

4R. A. Toupin, J. Ratl. Mech. Anal. 5 849 (1956).
M„Born and K. Huang, Dynamicaz Theory Of Crystal

I attices (Oxford U. P. , London, 1954}, Chap. VI.
H. A. Lorentz, The Theory og Electrons (Stechert,

New York, 1916), Chap. IV.
J. J. Hopfield, Phys. Rev. 112, 1555 (1958}.
8J. J. Hopfield and D. G. Thomas, Phys. Rev. 132,

.563 (1963).
9A. S. Barker and R. Loudon (unpublished).

D. F. Nelson and M. Lax, Phys. Bev. Letters ~24

379 (1970).
F. Pockels, Ann. Phys. Chem. Ser. III 37, 144

(1889); 37 269 (1889); 37, 372 (1889); and 39, 440 (1890),
2D. F. Nelson and P. D. Lazay, Phys. Bev. Letters

25, 1187 (1970).
~3R. A. Toupin, Intern. J. Eng. Sci. 1, 101 (1963).
~48ee, .however, Toupin'a criticism of Born and Huang,

Bef. 13, pp. 123 and 124.
~5P. Penfield, Jr. and H. A. Haus, E/ectxodynamics

of Moving media (MIT Press, Cambridge, Mass. , 1967).
S. R. DeGroot, The Maxzoel/ Eqgggons (North-

Holland, Amsterdam, 1969).
~YE. I. Blount (unpublished).

N. Bloembergen, NonEineaz Optics (Benjamin, New
York, 1965), p. 5.

GC. G. B. Garrett and F. ¹ H. Robinson, IEEE J.
Quantum Electron. QE2, 328 (1966).

OC. G. B. Garrett, IREE J. Quantum Electron. QE4,
70 (1968).

2~F. N. H. Hobinson, Bell System Tech. J. 46, 913
(1967).

2 S. K. Kurtz and F. N. H. Hobinson, Appl. Phys.
Letters 10, 62 (1967).

SP. N. Butcher, Nonlinear Optical phenomena (Ohio
State University Engineering Publications, Columbus,
Ohj.o, 1965).

~4R. W. Terhune and P. D. Maker, in I ase~s, edited
by A. K. Levine (Dekker, New York, 1968), p. 295.

~5D. A.. Kleinman, in L gsg&Hgndbook, edited by F. T.
Arecchi and E. Schultz-Dubois (North-Holland, Amster-
dam, to be published).

26J. A. Armstrong, N. Bloembergen, J. Ducuing, and
P. S. Pershan, Phys. Rev. 127, 1918 {1962).

27P. S. Pershan, Phys. Rev. 130, 919 (1963).
28R. H. Lyddane, R. G. Sachs, and E. Teller, Phys

Bev. 59, 673 {1941).
29W. Cochran and R. A. Cowley, J. Phys. Chem.

Solids 23, 447 (1962).
H. Goldstein, CEassiceI, Mechanics {Addison-Wesley,

Cambridge, Mass. , 1951), p. 366.
3~F. D. Murnaghan, Am. J. Math. 59 235 (1937).

In fluid dynamics, the corresponding representations
are called Eulerian and Lagrangian, respectively. See,
for example, R. Courant, Diffexentiel and Integral Cnl-
cglgs (Nordermann, New York, 1936), Vol. II, p. 212.

C. Truesdell, J. Ratl. Mech. Anal. ~1 125 (1952).
(1952),

34C. A. Truesdell and R. A. Toupin, in Hggdggeh der
Physik, edited by S. Fluge (Springer, Berlin, 1960),
Vol. III/1,

35C. E. Shannon, Proc. IRE 37 10 (1949); J. M.
Whittaker, Integpgzatgwy Egnction Thewy (Cambridge
U. P. , Cambridge, England, 1935), Chap. IV.

360f course, parity conservation has been shown to be
violated in the weak interactions. What is of interest
here, however, is parity conservation in the electromag-
netic interactiona that govern the atomic bonding forces
in crystals. Tests of this principle have been performed
on atoms and molecules with rather small upper limits
resulting for the parameter measuring the parity-violat-
ing interaction [see G. Feinberg, in Atomic Physics,
edited by B. Bederson, V. W. Cohen, and F. M. J.
Pichanick (Plenum, New York, 1969), p. 1j. No sensi-
tive tests of parity conservation in crystals have been
performed to our knowledge.

H. Weyl, Classical &"Ogps {Princeton U. P. , Prince-
ton, N. J. , 1946), Chap. 2.

38F. D. Murnaghan, Finite Defo~mations Of nn Elastic
S0)id (Wiley, New York, 1951).

3 Reference 34, Sec. 31, p. 266.
OReference 34, Sec. 37, p. 279.

4~If derivatives E~~ ~ are included, the phenomenon of



LINEAR AND NONLINEAR ELECTRODYNAMICS. . .

acoustic rotation (activity) will be obtained as proposed
by R. A. Toupin, Arch. Ratl. Mech. Anal. ~11 385
(1962); G. Kluge and G. Schuly, Acoustica 16, 60 (1965);
and by D. L. Porhgal and E. Burstein, Phys. Rev. 170,
673 (1968); and observed by D. L. Portigal, thesis
(University of Pennsylvania, 1967) (unpublished); by A. S.
Pine, Phys. Rev. B 2 2049 (1970); and by J. Joffrin and
A.. Levelut, Solid State Commun. 8, 1573 (1970). Of
course, E~~ ~ involves second derivatives of the original
variables, and is neglected along with other second de-
rivatives of variables in the stored energy in this paper.

4~W. K. H. Panofsky and M. Phillips, C/assica/E/ee-
txieity and Magnetism, 2nd ed. (Addison-Wesley, Cam-
bridge, Mass. , 1962), p. 163.

Reference 15, p. 217.
Reference 13, Eqs. (5.2) and (5.14)-(5.18).
5R. C. Miller, Appl. Phys. Letters 5, 17 (1964).
M. Lax, J. Phys. Chem. Solids Suppl. I, 179 (1965).

4'See A. W. Warner, M. Onoe, and G. A. Coquin, J.
Acoust. Soc. Am. ~42 1223 (1967) for the importance of
this term in LiNbO3 and LiTa03.

48M. Born and E. Wolf, I'mneip/es of Optics, 2nd ed.
(MacMi]]an, New York, 1964), Chap. 14.

D. A. Kleinman, Phys. Rev. 128, 1761 (1962).
50K. Huang, Proc. Roy. Soc. (London) A208, 352

(1951).
5~A. E. H. Love, Mathematica/ Themy of E/asticity,

4th ed. (Cambridge U. P. , Cambridge, England, 1927),
Chap. VII.

~2W. W. Cady, Piezoe/egtmeity (Dover, New York,
1964), Vol. 1, p. 267.

53J. A. Giordmaine, Phys. Rev. 138, A1599 (1965).
5 D. A. Kleinman, Phys. Bev. 126, 1977 (1962).
556. D. Boyd, T. J. Bridges, M. A. Pollack, and

E. H. Turner, Phys. Rev. Letters 26, 387 (1971).
5 B. F. Levine, Phys. Rev. Letters 22 787 (1969);

25, 440 (1970).
~ W. I,. Faust and C. H. Henry, Phys. Rev. Letters

17, 1265 {1966); W. L. Faust, C. H. Henry, and R. H.
Kick, Phys. Rev. 173, 781 {1968).

58D. F. Nelson and E. H. Turner, J. Appl. Phys. 39,
3337 (1968).

5 J. Chapelle and I.. Taurel, Compt. Rend. 240, 743
{1955).

An essentially equivalent Green's function modified
to produce a vanishing field on a plane boundary, and
specialized to the vicinity of phase match, has been used
by D. A. Kleinman, A. Ashkin, and G. D. Boyd )Phys.
Rev. 145, 338 (1966)J to obtain extraordinarily detailed
understanding of the intensity pattern associated with
second-harmonic generation from a focused laser beam.

6~C. Eckart, Rev. Mod. Phys. 20, 390 (1948).
J. A. Stratton, E/egtyo~ggpggtjg Tpgeggy (McGraw-

Hill, New York, 1941), Sec. 8.5.
38ee, for example, Ref. 42, p. 18, and C. H. Townes

and A. L. Schawlow, Microwave Speet~oseopy (McG»w-
Hill, New York, 1955), p. 133.

PHYSICAL REVIEW 8 VOLUME 4, NUMBER 10 15 NOVEMBER 1971

Investigation of the A, B, and C Bands in KBr: In by Means
of Electromodulated Optical Absorption
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The effect of an electric field (- &0 V/cm, rms) on the A, 8, and C absorption bands of
potassium bromide-indium phosphors has been studied. The A and C bands are composed of
three subbands, while the B band exhibits a doublet structure. A. correlation has also been
iound between the absorption intensities of these bands, the decrease in the A and 8 bands
being compensated by the increase in the C band. A perturbative treatment has been used to
explain the observed variation of the zeroth-order moments of A, 8, and C bands.

INTRODUCTION

Single crystals of alkali halides containing metal
impurity ions with (ns)' outermost electron config-
uration exhibit three absorption bands, called A,
8, and C in order of increasing energy, in spec-
tral regions w}lere the host medium ls normally
transparent. '~ These absorption bands have been
associated with the transition between molecular
orbitals (a, ) - (a, )(t,J and assigned to At ('Sc)
-'Tt„('P, ), 'A„('S,)- 'Z„, 'Ta„('P, ), and 'A„('Sc)- 'T&„('P,), respectively. ' Transitions from the

ground state to 'T,„and to 'V, „are allowed, owing
to their spin-orbit mixing. Transitions to E„, Ta„
are partially allowed because of vibrational pertur-
bation, as supported by the strong temperature de-
pendence of the oscillator strength.

Fukuda et al. , studying absorption spectra of
KCl:In at various temperatures, found that the A
band has a doublet structure and the C band a
triplet structure. According to Toyozawa and
Inoue, these structures are explained in terms of
the dynamical Jahn-Teller effect with linear elec-
tron-lattice interaction which splits these bands into


