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Resonant enhancements of Raman scattering cross sections for photons near electronic reso-
nances are calculated for ordinary allowed scattering and for intraband Frohlich scattering,
which is of higher order in the wave vectors and thus forbidden. Exciton effects are included
exactly in the hydrogenic approximation via numerical calculations using the Green's-function
formulation. Much greater enhancements are found for forbidden than for allowed lines, and
it is shown that forbidden lines can become comparable to allowed lines near resonance with
large Wannier excitons. It is predicted to be feasible to observe one-LO-phonon lines in crys-
tals (e.g. , TlCl and TlBr) in which such transitions are always forbidden. Comparison with
experiment for CdS is presented.

I. INTRODUCTION

Large enhancements of Raman scattering cross
sections for incident or scattered photons near res-
onance with fundamental electronic transitions have
been observed' and described theoretically "in
a number of works. The present paper casts in a
different form many of the calculations in previous
theoretical papers and, in addition, incorporates
the electron-phonon intraband Frohlich interaction. '

This part of the electron-phonon interaction has
been considered previously only by Hamilton" for
incident light above the band gap. In this paper it
is shown to give rise to striking effects in Raman
scattering just below the band gap.

All light-scattering processes in which electrons
play an important role as intermediate states are
expected to exhibit resonance phenomena, with

cross sections varying rapidly near allowed elec-
tronic resonances, i.e. , near peaks in the absorp-
tion. Pere we are interested in the frequency range
just below the lowest absorption edge; the small
absorption that is present in real crystals in this
range plays no- fundamental role and is merely a
correction that must be made to experimental data.

Both electron-photon and electron-phonon inter-
actions are here treated in perturbation theory
neglecting polariton ' ' and bound-exciton-phonon
effects. Thus the present calculations are invalid
for photons sufficiently near resonance or for very
large exciton-phonon interactions. Expressions for
the cross section correctly coupling the exciton and

photon into polaritons have been given ' neglecting
exciton dispersion, in which case they differ ap-
preciably ' from the perturbation expressions only
for E,„—co «yt where E, t is the longitudinal-trans-
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verse splitting of the exciton. Since in a typical
semiconductor E« is of the order of the intrinsic
exciton width (E„- 1 meV in CdS), the perturbation
formulas are sufficient except in a very narrow en-
ergy range where other broadening effects may also
be important. We note, parenthetically, that within
the polariton region there may be large corrections
to the resonance enhancements given previously
owing to the wave-vector dependence of the matrix
elements described in the present paper.

The intraband Frohlich interaction scatters the
electron and hole from one exciton state to another
within the same valence and conduction bands creat-
ing or annihilating a phonon that has a macroscopic
electric field. [These phonons will be referred to
as longitudinal optic (LO), although they need not
be strictly longitudinal. ] This is the interaction
responsible for large LO-phonon-exciton scattering
involving phonons of wavelength - exciton size as
manifested in LQ-phonon-assisted absorption, "
bound-exciton LO sidebands, ' and the lattice
screening in the exciton itself. For any isotropic
exciton model, the matrix element for intraband
Frohlich scattering vanishes at long wavelength.
Thus, the dominant intraband Frohlich interaction
gives rise to scattering which depends upon the
wave vectors of the photons, i.e. , is first order-
forbidden and does not obey the usual selection
rules. " We shall show that in typical polar semi-
conductors forbidden LO scattering can, in fact, be
large near resonance as has been observed experi-
mentally.

In Sec. II the basic formulas for the Raman cross
sections are givenincorporatingisotropic, but other-
wise general, electron-hole correlations, which are
essential for intraband Frohlich scattering. The
formulas are valid both above and below the band
gap. The actual enhancement factors are calculated
in Sec. III, where it is convenient to adopt a
Green's-function formulation to treat the internal
motion of the electron-hole pair. In this section
several results of previous papers are rederived
and new results for the intraband Frohlich scatter-
ing are given. In Sec. IV the qualitative dependence
of the cross sections upon the relevant crystal pa-
rameters is discussed. Comparison with experi-
mental results is given is Sec. V.

II. BASIC FORMULAS

the crystal, V, which is assumed to be large. It
is straightforward to relate the cross sections so
defined to intensities measured by detectors outside
the crystal. The connections are not made explicit-
ly here, but involve only the indices of refraction n
for the given rays at m& and co,. Also, only Stokes
scattering at T= 0 is considered here; the extension
to T4 0 (anti-Stokes scattering) involves only occu-
pation-number factors (interchange of &d, &c,).'

The variation in the index of refraction with inci-
dent frequency and between & and co, is neglected.
This is often a good approximation outside the po-
lariton regions even near the band gap in a semi-
conductor. Precise measurements' of n near the

gap in CdS find n considerably larger than &0 but
only a small variation over the region of interest.
There are, however, some cases where the varia-
tion may be important.

Let W&; be the matrix element for scattering the
photon from state i to state s with the creation of
the given phonon. Then, from the Golden Rule, the
scattering probability per unit solid angle in the
scattered beam per unit path length L is

S/I. = V(n (o /2gkc )
~

Wyt~

where n=n(tc, ). Thus we can define a Raman cross
section per unit cell,

where 0 is the volume of the unit cell and era is the
free-electron Compton cross section

o o--(e'/mc')'.

"i ~i ~i

ks. (us,

In this section the basic expressions for Raman
scattering cross sections are given. The Raman
scattering process is viewed (see Fig. 1) as occur-
ring entirely within the crystal and consisting of
scattering from an incident photon of frequency (d&,

polarization E&, and wave vector k& to a scattered
photon ~„Z„k„with the creation of a phonon of
type v, frequency +0, and wave vector q=k& -k, .
All wave functions are normalized to the volume of

FIG. 1. Raxnan scattering process. (a) Single scatter-
ing of photon from the initial state R», ~&, q& to the final
(scattered) state k~, co~, ~~ inside the crystal vvith the
creation of a phonon of type v, wave vector j=4& —it .
(b) Microscopic diagram of one of six possible orderings
of the interactions in Eq. (4) which contribute to (a).
Mis is the only diagram considered in the present work.
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where a~ is a photon destruction operator in state
The electron-phonon interaction can be written

as one-electron operators

H~= V ' Q 8"(')e' 'vb +v. c. ,c

where v sums over all phonon modes and wave vec-
tors and 8"(r) is specified below. There are six
possible orderings' of the operators in H~ and H~
that contribute to S'&&. Here we include only the
order shown diagramatically in Fig. 1(b) which
of ten dominates near resonance. (The relative
contribution of the other diagrams depends upon
many factors and may be important in some cases
even near resonance. )

We restrict excited states to those containing a
single excited electron, for which the electronic
part of the wave function may be written, in the
adiabatic approximation,

I~, ~&= Z f/, „-.„(k)c,„„(k),
C, V

k

(8)

where C2,„(k) is the antisymmetrized product func-
tion with one valence Bloch state

@„2„-/,(r) = e"""/"'u„,g „-„(r)

replaced by a conduction state 4', g -/~, X is a com-
posite exciton and band index, and U is the exciton
correlation function for the electron and hole. The
exciton formalism is convenient, as is shown later,
even for the case where the electron-hole correla-
tion is neglected.

All formulas are greatly simplified if we make
the isotropic effective-mass approximation and
neglect the k dependence of the periodic part of the

The matrix element S'« is a sum of direct pho-
ton-phonon and indirect photon-electron-phonon
terms. Only the latter are treated here since the
former are small for co&» lattice frequencies, and
indeed are negligible near resonance. The lowest-
order indirect contribution to W&; is third order in
the interactions, '

(0;s, 1If'f' IX2& (X2lff' Iz, &(X, IH'10;i, 0&(E„E,) (E E .)

(4)

Here IO, i, 0& denotes the ground electronic state
with one photon present in the incident state i and

no phonons present, etc. , X, and X~ run over all
possible intermediate states, and H' is the total
perturbation

H' = H~+ H~ .
The electron-photon interaction is

S/3

m Vn co~

band functions. (The q dependence must be retained
to first order however for the Frohlich interaction
which has a 1/q factor. ) Further, we consider only
a given set of bands ct, c'e' and assume m,*= m,*.
= m,* and m„* = m„*.= m*„. Then dividing X into band
indices cv and an exciton label n, the excitation en-
ergies are

E), „-=E,„+E„+h K /[2(m,*+m„*)]

and the correlation function in the center-of-mass
coordinate system is'

e„(r)= e '""V "2Z f/„, „-(k)e'"" (10)

which is independent of Tc, where o = —,'(m,* —m„*)/
(m,*+m2). The excitonic eigenvalues and eigen-
states are determined by

[- (82/2 p, )V2+ V (r) E„]@—„(r)= 0,

where p '=m,* '+m*„' is the reciprocal reduced
mass and V(r) is the electron-hole interaction po-
tential.

With these approximations the matrix elements
of any one-electron operator f(r)e "'", where f(r)
is periodic and q is in the first Brillouin zone
(B.Z. ), become

(&'x'If(r)e "'I&~&

.'"v[f., f-;.(~.q)(u. , ;/2I f(r)I u.„-/2)

f ' (+ q) (u -i/2I f(r) I" '.i/2)] (12)

(x K
I f(r) e "' "

I
0)

,„-2„-v' '/4„'(r = 0) (u„„-/, I f(r) Iu„,„-/,). (13)

Here ( ) denotes integration over the unit cell,

f„.„(q)= f@(r)e" '4„(r)d'2r,

a, = —m„*/(m,'+m*„), o.„=m,"/(m,*+m„*).

(14)

where the Raman tensor is

ftOB( & ) gl/2 Q v'c' vv

CC
VV

x [6„„.0,",.(q)E,.„,,„(o.,q, &,.) —5„.0„"„.(q)

x F,,„,,„(n„q, (u, )]+.~ ~ . (17)

The Raman cross section may now be written out
explicitly using (2) and (4) with the definitions (5)-
(7) substituted into (12) and (13). All matrix ele-
ments are evaluated to lowest nonce' order in the
wave vectors for each type of interaction. For a
phonon of type v (wave vector q„—= q = k, —k,), we find

2

ea
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Here, 0». = (u/ 010 lu& ~) for any operator 0 and

P». "»»'c»»(Q» + i)

~. (0)f..(i)~.(0) (,3)
(Eq»y»+E~s —S(d» +K(00)(E~»»+E» —Kcog)

gv (20)

where, for a purely longitudinal phonon in a two-
atom-per-cell crystal, 6

fe(~-1 ~-1)1/R (2'~ )1/8 (21)

where &0 is the low-frequency optical dielectric
constant and &, is the static dielectric constant.

To lowest order in the wave vectors for the
df, 8„"„.is just the matrix element of (19). For
the Frohlich interaction, we must expand the Bloch
functions to first ordex in a k p series, yielding

8„"„.(q)=y[q '5„„.+q ~ r .(1 —&„„.)]. (22)

The first term in (22) is the intraband interaction
and the second is interband with the added limitation
that (1 —n„„.) = 0 if n =n' or n and n' are degenerate
(e.g. , the valence bands neglecting spin-orbit cou-
pling in sphalerite structure crystals). Thus for
dp and interband Frohlich interactions, we find

li„~(j, (u, ) = 0'/~ (P„.;P,„/m)

x (5„.8„"„.—5„„.8,",,)E,.„»,„(0, (og), (23a)

whereas the intraband Frohlich interaction is de-
termined by the envelope function and

R„~(q, (o,) = 0'/~&„.&„„.(P PB„/m)

(We note that, in general, the exciton functions de-
pend upon the bands through the effective masses. )
Since we have taken only the lowest-order terms in
k» and k~» only 8 exclton states with 0'„(0)40 are
involved in the fix'st-ox'dex' Raman scattel lng pl'0-
cess.

The important properties of the electron-phonon
interaction operator 8"(r) derive from the spatial
range of the interaction. For the deformation-po-
tential (dp)-type interaction, + the potential is
short range and all wave vectors considered here
may be set equal to zexo in evaluating the matrix
elements. The form 8"(r) is then determined solely
from crystal symmetry and may be worked out in
general. ' For a two-atom-per-cell crystal, '

8"(r)= (RQ/2ma'(uo) '/2D "(r), (19)

where D" is the dp defined by Bir and Pikus. ~o The
Frohlich interaction, however, is long x ange and

may, in general, be wxitten

III. CALCULATION

The Raman cross section has been given in terms
of a sum over all intermediate electronic states de-
noted by band and exciton labels. Near a resonance
the sum over bands is often trivial because the large
interband energy differences cause only a small
number of bands to be greatly enhanced. It is im-
portant, however, to carry out the sum over all ex-
citon states, discrete and continuum, for each set
of bands. In this section the sum is carried out for
two cases-uncorrelated pairs and Coulomb corre-
lated excitons.

It is convenient to transform the sum into an in-
tegral over the Green's functions for the internal
motion. I et us define the Green's function for the
Schrodinger stagnation (11),

[(-II'/2u) V'+ V(r) E]Gs(r, r') =—6(r —r'). (25)

It then follows from the relation

G {-, ;,) p q'. (r)q. (r')

that the needed sum is

E,.„,„(q, (o,) = jd'rGs, (0, r) e"'Gs (r, 0), (2V)

where

E,= a(u, —E,„-ff'/ ~(/[2(m,*+m, )],

Ea=kco, +5&@0-E,.„.-8 @'[2(m,"+mg)].
(23)

The k, and ka terms in (28) are small corrections
to the gaps and are neglected here.

The simplest approximation is to neglect all cor-
relations, i.e. , set V(r) =0, in which case

G,(r, 0) = {2p/e'){I/4 .)ev'r",

H,„(q, (o() = {qr/) [P,„,„(o.,j, (o,) —P,„,„(n„q, (o,)],
(24)

which is independent of q as q- 0. For our pur-
poses a convenient length r~ is the reduced-mass
polaron radius r~= (2v) '(5/2u&uo)'/~.

The Raman tensor for intraband Frohlich scatter-
ing is of higher order in the wave vector, R„~q,
and hence obeys new selection rules. Because the
scattering is intraband, it immediately follows that
R„~ is large only for o'= p, i.e. , only diagonal
(a, )la,) scattering is nonvanishing in this order.
We shall show that despite being forbidden by the
usual selection rules, because of the large charac-
teristic dimensions of the excitonic intermediate
states, the cross section may be large near reso-
nance.

with

x yqr&'ff, „(j,&u, ), (23b) with )t = [(2u/8' )E]', Imk & 0. Consider only the
case where 8,.„.=F.,„=E„i.e. , scattering between
the same or degenerate bands, in which case
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TABLE I. Parameters used in calculation of cross
sections. Chosen to correspond (approximately) to right-
angle scattering in CdS near resonance.

co=5.7
s=9.0

~0 ——37.5 meV
~0/E(, =1.»

n'=8. 0
p2/~=5 eV

m~= 0. 2m~

mI*, = 1.Om~

~0= 54 a.u.
y& —-8.5 a.u.

qz& = 0. 024

IO—

H

INTRABAND
FROHLICH

1 52 -3/2 -1/2 -j
F(q ~ )- — (h(oo) (qr~)

sm' 2p

E-h, )'~ E —5

C3

0I-

DISCRETE /
EXCITONS g

(30)

For the dp case, taking q-0 in Eq. (30) yields
the same expression for the Raman tensor as given

10

'

UNCORRELAT
PAIRS x IO

(Eg —haJ
I )/Eps

I

2

E
DEFORMATION

POTENTIAL

FIG. 3. Scattering amplitude II(q, ~&) [see Eqs. (16)
and (23b)] for intraband Frohlich scattering. The dot-
dashed line is the result if correlations are omitted;
dashed line, only discrete excitons; solid line, the exact
result of the Green's-function calculation, Eq. (27). See
caption of Fig. 2.

X
OI-

UNCORRELATED
PAIRS

IO

I

6

(E -Va;)/E&

FIG. 2. Scattering amplitude E(0, co&) [see Eqs. (16)
and (23a) ] for deformation-potential scattering between
the same or degenerate bands as a function of (E~- S~&)/
E~s, where (d& is the incident photon frequency, E~ the
gap, and E&s the ls exciton binding energy. The param-
eters in Table I, appropriate for CdS, are used in the
calculation. The dot-dashed line is the result if electron-
hole correlations are omitted, the dashed line is the re-
sult if only discrete excitons are included, and the solid
line is the exact result derived from numerical integra-
tion of the Green's-function formula (27}.

V(x) =e jEx, (31)

where & is an appropriate dielectric constant. The
Green's function with one coordinate at the origin
has a particularly simple form,

C,(r, 0) = (2Z„) 's-,'r(I —x)(vip)-'W„„,(p), (33)

where I' is the gamma function, W' a %hittaker
function of the first kind,

by Loudon. ' For the intraband Frohlich interac-
tion, Eq. (30) is the extension to photons below the
band gap of the calculation of Hamilton. "

Equation (30) has been evaluated using parameters
listed in Table I appropriate for right-angle scat-
tering in CdS. The results (in atomic units) for
F = E(0, a&;) for d. f. and Jf = H(q, &u;) for intraband
Frohlich scattering are given, respectively, in
Figs. 2 and 3. [The abscissa is (Z~ —&u&)/Z„, with

E„, the exciton binding energy which is the natural
scale to use for comparison with later calculations
including exciton effects. ] In each case o ap-
proaches a finite value of the band gap.

Coulomb-correlated electron-hole pairs (Wannier
excitons) may also be treated straightforwardly
In this case
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tr = (E„/E)'/, Rem & 0, Im&& 0 (33)

P = (2/~)(~/ s)o,

with the Bohr radius and binding energy given by

so= p/~~ &is= a P/~ (34)

in atomic units, where & is an effective dielectric
constant. Gs(r, 0) is, of course, isotropic since
the Hamlltonlan equatioil (25) ls spherically sy1I1-
metric for r ' = 0.

From the formulas of Whittaker and Watson
(Ref. 22, p. 340), one can show that for all values
of the arguments, a valid representation of S' is

20

I

I

Io- I
I

il'. ,/ (p) = e ""[l'(i —/i)] ' f/. (p), (36)

+ dt8 +1 +n ~
p

I.O
I

0.8
I

0.6 0.4 O, R

(6g-'hemi )/Eg~

with
FIG. 5. Comparison of E{0, co&) and H{q, co&), respec-

tively, proportional to allowed and forbidden scattering
amplitudes, for incident photons between the g = 1 and

g = 2 exciton resonances. Note that II is very large near
the g = 2 resonance whereas all allowed amplitudes have
nodes near g =2, The curves have been terminated at fixed
distances from the resonances which correspond roughly
to the regions where polariton effects and intrinsic broad-
ening become important in CdS. See caption for Fig. 2.

A„{~)= r(i+ i~)/[r(l+ /i- s) r{n+ l)]
and M an integer such that

Re(z —l) &M & Rex. (36)

-I
IO

IO 6

(Eg- hcu)) /K)

FIG. 4. Comparison of E and H from Fige. 2 and 3.
The lower dashed line is the scattering amplitude E for
interband deformation or Frohlich scattering to a band
arbitrarily placed 30K&~ away from the bands at reso-
nance. See caption for Fig. 2.

The integrals in Eq. (2V) that involve only the first
part of U in (36) can be carried out analytically.
The remaining integrals in (27) and (36) are calcu-
lated numerically for I(: real, i.e. , for photon fre-
quencies below the band gap, where the exponential
factors make the integrals converge rapidly. The

integrals have not been evaluated for photons above
the band gap. All resonance divergences are now

contained in the I' functions whose properties are
well known. The resulting frequency dependencies
of the scattering amplitudes I' and 0 are given as
the solid lines in Figs. 2-5. Here also the param-
eters in Table I were used. Also shown in Figs.
2 and 3 are the results if only discrete excitons are
included in the sum over intermediate states. As
expected, the total result for I' approaches the
partial contributions at the appropriate limits. The
results for I' for dp scattering are the same as
those derived by Bendow and Birman.
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The scattering amplitude H for the intraband
Frohlich interaction is given in Fig. 3 and compared
with F in Figs. 4 and 5. One important result is
that for ~; below all resonances, there is a large
cancellation between matrix elements for discrete
and continuum states. This greatly decreases the
magnitude of H. Far from resonance in all cases
the forbidden cross section is, of course, very
weak.

The forbidden cross section is a function of scat-
tering geometry, varying as (k, -k, ) so that oz
vanishes for forward scattering. Let us note, how-
ever, that if the indices of refraction n((u;) and

n((u, ) are very different (as may be the case, for
example, for (u; above the 1s resonance), then

k& —k, does not vanish in any geometry.
Figures 4 and 5 clearly show the very different

behaviors of the allowed and forbidden scattering
amplitudes. The differences arise because of the
dependence of the forbidden scattering upon the
characteristic lengths of the dominant electronic
states and because of differences in the matrix ele-
ments between exciton states. Note that the rela-
tive magnitudes of the cross sections are not given
by Figs. 4 and 5. The relative magnitudes and the
dominant features of the enhancement factors are
discussed in Sec. IV.

Also shown in Fig. 4 is the enhancement of the
scattering amplitude for dp or Frohlich scattering
to a hypothetical band away from resonance with
E,„.-E,„arbitrarily chosen to be 30E„. Here also
only the matrix elements for the diagram in Fig.
1(b) are taken. The resonance is not nearly so
sharp as in the case where both intermediate states
are near resonance; however, the variation cannot
be neglected in any careful analysis of experimental
cross sections. In particular, for allowed lines in
ZnS-type crystals, the Frohlich contribution which
differentiates LQ and TO contains resonance terms
only of this type. Since LO and TO have very dif-
ferent behavior near resonance it is clear that such
terms cannot be omitted.

IV. DISCUSSION

The numerical results for the cross sections in-
cluding the Coulomb correlations have several fea-
tures which can be understood from inspection of
the Green's function. The most important property
of G for the intraband Frohlich interaction is the
spatial extent which is governed by the exponential
factor

G (r 0) e -r/(mao &

the range depends only on the reduced mass p, and

not on the dielectric constant.
The second important point is that for K integer,

the function U„(p) in (36) is dominated by the first
term in which case the integral over the Green's
functions can be done analytically. For example,
suppose Neo) « IEcv I and ~Ecv Ec'v' I

« IEcv ~(d

i.e. , ~-0. For the dp interaction it is easy to
show that

o~ (('~ (E, -h(u, )
' .

I

However, in the same limits for the intraband
Frohlich interac tion

0'c(: K R (x: K ~ (E~ —k(u().

(40)

(41)

Thus the cross section decreases almost as rapidly
as if the electronic spectral function were a single
spike at E, [in which case o(x: (E~ —8'(u() ]. The
asymptotic behavior for both cases (40) and (41) are
the same as found neglecting correlations.

The rapid decrease of the forbidden cross section
away from resonance agrees with the expectation
that Coulomb correlations are important only for
states near the band gap; i.e. , for a set of states
which have only a small fraction of the total oscilla-
tor strength. Thus, as anticipated, forbidden cross
sections can be large only near resonance.

If the incident photon is between the 1s and 2s ex-
citon resonances, J' and H have very different be-
havior as is shown in Fig. 5. This is easily under-
stood from E(I. (18). For the dp one has f„„.= 0
if n c n and all elements f„„.have the same sign.
In this case there must be a null point in the cross
section at some frequency between each successive
pair of exciton levels so long as &; —~0&E~ —E„.
The analysis is not so simple for the interband
Frohlich interaction, but one can show that the
dominant matrix element for co&-E~ —E„is oppo-
site in sign to that for v& -E~ —E„,for n & 1. Thus
there is no null point for E~ —E„&co,&E, —E~,.
Since the null is found for all allowed scattering
processes, the forbidden LQ cross section should
dominate over all allowed cross sections in this
region. The magnitude of the enhancement for
~&-E~ —E2, depends greatly on A@0, if A)0 is such
that the scattered photon is near resonance with
ls ((uo= E„-Es,), then H is greatly enhanced,
whereas there is no comparable enhancement for
allowed scattering.

The relative magnitudes of the cross sections
follow from (19) and (21). Consider only cases
where E,,„.= E,„, i.e. , dp (((u) and intraband
Frohlich (a„) scattering. One finds

so that there is an energy-dependent effective range
R(E) = (E„/E)'/2ao. It is the variation of the effec-
tive range with energy that causes the large varia-
tion in the forbidden cross section. In the hydro-
genic approximation one finds R~ ((((E) ', i.e. ,

on =A(A/a')(m(uo) 'D'~E(0, (u, )
~

'

o, =& ———ve'q'r4 ~a(q, (u, ) ~',
0

(43)
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with

(44)

Therefore, the ratio is

———
q r Mv &u D — . (45)o+ 4me' 1 1 , e'

gn n/a' e, e, ~ "o 'o F

For the parameters listed in Table I, (45) becomes
(D in eV)

(46)

All parameters in o+ are well known so that the
absolute cross sectit n for forbidden one-LO scat-
tering can be predicted. For example, using the
parameters in Table I, for E~ —co&=1.8&&„, we

find o~= 2. 8&&10 ~ cm /sr or the scattering effi-
ciency S/L=1. 8&&10 7/cmsr Ot.her cross sections
are easily calculated from Figs. 2-5 and from Eq.
(45) if D is known.

The variation of cross section with crystal pa-
rameters is readily given. Let us assume E„is
varied but &oo(» E„)and (E, —&,)/&„ are held con-
stant. Then in the exciton-dominated region,

have been corrected for absorption and have esti-
mated errors of +25%. It is evident from Fig. 6
that the theoretical and experimental enhancements
are in very good agreement.

Only the relative scattering efficiencies or cross
sections are considered in Fig. 6; however, abso-
lute cross sections may be determined using the
efficiency reported by Arguello, Rousseau, and
Porto of 8/L= 1.8&&10 cm 'sr ' for A, TO at 5145
A, x(zz)y geometry, and T= 25 'K (negligible cor-
rections arise from the temperature difference
from Ref. 4). Using this value and the relative in-
tensities of Ref. 4 one finds the efficiencies listed
in Table 0 for the forbidden one-LO phonon. For
comparison the theoretical values predicted from
the parameters in Table I are shown. The agree-
ment is extremely satisfactory since reasonable
variations in the parameters lead to roughly a fac-
tor of 2 uncertainty in the predicted efficiencies.

The agreement shown for the A, TO enhancement
must, however, be fortuitous. Ralston et al. have
recently demonstrated that cancellations occur be-
tween different factors in the scattering amplitudes.
Therefore, even near resonance the scattering is

og)ocgQEJEfoI QP (47)

+F +D (+0@1 )s/a 4 (48)

~z/~n~ &

and is greatly enhanced for small masses.

V. COMPARISON WITH EXPERIMENT

(48)

Preliminary measurements of the forbidden LO
cross section for three laser frequencies near res-
onance in CdS at O'K have been previously re-
ported along with new measurements of the TO en-
hancement. The measurements were made in
right-angle-scattering geometry denoted x(zz)y
with photon polarizations Z& =Z, = z along the c axis,
k; = x and k, = y". Only the A, TO (I', symmetry) is
allowed in this geometry. Near resonance, how-

ever, a strong LO line is observed.
Since the photons are polarized along the c axis,

only valence bands B and C are strongly resonant.
The contribution of the split-off band C, which is
57 meV from B, is important only for the deforma-
tion-potential case. In Fig. 6 theoretical and ex-
perimental enhancements are compared taking into
account the B band only. The experimental points

The additional factor in 0& includes the fourth-
power dependence upon the dominant characteristic
length. The same dependence upon p is found in

the regions dominated by nearly uncorrelated inter-
mediate states. The relative cross section, which
is the important quantity experimentally, is, there-
fore, a rapidly varying function of the mass,

100
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FIG. 6. Comparison with experiment (Ref. 4) for x(zs)y
geometry in CdS at three incident photon energies. In
this geometry all LO scattering is forbidden. Experimen-
tal absorption corrections have been made. Relative LO
and TO cross sections are found experimentally and the
relative theoretical cross sections have been scaled to fit
experiments. Only the B valance band (see Ref. 27) is
included in the calculation. The influence of the C band
can account for the discrepancy in A& TO, but this has
not been done here.
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TABLE D. Measured and predicted absolute efficien-
cies of the forbMden one-LO linein Cd8. Experimental
res~its are from Ref. 4 and the parameters in Table I
were used in the theoretical calculations.

VI. CONCLUSIONS

S/I. 0.0-' cm-'sr-')
Expt. Theo rGt.

0.1 +0.05
0.6 ~0.2

13+3

not dominated by the dp scattering between the top
valence bande, and the actual cross section may be
quite complicated. The same comente apply for the
E& TO and aIlowed I O efficiencies.

It must be emphasized that other mechanisms fox'

fox'bidden scRttex'lng hRve sot been conclusively
x'uled out. Elementary calculations show that im-
purity-induced extl lnslc scRttex'lng ' shoQld Rlso

. occur primaxily for Z& Itf, and should be observable
%1th reasonable 1mpux'lty coDceDtx'Rtlons. It 18
therefox'e appx'opriate to point out the differences
between intrinsic and extrinsic scattex'ing.

In extrinsic scattering momentum is not con-
served and the wave vector of the photon q ranges
from 0 to roughly the reciprocal of the impurity
radius. Thus linewidths should be similar to lumi-
nescence one- LO eideba. nd widths. ~v Also there is no
dependence upon scattering angle, unlike forbidden
intrinsic scattering. Finally resonances shouM
peak at bound-exciton energiee.

In the expex'iment described above and in Ref. 4,
the dependence upon scattering angle was mat

checked. The primax'y evidence in support of the
intrinsic mechanism, other than the intensity, is
the iinewidths which were the same (2.0+0.2 cm ')
as fox ordinary RH.owed scattexing.

On the other hand, Colwell and Klein have re-
pox'ted fox'bidden one-LG scattering from compen-
sated 'Cds Rt x'oom temperatux'e. They observed a
one-I.O line approximately as intense Re and
broader (30 cm ' vs 20 cm ') than the two-LO line
and showed that the cx'oss section was independent
of scattering angle. All these xesults are consis-
tent with impurity-induced scattering and are incon-
sistent with foxbidden intrinsic scattex ing mecha-
nisms. The contrast between the data of Ref. 25 and

that of Ref. 4 show that the diffexence in samples
or temperature may be responsible fox' very differ-
ent mechanisms; the cross section measured in
Ref. 25 is 2&&10 4/cmsr, boo ot'de~s of magn@sde
greatex than that of Ref. 4 extrapolated to compa, r-
able energy denominators. The very large cross
section of Cobvell and Klein also shows that for-
bidden intrinsic scattering can only be observed
under conditions whexe other mechanisms ax'e sup-

Resonance-enhancement factors for two-phonon

Raman scattering cxoss sections have been calcu-
lated for the three types of electron-phonon inter-
actione: defol'mation potential, intexband Frohlich,
and intx'aband Frohlieh. Coulomb-cox'xelation ef-
fects for both discrete and continuum states were
included exactly within the isotropic hydrogenic ap-
proximation by using the complete Gx'een's function
for the hydrogen atom. The enhancement for dp
and interband Frohlieh is the same as has been
cRlculRted px'evloUsly.

The intraband Frohlich iDteraction, howevex", is
treated here for the first time incorporating exci-
tonic effects. Scattexing by this mechanism ie
first-order forbidden, i.e. , o~(qR), where q is
the phoDOD wave vector Rnd 8 is R cI1Rx'Rctex'lstlc

radius of the electronic excitation. Because 8 ean
be much larger than typical atomic dimensions for
Coulomb-correlated electron-hole pairs near the

band gRp ln R senllconductox', the forbidden scRttex'-

1Dg cRD be lRx'ge DBRx' x'esonRnce.
The most striking feature of the intraband Froh-

lich scattering is that if the excitons are assumed
to be ieotropic, it contributes only to diagonal .

7, It Z, scattex'ing irrespective of the crystal sym-
metry. Thus one-LO Raman scattering by this
mechanism is possible even in crystals in which
each atom is Rt a center of symmetry, when all
one-phonon RRman scattering is forbidden by the
usual selection rules. T1Cl and Tl.Br are exRmples
of such crystals with large %annier exeitons where
forbidden lines should be observable near reso-
DRDCB.

In addition„ the dependence of the cross section
upon incident-light frequency was shown to be very
different for forbidden and allowed lines: The for-
bidden cross section decreases much more rapidly
below resonance and is very large fox incident pho-
tons bet een the 1s and 2s resonances, whereas all
allowed cross sections pass through Dull points.
The magnitude of the cross section near 2s depends
greatiy on Boo/+g~. The cross section w111 be
greatly enhanced if the scattered photon is near
xesonance with the 1s exciton, i.e. , I'(do= &&,—&2,-
No such enhancement would oeeux fox' allowed scat-
tex'lng since the matrix element, fol' 18~ 28 tx'RDsi"

tione vRMshes.
Finally, as discussed in Refs. 4, 26, and 27, im-

purity states may also lead to forbidden scattering
expected to be largest for one-I 0 phonons. Con-
tributions from intrinsic and impurity scattering
should be experimentally separable through (i) de-
pendence of the cross section on scattering angle,
which ls lsotroplc fox' lnlpux'lty-1Dduced scattering~
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(ii) resonance-enhancement factors, and (iii) line
broadening ' in the case of impurity scattering,
which is expected to be discernible in an experi-
ment.
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Starting from the electronic-polaron theory we derive an expression for the interaction be-
tween a localized electron and a massive hole via the polarization field for all electron-hole
separations. The form of this interaction remains unchanged even when both electron and
hole masses are effectively in6nite. The expression obtained is compared with the corre-
sponding expression in the Haken-Schottky (HS) theory. Also expressions for polaron effects
such as self-energy, mass correction, and Lamb-shift-type corrections are derived in second-
order perturbation theory. Owing to the complete analogy between the electron and lattice
polarons, our results are also applicable to the case of a bound lattice polaron. Our results
are then compared with those of other authors for a bound lattice polaron.

I. INTRODUCTION

From recent work such as those of Refs. 1-3,
it is seen that in studying quantum states of a lo-
calized electron in insulators, the electronic po-
larization plays a significant role and considerably
affects not only the positions of the electronic ener-
gy levels but also the transition energies. In the

above references, the treatment of electronic-po-
larization effects on the system under consideration
is based on the electronic-polaron theory of Toyo-
zawa and Haken and Schottky' (T-HS). This theory
is an analog of the usual lattice-polaron theory and
can be used to study not only the effective potential
of a source particle but also the polaron effects
(such as self-energy, mass correction, and Lamb-


