
VELOCITIES OF SOUND IN POLYCRYSTALLINE NEON

The leading odd-order correction to self-consis-
tent theory was incorporated in work by Goldman
et a/. ,

' who retained the convenient MLJ m-6 po-
tential, but used both m = 12 and m = 13 with more
appropriate potential parameters. The resulting
compressibility, in a 12-6 model, is about 10/p too
large near 0 K but within the limits of experimental
error near the triple point. For a 13-6 model, the-
oretical and experimental values essentially agree

near 0 K but the theoretical values for compressi-
bility fall somewhat below the limits of experimen-
tal error at temperatures close to the triple point.
The comparisons are shown on Fig. 3.

In such calculations the choice of the appropriate
potential is still open to some question. Present
knowledge of the elastic behavior of solid neon in-
dicates that some further work on the properties of
strongly anharmonic fcc crystals is worthwhile.
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The three-dimensional analog of Holstein's molecular crystal model is utilized as the basis
for a study of the relaxation of the lattice after a small-polaron hop. In particular, it is shown
explicitly that the time-dependent activationlike energy arising in the previously developed
theory of correlated small-polaron hopping motion is directly related to the actual relaxation
of the lattice from the distorted configuration it must assume to facilitate a small-polaronhop.
That is, the time dependence of this "activation energy" and the concomitant relaxation of the
hop-related lattice displacements are governed by a single entity denoted as the relaxation
function. Furthermore it is demonstrated that this function is directly expressible in terms
of the transfer of vibrational energy from the initially distorted sites to successive (initially
undistorted) neighbor sites. In fact, for the most part, the relaxation of the lattice after ahop
is associated with the transfer of vibrational energy to only nearest-neighbor sites, this being
essentially a local phenomenon independent of the periodic nature of the lattice. Finally, al-
though the lattice relaxation for our three-dimensional model is found to proceed much faster
than in the previously developed one-dimensional model, its effect on small-polaron hopping
motion may not be inconsequential. In particular, the small-polaron drift mobility is shown
to be significantly affected by lattice relaxation effects when the mean time between small-
polaron hops is less than or comparable to the lattice relaxation time; this time being essen-
tially the reciprocal of the optical-phonon bandwidth parameter.

I. INTRODUCTION

The notion of small-polaron hopping motion has
been advanced in order to explain the transport
properties of excess carriers in a number of low-
mobility materials. Specifically, in such materials
the electron-lattice interaction is viewed as strong
enough so as to make possible the self-trapping of
a carrier. That is, the excess carrier distorts the

surrounding lattice via the electron-lattice interac-
tion thereby producing a sufficiently deep potential
well so that it is bound in its own "induced trap. "
The unit composed of the carrier, localized with a
spacial extent of the order of a lattice constant, and
its induced lattice distortion is termed a small
polaron.

Fundamental to our understanding of the mecha-
nism which characterizes the hopping motion of a
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small polaron is the notion of a "coincidence event. "
Explicitly, it is found that in order for a carrier to
be able to jump to an adjacent site the local elec-
tronic energy level associated with the bound state
of the occupied site must momentarily coincide with
the local electronic energy level of a neighboring
unoccupied site. Such a coincidence event generally
requires a substantial local distortion of the lattice.
In fact, it is just the minimum potential energy re-
quired to produce the distortion concomitant with a
coincidence event which is the activation energy
characterizing the small-polaron drift mobility
in the uncorrelated hopping theories. ' In these
calculations, the drift mobility is computed by con-
sidering the elementary jump process by which a
carrier placed on an initial site hops to one of its
neighboring sites. The role of the remainder of
the lattice in these considerations is solely to pro-
vide a heat bath for the subsystem of the occupied
site and its neighbors; the energy associated with
the coincidence is transferred to and from this sub-
system via the lattice vibrational coupling of the
subsystem to the remainder of the material.

As has been stressed previously, ' unless the
time required for the lattice to relax from the high-
ly distorted configuration it assumes during a coin-
cidence event is very short compared with the mean
time between small-polaron hops, it is not proper
to view the hops as independent of one another. If
this condition is not fulfilled, the lattice does not
generally "forget" one hop before another occurs.
In such a situation one views successive small-po-
laron hops as being correlated with one another.

It was shown that in a one-dimensional model in
which the carrier interacts solely with the longitudi-
na. l-optical-mode vibrations of the crystal (the usu-
al polaron situation) the lattice relaxation time is-

&u, ~(2@2/kT)2, where &u, is the half-width of the
band of longitudinal-optical-mode frequencies, and

E~ is the drift-mobility activation energy calculated
in the nonadiabatic hopping theory. It has been
argued that the relaxation time in a three-dimen-
sional model would be considerably shorter'4 but

still sufficiently long in a number of materials so
as to require treating the small-polaron hopping
motion as highly correlated. Thus, it is of interest
to extend the calculation of the one-dimensional
model to three dimensions to ascertain the effect
of dimensionality on the relaxation of the lattice
following a coincidence event.

In the present paper, the three-dimensional mo-
lecular crystal model, reviewed in Sec. II, is uti-
lized as a basis for studying the relaxation of the
lattice following a hop. The task of Sec. III of this
paper is to demonstrate that the activationlike en-
ergy which appears in the expression for the prob-
ability of two successive nearest-neighbor hops
(temporally separated by the time t) is simply the

minimum total energy required to produce the cor-
responding bvo coincidence events. This energy
will be shown to be dependent on the time interval
(denoted as t) between the two coincidences.

While it is shown in Sec. III that the time depen-
dence of this two-coincidence activation energy is
expressed in terms of what is designated as the
relaxation function, it is the purpose of Sec. IV to
demonstrate explicitly that the time dependence of
the actual relaxation of the coincidence distortion
is in fact governed by this function.

In the treatment of the relaxation phenomenon
that is contained in Refs. 3 and 4, the initial coinci-
dence distortion has been viewed as a wave packet
which is composed of a superposition of the optical-
mode phonon states; the relaxation of the coinci-
dence distortion is then associated with the decay
of the wave packet. In particular, the relaxation
function is directly related to fall of the center of
such a wave packet. In Sec. V, the relaxation func-
tion is studied from another point of view which
does not require introducing the normal vibration-
al modes of the system but rather expresses the
relaxation of the coincidence distortion in terms of
repeated energy transfers between successive
neighbor ions, thereby avoiding the assumption of
any long-range order in the system. Thus, in that
the periodicity of the lattice does not play an essen-
tial role in the relaxation process, it is concluded
that one may apply the notion of correlated small-
polaron hopping motion to amorphous materials.

The effect of the dimensionality of our model on
the relaxation function is demonstrated in Sec. VI in
which the relaxation function is calculated for a
simple-cubic lattice structure and compared with
the results for a linear chain. The more rapid
relaxation in the three-dimensional case can read-
ily be seen from Figs. 1-5; these results are found
to be in agreement with the previously advanced
qualitative arguments of Refs. 3 and 4.

Finally, in Sec. VII, the notion of enhanced jump
rates (including jumps both to a previously occupied
site as well as to a new site) is employed in cal-
culating the average forward jump rate and, hence,
the hopping drift mobility in a simple-cubic lattice.
It is explicitly shown, using representative values
of the physical parameters of the theory, that for
drift mobilities greater than -10 cm /V sec the

hopping motion of small polarons is often correlated
and characterized by a temperature dependence
which does not display the clear activation-type
temperature dependence predicted by the uncorre-
lated hopping theories. This conclusion may pro-
vide an explanation for the long-standing difficulty
in the theory of electrical transport phenomenon in
understanding the temperature dependence of a
diverse assortment of materials characterized by
drift mobilities lying in the range 10 to 10 cm /
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model which was introduced by Holstein to study
the small-polaron problem. Explicitly, in this
model one considers an excess electron in regular
array of N identical diatomic molecules whose ori-
entations are fixed and whose internuclear separa-
tions are allowed to vary. The optical-mode vibra-
tions correspond to the oscillations of the inter-
nuclear separations of the diatomic molecules.
More generally, the x~'s are the local configura-
tional coordinates associated with the optical-mode
vibrations. The vibrational part of the Hamiltonian
is simply
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FIG. 1. The relaxation-function amplitude Ab(I) appro-
priate to a forward hop in a one-dimensional lattice.

V sec. In particular, these materials possess drift
mobilities which neither manifest the simple ther-
mally activated behavior expected of an elementary
hopping theory nor permit consistent application of
the notion of occasional scattering of carriers that
are described as moving in an energy band.

II. MOLECULAR CRYSTAL MODEL

The molecular crystal model is a theoretical

where x,» is the deviation of the internuclear separa-
tion of the gth diatomic molecule from its equilibri-
um value, 34 is the reduced mass of a diatomic
molecule, and ~p is the harmonic oscillator fre-
quency; the final term in the Hamiltonian couples
neighboring oscillators and gives rise to the dis-
persion of the vibrational frequencies. In particu-
lar, the dispersion relation gives the relationship
between a normal-mode wave vector and its as-
sociated frequency

(d» = (dp + p(oy ~& cosk 'h,

where —m~k h~m.
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FIG. 2. The relaxation-function amplitude Ag(f) appro-
priate to a return hop, calculated for a one-dimensional
lattice.

FIG. 3. The three-dimensional relaxation-function
amplitude Ag(f), Eq. (78), corresponding to the second
hop being to a third site collinear with the first two.
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FIG. 4. The relaxation-function amplitude appropriate
for the second hop in a simple-cubic crystal being at
right angles to the initial hop.

where

((1/2m) [(h/i) grad;]'+ V( r —g, x;))P;(r, x;)

=Z(x;)y;(r, x;); (5)

E(x;) is the energy of an electron on an isolated di-
atomic molecule. The coefficients a; are found,
within the standard tight-binding approximations,
to be given by the solutions of the coupled equations

The electronic portion of the Hamiltonian is giv-
en by

H, = (1/2m) [(5/i) grad;] +Z; V (r g, x;—), (3)

where m and x are, respectively, the electron's
mass and position vector, and V(r -g, x;) is the
contribution of the gth molecule to the electron's
potential energy. It is noted that this potential is
dependent on the internuclear separation of the gth
molecule; this feature introduces the electron-lat-
tice interaction.

The eigenfunction of the system whose Hamilto-
nian is Hl, +II, is written as a linear superposition
of local electronic wave functions, i.e.,

((r, ~ ~ x; ~ ~ ) =Z;a;( ~ x; ~ ~ ) P;(r, x;), (4)

x s. An additional simplification introduced by
Holstein and employed here is to take

8'; = E(x;) = const —Ax;,
where A is a constant associated with the electron-
lattice coupling.

For sufficiently small J, the above set of equa-
tions may be solved perturbatively in powers of J.
In zeroth order a» is the vibrational wave function
associated with a carrier at site g, the correspond-
ing vibrational Hamiltonian being simply II~
+ W"( x- ).I

Furthermore, at sufficiently high temperatures
the vibrational motion may be treated classically.
In this limit, Holstein's occurrence-probability ap-
proach becomes valid for treating small-polaron
diffusion. This theory concludes that every time
there is a momentary equality of the electronic en-
ergy level of the occupied site and its neighboring
unoccupied site, there is a finite probability of the
carrier hopping to the neighboring site. Such an
equality is termed a coincidence event and, within
our approximations, is characterized by the equal-
ity x»=x;,g. The probability that the carrier will
avail itself of the opportunity to jump from site g
to site g+h given a coincidence between these sites,
assuming no correlation between the carrier's re-
sponse to successive coincidence events (an elec
tronic correlation effect), is simply

W(g-g+h) = 2''/eW~c;-v;, ,~,

where v; and v;.h are, respectively, the vibration-
al velocities associated with the internuclear sepa-
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where W'; is the electronic energy associated with
the excess carrier being on site g, and J is an elec-
tronic transfer integral between neighboring sites-
for simplicity, it is taken to be independent of the

4lbt

FIG. 5. The relaxation-function amplitude related to a
return hop in our three-dimensional cubic model.
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The one-dimensional theory of correlated non-
adiabatic small-polaron hopping motion may be
readily generalized to three dimensions. One finds
[in analogy with Eq. (10) of Ref. 4] that the prob-
ability of a small-polaron hop from a particular
site a to a neighboring site b occurring between
time zero and time dto, being followed by a sub-
sequent hop of the small polaron from site b to
neighboring site b+h between times t and t+dt, is
by P- - -- -(t)dtodt, where

w2' 2~a G„-(t)
[1-G-'(t)]"' x r 1+G-(t)

In the above equation, zv2 is the uncorrelated non-
adiabatic small-polaron jump rate originally cal-
culated by Holstein,

gg = (d /@) (7f/4gz'$2)~~ e 68~~

where the activation energy of &2 is

(10)

A
[1 —cosk ~ (a —b)] .

N k 4M CO~2

The relaxation function G~(t), generally dependent
on the location of sites a, b, and b+h, is given by
the relation

G„(t)= -Q a
G-"" G-' '" cos~-

kk»

2

Z — (c-"')' (12)
4g» k

k k

where, as in Ref. 4,

rations of sites g and g+h evaluated at the time of
coincidence. The above-mentioned electronic cor-
relation effect will generally be ignored in the suc-
ceeding discussion. The criterion for its neglect
is discussed briefly in Sec. VII.

III. TWO-COINCIDENCE ACTIVATION ENERGY

quired to establish the appropriate coincidence con-
figurations, ~ we shall proceed to demonstrate that
this situation is generally not the case for the ac-
tivation energies that occur in the correlated the-
ory. In other words, as distinct from the uncorre-
lated theory, the activation energies of the corre-
lated hopping theory may not generally be repre-
sented as the difference in energy between appro-
priate points on the potential-energy surface
V( ~ x- ~ ~ ) = Vz, ( ~ ~ x- ~ ~ )+ W-( ~ x- ~ ). The en-I I I C

ergy 2am/[1+Gh(t)] is, in fact, the minimum total
energy, in excess of the polaron binding energy,
required to establish two coincidences separated
temporally by time t.

To begin, let us describe an arbitrary lattice dis-
placement at site g, x», , in terms of the normal
(optical vibration) modes of the system~:

x-= (2/N)' "g- [Q- cos((s- t+ 6„-)+ q„-'"']

x sin(k g+4v), (14)

where Q„», &ok», 6;, and k are the kth normal-mode
amplitude, frequency, phase factor, and wave vec-
tor, respectively; the quantity

(2/N)" '2 „-q~"' sin(k g+ —,'v)

is the (nonthermal) distortion of site g produced by
the carrier occupying the site b. In Holstein's
model,

q-' ' =-(2/N) t (4/M&u„- ) sin(k b+ +v) . (15)

Furthermore, the vibrational energy of the system,
the energy in excess of the polaron binding energy
E&, may be written asv

E E~ =Q - a M e—- Q-2 . (16)

Let us now proceed to calculate the minimum to-
tal energy in excess of 8, required to produce a
coincidence between sites a and b at t = 0 [x;(0)
= x-(0)] and sites b and b+h at some arbitrary time
t[x;(t) =xb;„-(t)]. The conditions for these coincidence
events are seen from Eqs. (13) and (14) to be

A Z - [Q- cos5-+ q-'" ]G-" = 0 (17)

»

G~'"-=(2/N) t [sin(k ~ a+ 4v) —sin(k b+-,'v)] . (1&)

One might observe that in the limit in which the
two hops become independent, i.e., Gh(t) -0, the
right-hand side of Eq. (9) reduces to zoa2, the square
of the jump rate for uncorrelated hops. It is read-
ily seen from Eqs. (9) and (10) that the nonadiabatic
activation energy characterizing two small-polaron
hops being separated in time by t is 2e2/[1+ G„-(t)].
While it has been established that the activation en-
ergies that appear in the uncorrelated small-polaron
hopping theories are the minimum potential ener-
gies, in excess of the polaron binding energy, re- and

—Pc-„""'"sinrogt
tanOR= K 5

k - -k
[Qct ' + Pets'S' coscoft]

(19)

AZ-[Q„-cos((u-t+5f)+qg' '] G„-I'~' =0,
respectively, where the coupling constant A. has
been inserted here for future convenience.

Introducing the Lagrange multipliers n and P and
minimizing the quantity (E —E,) + a[xq(0) —xb(0)]
+ P[x„-(t)—xg, h(t) ] with respect to the variables Q.

„

and 5-„,we readily find, after algebraic manipula-
tion, that
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A QQI, ' +PQp ' coscof t
Mco. cos5g

A )))'. ' ' "s)na.))
Mu q sin5-„

(2o)

Inserting Eqs. (19) and (20) in the conditions (1V}
and (18), we find that

n G„-(f)P-=-.'

and

Gb(t) n- p=-', , (22)

where it is noted that the first term on the right-
hand side of Eq. (24) is the kinetic energy T(0)-=g;(M/2)x12 at f = 0. Inserting the expressions for
Q-„, from Eq. (20), and with the value of n and p
determined above, we find

E —Eb= 2&q/[I+ G-„(t)],

QED. Furthermore it is now observedthat in the
limit of the two coincidence events becoming un-
correlated, i. e. , f-~ (assuming, of course, finite
dispersion of the optical frequencies), the kinetic-
energy contribution to E —E~ vanishes:

1limT(0)=lim
[

1 A b" "2xQ-—,(G-b, b b) sin ~bt 0
8 M~z

(25)

Finally, several general properties of the relaxa-
tion function should be noted. First it is noted that,
for finite dispersion of the vibrational frequencies,
lim, Gb(f) =0; thus, E —E, equals the activation
energy characterizing two independent hops 2qe.
8econd, let us observe at f = 0 from Eqs. (12) and

(25) that Gq -„(0)=1and E —Eb=).2, the activation
energy is simply && since only one coincidence
need be formed in the circumstance that the. second
hop is an immediate return jump. However, in the
case of h wa -b, G"„(0)is such that E -Eb is the
energy required to form a tripl, e coincidence; in
particular, in the limit of vanishing vibrational
dispersion )d&=0, Gb(0) =b, and E —Eb=b eb —=&b.

respectively. Solving these simultaneous equations,
me have

n=-P=-', [I+G„-(t)]-'.
At this point, we write

M g ~. 2E —E~ =~ —
(OI, Qp slIl 5p

IV. Gh(t) AND RELAXATION OF LATTICE

While we have related the activation energy
chacterizing the hopping of the small pola, ron to
the function GF(t), denoted as the relaxation function,
it is of interest to demonstrate the explicit rela-
tionship of the relaxation function to the actual re-
laxation of the lattice following a coincidence event.
To this end we shall investigate the explicit lattice
distortion associated with relaxation of the lattice
from a coincidence configuration.

We begin by observing from Eq. (14) that the
relRtlve displacements RssoclRted with the occupied
site b and a neighboring site b+ h at an arbitrary
time t may be written

r x;(f) = x;(t) —x;, „-(t)

=g"Q" cos(a&"(+5.) G- ~ ' +Qq-' 'G-b~b'b

(2V)

where the final term is the (carrier-induced) dis-
tortion in a lattice devoid of vibrational excitations,
i. e. , when Q„-=0 for all k. I et us now assume,
as before, that a coincidence event involving site
a and site b has taken place at t= 0 Rnd that a, sec-
ond coincidence involving the neighboring sites 5
and 5+0 occurs at some time T. Furthermore,
let us focus our attention on the particular vibra-
tional trajectory which is characterized as possess-
ing the minimum energy necessary to produce these
two coincidence configurations. This is readily
done by substituting the values of Qb and 5„;which
were determined in Sec. III, into Eq. (2V). This
procedure is most expeditiously carried out by
noting from Eqs. (20) that

Q;cos5b = (A/2M)d ) (G-„~b—Gbs'"cos(obT)

[I.G;(T)]-'

Qbsin5b= (A/2Mupg ) (Gp'"'bein(gbT)[1+ Gb(T)]
~ .

(»)
We find IBRking this substltutlon Rnd performing
the indicated summations over k, that'

n.x-(t)=n.x-( ) 1- ' '-'
(aO)

where
~b

~x (ab) =+q
1 G blab) b

=(I/X)+(a/M~ )[I -cosk h].
Thus it has been shown that the time dependence of
the relaxation of the lattice in a two-coincidence
situation is governed by the functions G„(t)and

Gg -b(t —T).
We may, however, proceed further Rnd relate

the function Gb(t) to the relaxation of the relative
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distortions of sites b and b+K after a coincidence
at t=0 between sites a and b. In particular, con-
sidering the two coincidences to be uncorrelated
(that is, going to the limit T-~, where t remains
finite), the formula becomes particularly simple:

~x;(t) = ~;( ) [1 —G;(t)] . (32)

The above relation provides an explicit physical
interpretation of Go(t) in terms of the relaxation of
the lattice following a coincidence event. Once
this physical understanding of the significance of
Gh(t) has been achieved, it is easy to see that the
time dependence of Go(t) will be generally associated
not only with the time which characterizes the rela-
tion of the lattice (typically -

&up/urq ) but with the
average vibrational period (2v/(0p) thereby mani-
festing the oscillatory nature of the internuclear
displacements, the x~'s.

x sin(k g+ —,'g),

M '(t) -=—(2/N)~t +Q„"sin5.„sin[(zf—~p)t]

(37)

X S1I1(R' g+ ~v) q
(38)

N~(t) = —(2/N) ~ ~ o+Qf cos5 f sin [((of —(go) t]

x sin(R g+ —,'v), (s9)

displacements X~(t)'s. In particular, let us write

Xg(t) =- [M~(t) +M ~'(t) ] cosa& t+ [N~(t) + Ng'(t) ] sin~ ot,

(36)
where, as is shown by use of elementary trigono-
metric identities in Eq. (35),

M, (t) —= (2/N)'~ +Q~cos5;cos[((u; —(uo)t]

V. TRANSFER OF VIBRATIONAL ENERGY AND
LATTICE RELAXATION

x;(t) = D(g, 6)+x,(t),
where, in our case'P [cf. Eq. (14)],

(33)

D(g, 5) = D(g —6) -=(2/N)'~o Q q;+' sin(k ~ g+ —,'v)

(s4)

Xp(t) = (2/N) '~ Q Q; cos(u)"t+ 5"")sin(k ~ g+ ~w) .
(35)

We shall now focus our attention on the vibrational

In the preceding discussion, the lattice motion
has been analyzed in terms of the normal vibrational.
modes of the periodic lattice. On the other hand,
this procedure, although greatly simplifying the
calculations, does not provide a physical picture
of how the energy associated with a lattice distor-
tion is dissipated to the remainder of the crystal.
8pecifically, it is useful to demonstrate the rela-
tionship of the relaxation function to detailed energy
transfers between lattice sites as the distortions
relax. Furthermore, by reexpressing the time
dependence of the relaxation function in terms of
successive energy transfers from a distorted site
first to neighbor sites, then to next-nearest sites,
and so forth, the local character of the relaxation
process is manifested. ' Thus, the independence
of the principal results of these studies of lattice-
relaxation effects on the long-range order of the
system will become evident. Let us now observe
that the displacement associated with the gth site
is in general the sum of two terms, the first being
associated with the carrier occupying a particular
site (denoted as before as site 5) and the second
being associated with the vibrational motion of the
lattice. Explicitly, we may (for a linear electron-
lattice interaction) write

No(t) -=—(2/N)'t'~ Q-„sin5fcos[((u; —(uo)t]

x sill(K ' g+ 4v) . (40)

In order to elucidate the physical significance of
these four quantities, let us restrict our attention
to the short-time regime (~g —&vo)t«1, where in

the narrow vibrational band limit &ui —&up& 3~~ /2a&o.

Thus, we may make the standard approximations

cos[((dk Mo)t] 1 o((dk tdo) t y

sin[(~f &o)t]=(&i &uo) t

(41)

(42)

N&(t) = —(-.'~ t) Zzx„-(o),
Ng'(t) = (I/'&o) [Xg(0) —((u,/2(uo) foxy, h(0)

(47)

+ (~o/2~o) +K+K' Xa+ h+ i'(0)]

in Eqs. (37)-(40). In order to evaluate the result-
ing summations, we first recall the eigenvalue equa-
tion [equivalent to Eq. (2)]

o ) ( ' g+~)= ozq gosin[k ~ (g+h)+~v] .
(43)

In the narrow band limit, I erg —cool «coo, we write
(or~ —&dp ) = 2&up(&uf —~o), so that Eq. (43) becomes

(u&g —u&o) sin(R g+ ~v) = &uro+sin[R (g+K)+ —,'v],
(44)

where &op= ur, /2&up. Thus, we find, by (i) inserting
the approximations (41) and (42) into Eqs. (37)-(40)
and by (ii) repeated use of relationships of the
form of Eq. (44), that"

M,(t) = x,(o) ——,'(-,'~, t)'Q;QK, x, ,-„.5,(0), (45)

Mg'(t) = (o(sot) ((I/(uo) Qo[xg, o(0)

+(~o/~o)a xa. h. h(0)l}
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—2(a~h )'(I/~p)ZhZp Xy. h. h (0), (48)

where we have noted from Eq. (35) that

X~(0) = (2/N) ~
Qh Qh cos6h sing ~ g + h v)

and

(49)

X~(0) = —(2/N)'~ Q Qh eh sin5h sin(R g+ hv) .
(50)

It is clear from the above expressions for M~(t),
M&'(t), N~(t), and N (t), that for sufficiently short
times cubt& 1 the energy-transfer terms are only
dependent on the initia, l distortions and initial vi-
brational velocities of nearest- and next-nearest-
neighbor ions.

In procee'ding to apply the above considerations
to the calculation of the relaxation function, we
consider the situation which is described by the
relation (32). Namely, we shall restrict our atten-
tion to the circumstance where at /= 0 all of the
vibrational velocities are zero and only the two
coincident sites, sites a and b, are distorted.
These two sites are taken to possess the deforma-
tions appropriate to the minimum energy coincidence
configuration (requiring energy ep)

Fh~ ((uht) = (Mh, -h-Mh)/2n,

F,„~((opt)= (N -„,h —Nh)/2& ~

(59)

(60)

For the one-dimensional system studied in Ref. 4,
we find from Eqs. (53)-(55) and the above defini-
tions that

F„((uht)= —,'[1 --', (-,'~ht)'] forward hop

E"„(~ht)= [1-(-,'~ht)'] return hop (62)

where it has been noted from Eqs. (31) and (52) that
AXh(~) = 24. Thus, we have expressed the relaxa-
tion function in terms of functions of time which
have been explicitly related to the transfer of ener-
gy between sites in the lattice. In fact, we have
shown that for sufficiently short times cubt& 1 the
relaxation function is dependent only on nearest-
neighbor and next-nearest-neighbor energy trans-
fers.

In order to relate the preceding discussion to the
previous analysis of the relaxation function, we
generalize the notation of the earlier work [cf.
Eq. (21) of Ref. 4] and define

Xg(0) = (6- h
—6- h) b, ,

where

n-=(1/N)+(A/2M~h~)(1 —cos[R (a —b)]) .

(51)

(52)

and

E«(&u th) = (—,'vht) for forward and return hops .
(63)

These results are in fact the short-time expansions
of the exact results'

M; = —M, = —~[1 ——,'~(-,'~hf)'],

Mh, „=—a[-,'(—,'(uht) ] [2 cos8]—

(53)

for Kka -b,

Applying formulas (45) and (47) to the case of a
simple-cubic crystal in which the neighboring sites
a and b are coincident at t= 0, we find

Egh((c)ht) = p[Jp((uht )Jp(~ht)] fo'rward hop

F~„(aht)= Jp(&u, t) return hop,

w

F,«(&uht) = J|(vht) forward and return hop,

(64)

(65)

(66)

(54)

Nh= —N.„.h= —D(p~(uht), (55)

where z is the number of nearest neighbors,
cos8=h ~ (5-a)/IKI Ib-al, and, as before, K is
a nearest-neighbor position vector.

We now observe that the relative vibrational in-
duced distortion of sites b and b+ h is Gh(t) = Ah(t) cos(u)pt —yh), (67)

where the J„(u&,t) are Bessel functions.
At this point, let us observe that Gh(t) may be

regarded as an oscillatory function of time (essen-
tially characterized by a frequency -

&up), the ampli-
tude of which decreases as the lattice relaxes (with
the characteristic time &uh ); i. e. , we may write
[cf. Eqs. (26)-(26) of Ref. 4]

h= (Mh Mh h) cos(opt+ (Nh —Nh, h) sinu&pt .
(56)

Furthermore, it is recalled from Eq. (32) that

where

Aa(t) -=( [F".(t)]'+ [F.".,(&)]g"' (68)

Xh-Xh. h= —~h(")Gh(f) . (57) tang-„=E'.„,(t )/E"„(t). (69)
Thus, comparing Eqs. (56) and (57), we have, in

general, that

M", - -M- Nb, b -Nb
Gh(f) = "h h cos+pt+ 'h ' sin~pt,

Restricting our attention to the coefficient Ah(t),
we find from Eqs. (53)-(55), (59), and (60) that for
a forward hop (8 = 0 or —,'v)

(58) A„(t)= Ml —(-,
'

&u,t)' [z —2 —cos8]]' '. (70)
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It is now readily seen that for the one-dimensional
model of Ref. 4 (z=2 and cos8=1), Ah(t) increases
with time [of course, only for sufficiently short times
times &u, t~ 1]. On the other hand, for a simple-
cubic structure, z = 6, Ah(t) decreases as f increases
from zero. Physically, this manifests the fact
that, while the number of initially distorted sites
which transfer energy to the sites b and b+ h is
identical in the one-dimensional and three-dimen-
sional cases, the number of sites which receive
energy as the initially distorted sites relax is
greater in the three-dimensional situation. Thus,
for short times (&u,t~ 1), the net energy involved
in the relative vibrational motion of sites 5 and
b+h increases with time for the linear chain but
decreases with time for the three-dimensional
structure. Thus, the geometrical dependence of
the relaxation function has been explicitly demon-
strated.

VI. RELAXATION FUNCTION FOR A SIMPLEXUBIC
STRUCTURE

Having noted that the relaxation function will,
in general, be significantly affected by the dimen-
sionality of the model being studied, it is of interest
to explicitly calculate the relaxation function for a
simple-cubic lattice structure and compare the re-
sults with those for a linear chain. In particular,
we shall write the relaxation function

Gh(t) = A"(f) cos(&apt —p.„) (VV)

and focusing our attention on the amplitude of this
oscillatory function:

fol m

cos(8 cosk„)= J (8)+ 2+(- 1)"J „(8)cos(2nk„),
V6)

sin(8 cosk„)= 2+(- 1)"Zp„,q(8) cos[(2n+ 1)k„],
(V6)

where the J'„(8)'sare Bessel functions. The re-
sults of these computations along with the results
for the linear-chain calculation are presented in
Table I.

It should be noted from Table I that the relaxa-
tion function for the sites that are involved in afor-
ward hop is dependent on whether the three sites
involved in the two coincidences are collinear or
iie at three of the corners of a square. This fea-
ture is manifested in the results of Sec. V by the
dependence of M p, p on the angle 8 [cf. Eq. (54)].
In addition, it can be readily verified that the
expansion of the Bessel functions, for (d, t& 1, yields
results that are identical to the energy-transfer
calculation of Sec. V.

The significance of dimensionaltiy on the relaxa-
tion function can be most easily seen by writing

G"„(t)=F'„cos&upt+F „tsln(Appf, (Vl)
A;(f) =([Fl.(f)]'+ [F:.,(t)]']' . (V6)

where

F;.(t)= Z;(1/ )G- —'~ ""-[(;—,)t]
gf(1/~g') (~)"~)'

(V2)

yI(1/(u ) O;~'G "'sin[((u„.—(up)t]
g-(1/~-')(G- ')'

(V2)

and concern ourselves with the calculation of F„(t)
and F (fh).

Restricting our attention, as in Sec. V, to the
case of a narrow vibrational band u&,/&up«1,

u&"„=&up+ ~,(cosk„+cosk, + cosk,), (V4)

+- (2v) P f dk„f dk„ f

where —m & k„,k„k,& g, the above formulas are
readily evaluated by (i) transforming the summation
over k to an integral, i. e. ,

These amplitudes are plotted against w~t in Figs.
1-5; these curves correspond to the correspond-
ingly numbered cases of Table I. It is clear that
the relaxation is much more rapid in the three-
dimensional model than in the one-dimensional
model. In addition, it is seen from Figs. 1, 3,
and 4 that the rise of Ah(t) with time from its
initial value in the case of fonvard hops is only a
characteristic of the one-dimensional calculation-
the physical origin of this difference having been
considered in the discussion of Sec. V.

Finally, it is observed that the asymptotic (u&&t

» 1) forms of Ap(t) for each of the five situations
of Table I are, respectively,

Situation

Linear chain
Forward hop
Return hop

2 tJO{( '&t) -J2(&f,t)]
J,(~P)

TABLE I. The in-phase and out-of-phase amplitudes
of the relaxation functions for both linear chain and simple-
cubic s tructures.

by (ii) utilizing the well-known trigonometric
identities for the sine and cosine of the sum of
angles, and by (iii) utilizing identities of the

Simple-cubic structure
Forward colinear hop & [J()(~f,t) —J2(&kt)]JO (&bt)
Forward right-angle

hop
Return hop J()3{cup)

Ji (~bt) Jo'(~kt)

J1(~bt)Jo (~bt)

J,(~t)J,'(~kt)
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A"„(f)-(2/v(o, f) ~

A.„(t)-(2/v(u, t)'i',
A.h(t)- (2/v(u, t)'i'cos'((u, t ——,'v),
A",(t)- (2/v(u, t)'~','

~

cos((u, t ——,'v) ~,
Ah(t)- (2/v(u, t)'i'cos'((o, t —,'v) .—

(ve)

(80)

(81)

(82)

(88)

These formulas serve as verification of the general
arguments previously given in Refs. 3 and 4 con-
cerning the time dependence characterizing the
lattice relaxation for long times &,t » 1.

VII. CORRELATED-HOPPING JUMP RATE

=zp2 for t2&t (s4)

In this section, we shall study the effect of the
previously discussed relaxation phenomenon on the
small-polaron drift mobility. Rather than utilizing
the exact relaxation functions (derived in Sec. VI)
in performing a (computer) computation of the drift
mobility of a carrier in a cubic lattice, we instead
shall carry out a relatively simple calculation which
manifests the principal physical effects of the prob-
lem.

The starting point of our considerations is the
following schematic representation of the essential
features of the time-dependent jump rates Rb, h(t)
which characterize the subsequent jump of a car-
rier which hops from site a to site b at t=0. In
particular, considering b+Kea, we have

Rb~h(f) = %2@ for 0 & f & ta,

itself of two opportunities to hop W(a -b- b
+ h) may be written as the product W(a - b} W(b- b+ h). Without going into the details, preliminary
considerations' ' lead to the conclusion that this
replacement is correct for f& af- &oo '[h&oo/
(eaKT)' ] ~, where uroat«1. In that the probability
expression Eq. (9) is peaked at intervals of -2v/~0,
with the characteristic width &oo '[vT/c+h(2'/
a&0) ]'~2, it can be seen (from the fact that both of
these times are taken to be much greater than b, t
within the regime of the occurrence-probability ap-
proach) that such electronic correlation effects will
occur in only rare instances. Furthermore, in
the occasional situation when t is very short,
W(a- b- b+ h} differs from the above-mentioned
product by only a numerical factor of order unity.
Hence, such correlation effects appear to be of
minor importance in the classical limit considered
here.

The second quantum-mechanical effect which is
of interest to us is associated with dispersion re-
lated corrections to Holstein's formula for W(b
-b+h), cf. Eg. (8). In particular, it is assumed
in deriving Eg. (8) that, given a coincidence, the
probability of a hop is related only to that particular
coincidence event and is independent of other prior
coincidence events; that is, the carrier forgets a
coincidence event before another occurs. The
validity of this assumption (in a lattice of two or
three dimensions~') requires satisfying the condi-
tion

and, for b+ h = a: 2v((o, /(oo) [(e,~T)'~'/8(oo]»1; (ss)

R", (f) =wz(o'. +p) for 0&t& t, ,

for tj &t&tp ~

for t2& t, (ss)

where zg2 is the rate characterizing a hop in a re-
laxed lattice. '

It is implied in this simplified model that the
"new site" and return jump rates are enhanced
above their relaxed-lattice value for times less
than t, and t2. Specifically, if only the herein-dis-
cussed classical relaxation effects are considered
and we assume that we may consider only the cor-
relation between successive coincidence events,
then a = e '~ '"~ and o. + P = e'2 "~. However, it
should be commented that there are also quantum-
mechanical correlation effects which in general may
well play a role in considerations of small-polaron
hopping motion. In particular, one may consider
two such effects.

The first of these is related to the question of
whether (given a coincidence event between sites
a and 5 at some initial time and a coincidence in-
volving the neighboring sites 6 and b+ K at some
time t later) the probability of a carrier availing

it should be observed, hat this condition is auto-
matically fulfilled in the classical limit 5- 0. A'-

computer calculation by deWit ' (for a two-dimen-
sional lattice) indicates that the correction to the
jump rate associated with the failure to meet the
above requirement can be substantial. Further-
more, as may be expected from the fact that the
condition (88) is more easily satisfied as the tem-
perature is increased, deWit finds that the frac-
tional augmentation of the jump rate decreases with
increasing temperature. Thus, this electronic cor-
relation effect may be thought of as producing a
jump-rate enhancement factor which decreases with
increasing temperature. We therefore expect that
the inclusion of this electronic correlation effect
in our theory will yield both an increase in the
drift mobility and a further offsetting of the acti-
vated temperature-dependent term in the drift-mo-
bility expression.

Finally, it should be stressed that the above dis-
cussion is based on preliminary consideration of the
quantum-mechanical correlation eff ects. However,
it is felt that a more detailed discussion of these
considerations is beyond the scope of the present
paper, this paper being principally concerned with
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classical lattice-relaxation effects. Thus, without
further ado, we shall adopt the above schematic
model and proceed to compute the average jump
rate which is to be related to the drift mobility.

The task of relating the various time-dependent
rates to an average forward jump rate has been
carried out for a one-dimensional lattice in Sec.
V of Ref. 4. The generalization to the case of
the three-dimensional model presented above is
elementary and yields

where

S(t)=-exp[- f Z„-R;.f(t') dt']
0

and

f= $—S(t)[R&t(t)- Re+h(t)]dt, b+ t&4 a.

Inserting the rate expressions, Eqs. (84)-(85), into
the above formula we find that

n ~ (p/6}e 2Na+ B& &1+ (I n)(I + p/Gn)e eadem&ee ~ee&g

(I+ [(P/Gn)(1+ P/Ga) '] (I —e " 'en+ e& "})[I+(P/Gn)e-~cree + e»&] ~ (90)

In examining the above expression, we shall first
direct our attention to the limit in which the en-
hanced-return effect (characterized by the constant
P) is nonexistent. In this situation P =0, and Eg,
(90) reduces to

w= w,[n+(I —n)e ~"'] . (91)

The physical content of this expression is readily
identified by observing that when the enhanced
short-time jump rate characterizing a jump to any
of the six neighbors 62o. multiplied by its charac-
teristic time duration t2 is much greater than unity,
it is most likely that a second hop will occur under
the influence of this enhanced rate, I)- zp~n.

In the other extreme, 6zg2zt2«1, the enhanced
jump rate affects only a small fraction of the hops
and hence has little influence on the average rate
Ry l, e,

y R %3
Let us now consider the situation when the prob-

ability of the carrier making a hop in the time in-
terval t, is substantial; explicitly, let us assume
we(6n+ P) t, »1. In this limit we find from Eq. (90)
that

1+P/Gn
1+ P/Sn

(92}

Vte can see that the term in parentheses, manifest-
ing the effect of the enhanced-return phenomenon,
has only a minor influence on in that this term
always has a value between 0. 5 and 1. In particu-
lar, in the limit that the enhanced portion of the
return jump rate weP is substantially larger than
the total unenhanced rate characterizing a jump to
the neighboring sites Gwen, namely P/6n»1, the
term in parentheses is —,'. This factor of —,

' mani-
fests the fact that in this limit, the carrier having
made a hop will tend to jump back and forth re-
peatedly between the "initial" and "final" sites only
effecting a hop in one-half of these instances.
Finally, in the complementary limit p/Gn « I, the
enhanced-return effect is unimportant and the term

I

in parentheses approaches unity.
It is useful to rewrite the condition we(6n+ P) t,

» 1 in terms of the mobility in this regime so as
to have a self-consistent check on the utilization of
the average forward jump rate given in Eq. (92) in
determining the drift mobility. In particular, ignor-
ing the term in parentheses in Eq. (92) for simplic-
ity and employing the Einstein relation p = (ea'/~T)w
(where a is the lattice constant), we find that

w, n=t&(~T/ea') .
Furthermore, recalling that the enhanced-return
jump rate corresponds to a situation in which an
"immediate" return hop requires little additional
vibrational energy (i. e. , characterized by a very
small activation energy), we may write

w, (n+ P) = p. (~T/ea') e"""'
Finally, noting that t, = ~b, we may write the con-
dition for being in this enhanced diffusion regime
as

P, (vT/ea )(5+e'e "
) are & 1

or

@~o +a (5 cger)-&
KT 0

Taking a = 6 x 10 cm, x T = h &me, v, /ore = 0. 07, and
&2 = 5N cop as typical parameters we find the condi-
tion p. &4&&10 cm /Vsec. Thus, the enhancement
effects are expected to be important in such ma-
terials as NiO and CoO, where p, is deduced to be
between 10 ' and 1 cm /V sec. ' A plot of the drift
mobility vs reciprocal temperature for the electron-
ic bandwidth parameter 4=I+0=0.04 eV, with the
remaining parameters being given by the values
chosen above, is given in Fig. 6.

VIII. SUMMARY AND DISCUSSION

It has been the purpose of this paper to elucidate
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FIG. 6. The drift mobility plotted vs 5&0/~T = 8/T
for the values of the physical parameters given in the
text.

the nature of the lattice- relaxation eff ects that
arise in the theory of correlated small-polaron
hopping motion. ' In particular, in the previously
developed theory in which the probability of a
small-polaron hop is considered to be influenced
only by the immediately preceding small-polaron
jump, it is found that the probability of a coincidence
between the neighboring sites a and b at time zero
being followed by a coincidence involving the adja-
cent sites 5 and 6+h at time t is characterized by
a t-dependent "activation" energy. It is shown in
the present paper that, while the usually encountered
activation energies are the minimum potential en-
ergies required to produce some specified condi-
tion, the time-dependent activation energy encoun-
tered here is the minimum total energy required to
establish the two above-mentioned coincidence
events. In the limit in which the two events are
uncorrelated, i. e. , as t-~, the kinetic-energy
contribution to the activation energy is shown to
vanish.

The time dependence of the two-coincidence acti-
vation energy is expressed in terms of the function

Gh(t), designated as the relaxation function. Fur-
thermore, it is shown that the actual time-depen-
dent relaxation of the lattice distortion associated
with both one- and two-coincidence events is de-
termined by the relaxation function. These the-
orems thereby constitute an explicit demonstration
of the relationship of the time-dependent activation
energy to the physical relaxation of lattice distor-

tion which accompanies a coincidence event. In the
previous works, ' such a relationship was suggested
but never proved.

In Sec. V of this paper, the calculation of the re-
laxation function was recast in terms of repeated
transfers of vibrational energy from distorted sites
to undistorted sites. In this formulation, the phys-
ical significance of the "in-phase" and "out-of-
phase" terms in Gh(t) is manifested, and the pre-
viously unproved assertions of Sec. V of Ref. 3
as to their physical meaning are established.
Furthermore, it is felt that such a scheme for cal-
culating the relaxation function possesses the ad-
vantage of being a more explicit physical descrip-
tion of the relaxation of the lattice than the descrip-
tion of the relaxation phenomenon in terms of the

falling of the center of a wave packet (cf. Sec.
VIII of Ref. 3). Finally, this approach manifests
the feature that except at long times co,t » 1, the
absence or presence of long-range order in the sys-
tem has little influence on the relaxation phenome-
non. Thus, the notion of correlated small-polaron
hopping motion may be applied to nonperiodic sys-
tems.

It has been anticipated that the relaxation of the
lattice in a three-dimensional model would proceed
much more rapidly than in a one-dimensional mod-
el.' In Sec. VI, the calculation of the lattice-re-
laxation function for a simple-cubic structure is out-
lined and the results presented. In particular, the
amplitudes Ah(t)'s of the various lattice-relaxation
functions are plotted in Figs. 1-5; the striking ef-
fect of dimensionality is readily apparent from
these curves. However, in accord with earlier
qualitative observations, it is seen that the lattice-
relaxation functions are not affected by dimension-
ality in the short time limit (d~t«1.

Finally, a schematic model is introduced to facil-
itate inclusion of lattice-relaxation effects in the
calculation of the small-polaron jump rate in a
simple-cubic structure. It is shown that for the
situation in which the probability of a carrier making
a hop before the lattice relaxes is substantial,
small-polaron motion is characterized by a diffusion
rate that is enhanced above that of the uncorrelated-
hopping theory. Furthermore, the small-polaron
jump rate in this regime is characterized by an
activation energy roughly one-third that associ-
ated with the uncorrelated hopping of small polarons.
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The extinction coefficients of AgCl and AgBr have been obtained down to liquid-helium tem-
perature by observing the transmission of thin films in the near-uv direct exciton region (3.5-
6.7 eV) and in the extreme uv (30-240 eV) using synchrotron radiation. The index of refraction
was determined for both materials by a dispersion relation, and the optical constants were then
constructed for AgCl in the range 3-240 eV, using all available data. Some interpretation, of
the exciton and band-to-band spectra is given. An estimate is made of the effective number of
electrons which contribute to the absorption over a wide range of photon energies.

I. INTRODUCTION

The character istic optical absorption of AgC1 and
AgBr begins in the near ultraviolet at photon energies
of approximately 3 eV. Measurements on single

crystals indicate that the absorption tails in this
region are strongly temperature-dependent accord-
ing to the so-called Urbach rule. '~ Detailed in-
vestigations down to liquid-helium temperatures
on the pure materials3 and also on mixed crystals


