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The electronic band structure, charge density, and optical properties of diamond have been
calculated using the discrete variational method in an ab initio approach with an LCAO Bloch
basis set. This technique avoids most of the difficulties encountered with evaluation of the
matrix elements of the Hamiltonian, and allows inclusion of the nonspherical terms in the po-
tential. A comparative study of the relative effects of muffin-tin averaging and scaling the
p' 3 statistical exchange reveals the large sensitivity of the energy bands to spherical averaging
of the potential. For example, in diamond we find that neglect of the nonspherical potential
terms shifts the indirect band gap by 5 times the change produced by scaling the exchange be-
tween Kohn-Sham and full Slater values. This demonstrates the inadequacy of the muffin-tin
approximation for use in quantitative ab initio calculations. A comparison of the energy and
location in the Brillouin zone of the indirect transition threshold indicates excellent agreement
with experiment for an exchange scaling close to that determined by the X~ method. The con-
ventional energy-level ordering is found, as opposed to that obtained in recent pseudopotential
calculations. An analysis of the interband density of states reveals that this approach gives
good agreement with the available optical data for diamond.

I. INTRODUCTION

There has been great interest in diamond from
both experimental and theoretical viewpoints for
some time. Recently, several band-structure cal-
culations' have been published, based on different
techniques, that give rather disparate descriptions
of the energy bands in diamond; in particular, the
pseudopotential calculations compare poorly with
first-principles work. Consequently, there still
exist some discrepancies between the theoretical
situation and observed optical properties. This
work represents an effort to resolve some of the
questions concerning the band structure and optical
properties of diamond, in view of the continued in-
terest in this system. A previous application' of
the method used in this work to the covalent crystal
graphite met with considerable success in an
ab initio approach to correlating the band structure
with the observed optical properties. It would then
be natural to suppose that this procedure could be
applied to study the same atoms in the diamond
crystal structure, with equally valid results. Dia-
mond is rather the "classic" model of the covalent
crystal, and this work is a first step towards more
complete investigations to follow, not only on the
one-electron properties, but also with regard to
the cohesive energy of the various crystallographic
phases of carbon.

The recent calculation by Hemstreet, Fong, and

Cohen, based on a nonlocal empirical pseudopo-

tential model (referred to here as NEPM}, yielded
ez(&u}, in good agreement with experiment for the
position of the main peak for type-I diamond, but
the order of the levels is significantly changed from
what has been obtained in first-principles band-
structure calculations. ' From the shifts of I'~.
relative to I"» observed in Sn, Ge, and Si, it seems
natural to expect the lowest excited state at the
zone center to be of I'» symmetry, not I'&. as ob-
tainedinthe NEPM. Inthis paper, we shall show that
the results obtained from an ab initio calculation also
lead to a satisfactory explanation of the optical prop-
erties, and yet remain within the conventional con-
cept of the level ordering. This picture is further
supported by the recent LCAO calculation of Chancy
et al. , which was, however, concerned primarily
with the method involved, and was not used to ex-
tract the optical properties as is done in this work.
Our main interest here is not so much concerned
with the success of a particular computational
method as with the fact that a completely ab initio
calculation, without any a Priori knowledge of either
the energy bands or the experimental optical prop-
erties, gives results which agree very well with
experimental data. To elaborate on our terminol-
ogy, ab initio means here that a one-electron model
Hamiltonian is set up, using nonspherical Coulomb
potential and charge densities constructed by an
ad Roc superposition of the free-atom quantities and

employing the Slater exchange approximation. The
eigenvalue problem is then solved by a linear varia-
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tion procedure in a selected basis set. In principle,
the crystalline charge density and potential may be
obtained, and the entire process iterated to achieve
a self-consistent model.

After discussing the one-electron model Hamil-
tonian used in this calculation, we briefly review
the discrete variational method (DVM) as applied
to the energy-band problem. In Sec. IV, results are
presented for the application of the DVM to dia-
mond. General features of the energy-band struc-
ture are related to the structure observed in the
optical ref lectivity, and the bonding properties of
diamond are extracted from an analysis of the
eigenfunctions. The crystal charge density, as
calculated from the occupied orbitals, is next com-
pared with the density resulting from overlapping
carbon atoms. The relative sensitivity of the en-
ergy bands to details of the crystal potential is re-
vealed through a study of exchange and muffin-tin
averaging, which demonstrates the inadequacy of
the muffin-tin model for a quantitative ab initio
treatment of nonmetals and compounds with large
nonspherical terms in the potential. We then con-
sider the changes in band structure expected in a
self-consistent model, and discuss the calculation
of k-dependent oscillator strengths. The interband
density of states is related to the observed optical
ref lectivity and compared with the results of pseu-
dopotential calculations. In Sec. V, a discussion
is presented of the adequacy of the ab initio one-
electron treatment for this case, as contrasted with
that for an ionic system, and the relative merits of
this approach are compared with those of semi-
empirical methods.

II. ONE-ELECTRON MODEL

The successful application of the independent
particle approximation to crystalline solids has been
based on a plausible effective one-electron model
Hamiltonian. The difficulties of directly solving the
Hartree-Pock equations for the solid have been cir-
cumvented by the introduction of the free-electron
p local exchange approximation, which apparent-
ly constitutes a better approach to calculating one-
electron transitions than using the Hartree-Fock
eigenvalue s directly. The Hartree- Fock-Slater
(HFS) Hamiltonian can be written in Hartree's
atomic units as

where V,(r) represents the effective Coulomb po-
tential for an electron in the crystal and V'„(r) is
a local potential approximation to account for the
exchange-correlation effects on the electron of spin
s. A quite useful and commonly applied ad hoc
procedure for forming the effective Coulomb poten-
tial is that of superimposing free-atomic (or ionic)
Coulomb potentials from the atoms (or ions} on the

crystal lattice sites (with suitable summation-
truncation methods for point ion contributions).
We have

where the sum on i is over all atoms in the unit cell
defined by lattice vector 5„. This construction
technique will be referred to as the free-atom
superposition model. The atomic charge densities
are used in the same way to form the local crystal
charge density, and in the Slater p' ' exchange
approximation

where n is an exchange scaling parameter. ' For
the nonmagnetic solid, the total crystal charge
density p„ is related to the density of spin s via
px = 2px

This procedure is used to construct the effective
crystal potential used in the calculations repcrted
here. Further approximations, such as forming
the muffin-tin spherical average, are not necessary
for the computational technique used in this study.
In the muffin-tin model, the solutions inside each
sphere can be written in separable form, and the
radial solutions obtained by efficient numerical in-
tegration of the radial part of the Schrbdinger
equation, allowing exact solutions to the model
Hamiltonian within each region. The popular first-
principles APW and Green's-function (KKR} meth-
ods' derive their efficiency through this potential
model, which is an adequate representation of the
crystal potential in most metals. However, the
nonspherical terms for nonmetals and compounds
are not negligible and, as will be illustrated in this
work, render the muffin-tin model inadequate for
carrying out ab initio calculations of properties to
be used for quantitative comparison with experi-
ment. A further approximation often introduced to
facilitate calculation of matrix elements in the
superposition model is that of interchanging the
orders of the summation and one-third power op-
erations on the charge density in computing the
statistical exchange. ' Our studies on the potential
construction in diamond indicate that the resulting
potential differs nonuniformly from that constructed
according to Eq. (3). Except for its use as a first
step in a self-consistent calculation, summing
atomic exchange potentials can be expected to in-
troduce errors into the energy bands for crystals
with asymmetric charge density.

Much effort has been devoted recently to finding
methods best suited for treating the problems as-
sociated with the nonspherical terms in the first-
principles Hamiltonian. " '3 Considerable use ha, s
been made of various pseudopotential, OPW, and
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LCAO parametrization schemes"; however, our
interest is concentrated on the methods that can be
used in an ab initio sense. The KKR and APW
methods are specifically adapted to exploit the
muffin-tin form of the potential, and although the
influence of the nonspherical potential terms can be
studied as a perturbation, this is seldom carried
out due to computational difficulties. In the warped
muffin-tin adaptation of the APW method, the in-
teratomic nonspherical terms are treated by expan-
sion in a Fourier series. More complicated tech-
niques involve expanding the terms inside the
spheres in spherical harmonics"; however, this
modification drastically increases the basic com-
putation time and is usually used only at high sym-
metry points. The OPW method"'" is widely used
for treating crystalline compounds; however, the
procedure is not particularly advantageous for ap-
plications to compounds in which the valence elec-
trons occupy orbitals with maxima rather far inside
the atom, e.g. , the 3d electrons. Poor convergence
can also result for levels of symmetry not present
as core states. Another approach which is useful
for compounds, the LCAO method, ' is founded on
the hypothesis that much of the atomic character is
maintained in the solid. This method, based on
the linear variational formulation, is a convenient
and adequate technique for treating the energy-band
problem for covalent crystals such as diamond,
and forms our choice for the calculation described
in this paper.

H(k)C(k) = e(k)S(k)C(k),

where

y,(k, r) =M 'i e'"' u)(k, r), (8)

where M is the number of unit cells in the repeating
volume of the crystal. In the DVM, we make use
of the translational invariance of the Hamiltonian
and the functions u; to reduce the matrix elements
to averages over a single unit cell and evaluate
these numerically. For a potential term in the
Hamiltonian we have, for example,

Here the angular brackets denote a weighted sample
mean, &F& =g~ w~ F(r~), as described previously. '
This secular problem is solved by standard matrix
diagonalization procedures. We solve this set of
equations for each k of interest, and the resulting
set of diagonal elements of e(k), displayed as a
function of k, forms the energy-band structure of
the crystal. The DVM can be used directly to solve
the eigenva, lue equations, thereby avoiding the major
problem with the conventional variational proce-
dure —the evaluation of integral matrix elements
of the Hamiltonian for a general crystal potential.
Expressing the Bloch orbital in terms of transla-
tionally invariant functions u&, we have

III. DISCRETE VARIATIONAL METHOD

The DVM is based on a linear variational ap-
proach to the crystal energy-band problem. First,
we will briefly review the formulation of this proce-
dure and then illustrate the advantages that are ob-
tained with the DVM when an LCAO Bloch basis
set is used. In the linear variational procedure,
we seek eigenfunctions as linear combinations of
a predetermined basis set, which, for the energy
band problem, is composed of Bloch functions
(y&(k, r)j. We have the following:

(4)

The coefficients are determined by minimizing ex-
pectation values of the Hamiltonian, defined as
weighted discrete sums, with respect to variations
of the coefficients (C&&):

Requiring 8&;&/SC~, to vanish gives a set of N
simultaneous complex equations for the coefficients
in a basis set of N functions. In matrix form, the
problem is expressed as

where the sample points are confined to a single
unit cell, and w(r) is the weight function corre-
sponding to the particular point density function
used to generate the sample points.

The DVM can be used with a wide variety of basis
functions. To describe systems with tightly bound
electrons we may choose Bloch sums of atomiclike
functions (e.g. , Slater-type orbitals). In this case
we have

where

v=1
(lo)

a,(r) =x'y z"r e~",

with subscript j representing the orbital parameters
(I, m, n, P, P). Basis set parameters used in this
ca,lculation are given in Table I. This basis is quite
adequate for narrow-band covalent crystals, and
recent work ' shows that sufficient variational
freedom can be incorporated into such a basis to
approach a complete set over a reasonably wide

energy range for covalent crystals of light atoms.
Materials in which d bands play an important role
are also treated without difficulty; band structure
and related properties for cubic SiC and TiC will
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TABLE I. Atomic STO basis functions used to construct
Bloch orbitals on each carbon site.

direct (least-squares) fit to spherically symmetric
polynomials inside touching carbon atom spheres.
The potential over the volume outside the spheres
was fit to a constant, thus yieMing the expansion

2g
2px
2pg
2pg

x f ~ 4g8
= Vo, x outside carbon spheres

9

V(r)=g c,r' e ' ", r inside carbon spheres
1=1

!:I
X

I ~-2. 642r
yI8

2 -i. 4r

x
e-2. 642r

8

TABLE II. Least-squares coefficients for spherical
average po tential.

C(
C2

C3
C4
Cg

C6
Cy

C8
C9
Vp

—6.0016529
+ 2. 2022760
—2. 5019666
—2.0906299
-0.7672562
+0.3834775
+0.9946675
+0.7493132
—0.8279715
-0.8076969 a.u.

be presented in a subsequent article. The DVM is
particularly well suited for handling the difficulties
associated with the I CAO basis since the multi-
center integral problem is avoided. In this ap-
proach, the matrix elements are formed by evaluat-
ing the basis functions (y~(k, r)) directly over the
integration grid, without any further decomposition
into atomic constituents.

IV. RESULTS

A. Crystal Potential

One of the most attractive features of the DVM
is the facility it offers for using crystal potentials
of general. unrestricted form, e.g. , nonspherical
potential terms can be included in the Hamiltonian.
This is particularly important for diamond, in which
the highly directional bonding charge distribution
produces sizable nonspherical Coulomb and ex-
change potential terms. As an example of the great
'oversimplification of the muffin-tin model for such
potentials, the superposition construction proce-
dures described in Eqs. (2) and (3) were used to
generate a crystal potential which was then com-
pared with its muffin-tin average. The nonspherical
potential was averaged into muffin-tin form by a,
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FIG. 1. Comparison of the nonspherical crystal poten-
tial plotted along various crystallographic directions with
its muffin-tin average {dashed curve). With the origin at
one atom, the other atom occupies the position —2R~/N
(1, 1, 1) in the unit cell, where B~ denotes the muffin-tin
radius. Lattice constant a=6. 7406 a.u.

For reference, the coefficients c, are listed in
Table II. In Fig. 1 we present the crystal potential
in diamond (exchange & = 0.76) along various crys-
tallographic directions from one of the carbon
atoms, as generated by the superposition method,
and compare with the resulting muffin-tin average
potential. The magnitude of variations in the non-
spherical potential is about 1.0 Ry, from the bond
center in the unit cell to a point inverted through an
atom site. This oscillation comprises a 36% varia-
tion about the muffin-tin value, and the deviation of
the full potential at the bond center (noted R, in
Fig. 1) from the muffin-tin value exceeds 0. 6 Ry.
The energy-band structure is sufficiently sensitive
to this averaging to cause a 16%%uq reduction in the
direct band gap at the BriUouin-zone center com--
pared to the gap found with the complete potential.
Even more conclusive demonstration of the inad-
equacy of the muffin-tin model with regard to mean-
ingful calculations for diamond is found with the
behavior of the indirect band gap. This is one of
the most accurate experimentally determined fea-
tures for diamond and the calculated value is found
to be in excellent agreement when the full non-
spherical potential is used; however, in the muffin-
tin case the value is reduced by 30%%d.
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FTG. 2. Energy-band structure of diamond calculated using the DVM with Xo exchange scaling ~ =0.76. Not appearing
are the carbon core states at -—278. 6 eV.

B. Energy-Band Structure

The energy bands calculated with a full non-
spherical potential for assumed neutral carbon atom
configurations and an X value of exchange scaling
(&=0.76) is given in Fig. 2. In general, our cal-
culations show the material to be characterized by
a fairly broad set of valence bands composed of
carbon 2s, 2p orbitals, with a relatively narrow
(-10 eV} low-lying set of conduction bands com-
posed predominantly of antibonding combinations of
carbon 2s, 2P states with a slight, but significant,
admixture of carbon 3s, 3P orbitals. The 3d carbon
states contribute relatively little to this energy
range. Convergence characteristics of the calcula-
tion are discussed further in the Appendix.

The narrow conduction bands, composed of
atomiclike wave functions, are in marked distinction
to the free electronlike bands obtained in the NEPM
calculation, and this is certainly one significant

cause of the differences in the optical properties
calculated by these two methods. Another interest-
ing general feature of the band structure is the ex-
istence of a second band gap separating the lower
set of conduction bands from a set of higher-energy
excited levels. Transitions from the valence bands
to these higher states involve energies in excess
of 20 eV. However, this still overlaps the upper
part of the energy range for allowed transitions to
the lower-lying set of conduction bands; thus the
existence of the second gap would be difficult to
verify experimentally —there would be no second
threshold and the transition energies of interest are
large. The only well-established transition in dia-
mond seems to be that associated with the threshold
for indirect transitions, 5. 4V eV, ' between the zone
center and the conduction band minimum which is
found at (0. 78+ 0. 02, 0, 0) from neutron diffrac-
tion work. " Our calculations, using the full poten-
tial, give an energy separation of 5.40 eV between
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20 of Fig. 2 was used in all calculations of properties
discussed subsequently.

C. Wave Functions and Crystal Charge Density

12

E (ev)

20

FIG. 3. Experimental imaginary part of the complex
dielectric function for type-IIa diamond from the paper
of Roberts and Walker (Ref. 19). Positions of important
structure producing transitions derived from the band
structure of Fig. 2 are indicated.

the valence band maximum at I' and the conduction
band minimum at -(0.7, 0, 0). The nonspherical
terms are crucial to accurately calculating this
detail of the band structure.

The paper by Roberts and Walker" gives a good
summary of the development of the optical inves-
tigations of diamond. The main feature of the ex-
perimental optical ref lectivity is the existence of
a strong peak at about 12. 2 eV. An examination of
the band structure shows that agreement with this
observed peak in the structure is predicted originat-
ing from the singular critical transition X4-X& at
-12.5 eV and the transitions L3.-L3 and L3.-L& at
12.0 and 12. 5 eV, respectively. The growth of the
main peak appears to be associated with transitions
originating at the zone center (direct threshold
I'z,.-I'» at 6. 0 eV) and extending along A to the
critical points at L (12.0 and 12.5 eV) and along
Z(Zz-Z, ) to the K point transition, 12. 1 eV. Only
a detailed calculation of the imaginary part of the
dielectric function ez(~) would fix the position of
our main peak; however, results are presented in

Sec. IVE of a calculation of the energy-weighted in-
terband density of states, which relates to the ex-
perimentally determined optical properties. Qual-
itatively, it is of interest to note from the band
structure that the main peak in the experimental
e2(&) curve (Fig. 3) is bounded on the low-energy
side (12. 0 eV) by the transitions L~. L3, and transi--
tions between the upper valence and lower conduc-
tion bands Z~, Z, which are quite parallel away
from I'. On the high-energy side (12. 5 eV) the peak
is bounded by X4 —X, and L,, —I, In Sec. IV E,
we wil. l present a more quantitative comparison with
experiment and other works. The band structure

The well-known picture of the cohesive properties
of diamond o is based on the formation of strongly
bonding covalent orbitals in the crystal. From our
energy-band calculations, the wave functions are
easily reconstructed from the solution coefficient
matrices [Eq. (4)]. The occupied bonding crysta],
wave functions at the zone center for diamond are
plotted along a [111]line connecting nearest-neigh-
bor carbon sites in Figs. 4(a) and 4(b}: State I',
is a, low-lying ( —1.16 a. u. ) bonding combination of
carbon 2s Bloch orbitals, while the orbital for I"».
is one representative of the set of d-like bonding
combinations of carbon 2P Bloch states for this
triply degenerate level. The higher-energy p-like
I ], antibonding combination of carbon 2p Bloch or-
bitals is shown in Fig. 4(c) and is distinguished
from the I'». state by having a node midway along
the carbon-carbon bond.

The occupied bonding states give a charge in-
crease in the bond region in excess of that obtained
by simply superimposing free-atom charge den-
sities. The charge density calculated from the
crystal eigenfunctions is shown in Fig. 5(a). This
crystal density is calculated as

(13)

where f sums over occupied bands, go(k) is an ap-
propriate 0-integration weight function for summing
k over the Brillouin zone, and Qi, (k, r}j represents
the set of eigenfunctions of the Bloch Hamiltonian.
The amount of charge transfer in the crystal pre-
dicted by our calculations is given in Fig. 5(b),
where we compare the crystal charge density p„
with the superimposed density of overlapping neutral
carbon atoms pan in the difference density p„—p».
The atomic density is that obtained from a version
of Herman and Skillman's HFS program for free-
atom calculations. ' Charge is built up in the near-
est-neighbor interatomic region by depleting charge
in the vol.ume away from the bond region. This
charge density increase is a consequence of the
formation of the bonding I'& and I"~,. states which
are hybridized along the bond. There is also a
slight contraction of the carbon atom (not shown),
which becomes a bit difficult to distinguish from the
contribution to the difference density due to differ-
ent basis sets being used in the crystal and atomic
calculations. The relatively small magnitude of
the difference density p„- p» in the unit cell in-
dicates that there will be no great changes in the
energy-band structure obtained from a first itera-
tion to self-consistency. The crystal charge den-
sity calculated with 32 wave vectors in the Brillouin
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zone changes only slightly upon extending the k
integration to include 256 wave vectors.
D. Exchange Scaling, Muffin-Tin Effects, and Self-Consistency

A previous application of the DVM to the calcula-

FIG. 4. Crystal wave functions at point I" in the Bril-
louin zone. Occupied orbitals of g-like (I'&) and d-like
(I'». ) symmetry appear in (a) and (b), respectively, while

a p-like (I &&) excited wave function is plotted in (c).

tion of the band structure of graphite, ' which is
typically considered a covalent crystal, has revealed
relative stability (within uniform shifts) of the over-
all band structure with respect to slight modifica-
tions of the crystal potential through scaling of the
Slater p' exchange approximation. An application
of the DVM to a calculation of the energy bands of
the ionic system LiF (Ref. 22), however, revealed
that the band structure for that system was very
sensitive to variations in the potential. For ex-
ample, the direct band gap at I' varied by more than
35% for n in a range between 0. 67 and l. 0, and
this nonuniform band shift was explained in terms
of differences in the character of the wave functions
for the valence and conduction bands. In Fig. 6,
some results of a similar study of exchange sen-
sitivIty in diamond are summarized by illustrating
the variation of the direct and indirect transition
thresholds and the valence bandwidth as functions
of & (between Kohn-Sham ' and full Slater values).
From these variations (less than 6% and 4% for the
gaps and valence bandwidth, respectively) the in-
sensitivity of the band structure, with respect to
exchange scaling, is evident. This behavior istyp-
ical of the covalent crystals treated hitherto, but
contrasts distinctly with that observed in the ionic
crystal LiF. Whereas in LiF the orbitals defining
the band gap are characterized by compact valence
states and diffuse conduction states, the diamond
wave functions defining the direct gap at I' are all
well described by Bloch sums of carbon 2P orbitals,
whose maxima occupy regions of about the same
magnitude charge density. Thus, scaling the ex-
change part of the energy matrix elements has
nearly the same effect on the valence and conduc-
tion band eigenvalues. In LiF, however, the con-
duction bands are so free-electron-like that they are
not changed as much as the localized P-like valence
band states; thus the band gap 'in LiF varies by
more than 5 eV for the same & scaling shown in
Fig. 6 (wherein the change is 0. 35 eV). It is in-
teresting to note from Fig. 6 that the indirect band

gap for the X exchange~is in somewhat better
agreement with the experimental value of 5.47 eV
than that for full Slater exchange. From the results
of this study, it is apparent that the effects of scal-
ing the statistical exchange approximation are fairly
small and play a minor role in determining the
electronic structure and optical properties of dia-
mond. On the other hand, the symmetry of the po-
tential is a physical feature which is quite important
in differentiating between the valence and conduction
band states in covalent crystals, since the relevant
wave functions generally belong to different sym-
metry species. This is demonstrated quite vividly
in the case of diamond, where the direct band gap
is reduced by -16k when nonspherical potential
terms are deleted from the Hamiltonian. Simi-
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F&6. 5. (a) Crystal charge density p„calculated from the occupied Bloch orbitals. (b) Charge transfer p„- p&D along
the (1, 1, 1) bond; pso is the superimposed free-atom density.

larly, the indirect gap is reduced by about 3(Pp to
a value (3.8 eV) which falls below the scale of Fig.
6. Thus, while ab initio computations within the
muffin-tin model can be useful for obtaining the
gross qualitative features of the energy bands for
compounds characterized by large nonspherical po-
tentials, a quantitative comparison with experiment
can be expected to reveal sizable discrepancies.
These discrepancies can be minimized by taking the
constant potential term Vo as an adjustable param-
eter~4; however, this scheme is far less versatile
for data fitting than many other empirical methods,

e.g. , pseudopotential and parametrized tight-bind-
ing schemes. Our interest lies primarily in de-
veloping an ab initio approach; in this sense the use
of an exchange scaling parameter is considered a
temporary expedient.

The agreement with experiment of the calculated
indirect transition threshold that is obtained with
the full crystal potential defined by the atomic
superposition model affords another indication of
the extent to which crystalline solids maintain the
physical characteristics of the constituent atoms.
The extent to which a self-consistent model would
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FIG. 6. Exchange variation of threshold band gaps and
valence bandwidth. The illustrated gaps define the direct
and indirect transition thresholds; I l —I'». defines the
valence bandwidth.

give different results depends, of course, upon our
initial choice of potential. In systems with compet-
ing atomic configurations, for example 3d" "4s",
self-consistency effects are doubtlessly quite im-
portant. In carbon, the model potentials based on
s~P~ or sP configurations are not greatly different,
and we estimate that, aside from uniform shifts,
the level intervals may change by a few percent,
i.e. , of the same order as the choice of exchange
parameter. This has been our experience in self-
consistent molecular studies of simple hydrocar-
bons. A study is planned to see whether self-con-
sistent bands merely lead to a slightly different
"optimized exchange parameter, " or whether sig-
nificant differences arise.

2eh 1
ea(R) = p

( }3Jt
dk f;,(k)

E, , (k)

(18}

As a preliminary to accurate calculation of the
dielectric function, it is useful to consider sim-
plified forms of E(I. (18); for purposes of compari-
son with previous work a "constant matrix element"
approximation is convenient. We have imposed the
approximation that the interband oscillator strengths

f;, (k) ()(:
I
( k

I p I
k)

I
/Ey((k)

do not vary with respect to wave vectors. In the
histogram representation, we obtain the interband
density of states

g;(E) = — Q &;$;),
i,=l

where b, , (k,) is unity if e, (k,) is within an interval
hE about E, zero otherwise, and the (k, 3 are the
sampling vectors. For our final calculations, we
used ~E=0.01 a. u. and Nwa, s tested in the range
of 10000 to 50000. In Fig. 7 we plot the total band
density of states (in states/a, u. /cell), D(E)
=

g& g&(E}, in the energy range —1.2 to 0. 2 a. u.
To compare with the experimental optical prop-

erties of diamond, we have calculated the energy-
weighted interband joint density of states, to which
et((d) is proportional through the average interband
strengths f;;. The imaginary part of the complex
dielectric function et(&) is given by 6

E. Optical Properties
d, ~(E)=, fdtd(E;, tk) —E) (20)

A least-squares fit to the valence and conduction
bands was generated from the energy-band data
calculated at 45 inequivalent wave vectors in the
Brillouin zone. The fitting functions were sym-
metrized sums of plane waves, i.e. ,

fl„ (14)

where the lattice vectors (R„)' comprise a set of
vectors into which the sth transforms under cubic
operations. The corresponding energy expression

s=1

is a Fourier representation of the energy in the jth
band which has the proper symmetry in the Bril-
louin zone. In this work, we typically used E= 25.
Through irrational vector sampl. ing ' in the Bril.-
louin zone, this fit of the bands was used to form
histogram representations of the density of states
in each band. We have

in exactly the same way as for the ordinary density
of states, except that we sample the energy differ-
ences E,, (k) = E;(k) —E;(k). We then form the (Iuan-
tities I„(E)/E, which determine the imaginary part
of the complex dielectric function approximated by

~,(~)=& g f, ,I, ,(E)/E . (21)

The densities f„(E}/Ehave been obtained for the
16 valence-conduction band pairs which contribute
to the structure of e2(&) below -20 eV. Preliminary
studies of the f(& indicate that 4-5 transitions dom-
inate the contributions to the structure of ez(~)
from the direct threshold up to the neighborhood
of the main peak in ea((d) at about 12 eV. At higher
energies, contributions from other band pairs be-
come important, and the validity of the constant
matrix element approximation becomes particularly
questionable. A detailed study of the quantities
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FIG. 7. Density of states calcu-
lated from a least-squares repre-
sentation of the energy-band struc-
ture given in Fig. 2.
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f„$}is in progr. ess; for the present we give a
more qualitative discussion of structure in the ex-
perimental data in terms of interband transitions
between bands 4 and 5. In Fig. 8 we present re-
sults of a calculation of I~(E)/E using 50000 wave
vectors with an energy increment of 0.01 a. u. The
general shape of this plot is very similar to the
experimental e, (&) curve of Roberts and Walker"
for type-IIa diamond reproduced in Fig. 3. From
our calculations, a strong peak occurs at 11.8+ 0.3
eV and there appears to be additional structure be-
tween 7. 1 and 8.4 eV. Zone-center 4-5 transitions
mark the direct threshold at about 6.0 eV. The
excited level ordering at I" for this calculation (I"»
below I'~.) agrees with that of other first-principles
calculations but differs from that determined in the
pseudopotential model. An important consequence
of the lowering of I'~. below I'„ in the pseudopoten-
tial work is a related lowering of L~. below L3,
while state L, is shifted to high energy. Hemstreet
et al. find a resulting M, -type critical point transi-
tion L~.-Lz. producing a shoulder in ez(&) at 8. 27
eV while we find E, ,(L) = 11.8 eV. We find that the
conduction band L3 and L, levels lie very close to
each other and determine the lowest-energy L-point
transitions, which, being critical-point M, -type
excitations, will contribute strongly to the main
peak in e~(~). On the other hand, I~. lies some
19.5 eV above L, There is low-energy structure
in the experimental ea(&) at 7. 3 and 7. 8 eV; our
calculations place a shoulder in I4, (E)/E at about
7.4 eV with some indications of weak structure
coming at about 7.6 and 8.4 eV from the behavior
of the bands near F. The position of the main peak

in I4, (E)/E is determined to be 11.8 eV compared
to the 12.2-eV observed peak in e, (&) for type-IIa
diamond which the theoretical perfect crystal model
most closely approximates. Roberts and Walker
also quote a peak in e, (&) of 12.0 eV for type-I
diamond, with which the results of the NEPM are
compared; however, we believe that the data for
type IIa is more appropriate for the model crystal.

The predominant contributors to the main peak
in ez(&) are predicted from our calculation to be the
near-degenerate critical L-point transitions L3 Lf,
I, -L„as well as the X,-X„K&-E3, and Z~-Z3
transitions. Although the shape of the theoretically
calculated I4, (E)/E in the high-energy region agrees
very well with the experimental dielectric function,
there will be significant contributions to the theo-
retical ez(&) coming from 3-5 and 4-6 transitions
in this range. The yeaks which are found in the
NEPM calculated ez(&) at 13.2 and 14.4 eV are a
consequence of the lomering of the level 1"~. below
Fg5, Our bands do not display the characteristics
that will result in this structure, nor are these
peaks experimentally observed.

Concerning the temperature-dependent weak peak
at 7.8 eV observed in the experimental optical
data, ' we observe a change in slope of the inter-
band density of states at 7.5+ 0. 2 eV which appears
to be due to critical points in the joint density .

superimposed upon nonsingular contributions. Al-
though Hemstreet et al. tentatively identify this peak
with the critical L,.-L3, transition, their calculated
energy is 8.27 eV. Further refinements of the
work presented here will involve carrying the cal-
culation to self-consistency and improving our ab
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FIG. 8. Energy-weighted interband
density of states for transitions be-
tween the highest valence and lowest
conduction bands, as computed from
a least-squares fit to the energy-
band structure. This is to be com-
pared with the experimental e2(~) curve
of Roberts and Walker given in Fig.
3.
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initio theoretically derived approximation to ez(&)
by explicitly calculating the k dependence of the
oscillator strengths f,&(k). Indications are that the
contributions of additional interband transitions will
shift the main peak of the e2(~) curve derived from
the 4-5 transitions into closer agreement with that
of the experimental e2(~). In particular, 4-6 tran-
sitions in the vicinity of the critical-point L,.-L,
transition at 12.5 eV will contribute significantly.

V. SUMMARY AND DISCUSSION

From the results of this calculation, it is evident
that the ab initio variational approach to the energy-
band problem for a covalent crystal works very
well in the case of diamond, as in a previous ap-
plication to graphite. The basic principles of the
procedure involve constructing a full nonspherical
crystal potential by superimposing free-atom charge
densities and potentials and using the X exchange
approximation, but without the approximation of
spherical averaging. There are no difficulties in
utilizing the potential in this form with the DVM,

which again proves to be a rapidly convergent linear
variational computation scheme. The quantitative
aspects of the electronic band structure are rather
insensitive to exchange scaling, with marginally
better results in the one-electron properties for the
X choice of n. On the other hand, the muffin-tin
model is only qualitatively valid, leading to results
which differ significantly from those obtained in
eluding the nonspherical terms in the potential.
From a comparison of the calculated physical prop-
erties with experiment, it appears that the relative
magnitude of error introduced through muffin-tin
averaging is large compared with the deficiencies
inherent in the full one-electron model Hamiltonian
itself. Vfhile calculations carried out in the muffin-
tin model for covalent compounds can be used to
provide the gross features of the energy bands, for
a quantitative comparison with experiment, a full
potential of the type discussed here should be used.
From a comparison of the relative importance of
the effects of spherical averaging and exchange
scaling, we find the electronic structure to be much
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more sensitive to the averaging than exchange scal-
ing. This characteristic, with respect to exchange,
contrasts with that of ionic systems and is under-
stood in terms of the symmetry and spatial prop-
erties of the crystal wave functions. It is of inter-
est to note that the X statistical exchange works
well in the covalent systems, indicating that the
correlation effects which have been omitted in the
statistical exchange approximation largely cancel
out in calculating one-electron transition energies.

The methods employed in this work to determine
the interband density of states appear adequate to
interpret the optical ref lectivity within the conven-
tional band picture for diamond. The zone-center
excited I'&, energy is found to lie lower than the I'~.
level, in contrast to the results of recent pseudo-
potential studies. ~'3 In addition to the X-point
transition X,-X» the L-point transitions L,.-L, and

L,.-L, are found to be predominant contributors to
the main peak in the ref lectivity. We find the

X,-X, energy to be -12.5 eV, while the critical L-
point transitions occur at 12.0 and 12. 5 eV.

The use of an LCAO basis within the DVM has
been found to be adequate for converging the upper
valence and lower conduction bands in diamond. A

study of the spatial properties of the wave functions
pertinent to these bands reveals that the Bloch
states are quite localized near each nucleus. Thus
plane-wave expansions are expected to be poorly
convergent, perhaps explaining some of the prob-
lems encountered in OPW treatments of this crys-
tal. The narrow bandwidth found for the lower set
of conduction bands is in striking contrast to the
free-electron-like bands obtained in this energy
range in the pseudopotential calculations. 2'3 Further
calculations are planned in order to obtain the
imaginary part of the dielectric function more ac-
curately so that a more exact comparison with ex-
periment can be made. Progress is being made
towards self-consistency in the DVM and further
calculations will be carried out in this scheme.
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APPENDIX: CONVERGENCE PROPERTIES

To assure the accuracy of our calculations, with

respect to the discrete point sampl. ing, our final
results were obtained with -1300 integration points
in the unit cell and a total of 26 Bloch basis func-
tions, as given in Table I. In the energy range
shown in the band structure of Fig. 2, the net un-
certainty in energy is ascertained to be less than

TABLE III. Comparison of the energy eigenvalues of
diamond at high symmetry points in the Brillouin zone.
Energies (in eV) are measured with respect to the bottom
of the valence band.

State
lg
I'25'
I'i5

L2
Lg
L3i
Lg
L3
Xg

X4
X,
X4

DVM
0.0

19.6
25. 6
30.4
5. 1
7.9

17.2
27. 8
28. 5
8. 0

14.3
25. 9
33.9

APW
0. 0

19.6
25. 4
30.2
5. 2
8.0

17.2
27. 5
28. 2
8.1

14.4
25. 5
33.8

TBb
0.0

19.2
24. 9
30.2
5.0
7.5

16.7
27. 6
28. 2
7.8

13.7
26. 2
33.3

~Reference 24.
Tight binding (Ref. 4).

0.4 eV, and for most levels the accuracy is much
better.

To determine the degree of convergence of our
band structure, we performed a muffin-tin calcula-
tion using the potential given by Keown. ~4 In Table
III, we compare eigenvalues obtained from our cal-
culation using 26 basis functions with the corre-
sponding levels given by the first-principles APW
calculation. We have also included the tight-bind-
ing results of Chancy et a/. for their calculation
with the same potential using 20 basis functions.
The energies of the occupied states from the DVM
calculation are converged to within 0. 1 eV, assum-
ing full convergence has been obtained in the APW
calculation, while there is less accuracy in the
conduction states. The more pronounced incom-
plete convergence of the tight-binding levels' given
in the third column is probably a consequence of the
reduced basis used in that computation.

The outstanding convergence problem common to
the linear variational techniques is that concerning
the finite basis set. In the tight-binding work of
Chancy et al. ,

' an error estimate of 0. 04 Ry due
to basis truncation was reduced to 0. 02 Ry by
changing to a Gaussian basis, indicating that the
restr iction of atomic functions to Hartree- Fock
form is an unnecessary one which restricts varia-
tional freedom for band-structure convergence.
This may also explain the significantly larger dis-
crepancies in their results for the indirect band

gap, although their potential differed somewhat
from that used here. In our calculation it was found
that the carbon 3s, 3P states contributed signifi-
cantly to the eigenfunctions; however, the effect
of including 3d orbitals in the basis was relatively
small. It should be pointed out that the constituent
STO functions were not combined into the form of



PAINTER, E LLIS, AND LUBINSKY

carbon free-atom Hartree-Pock orbitals, but were
allowed to enter individually into the secular equa-
tion. By choosing the core STO's from existing
optimized atomic HF minimal basis sets and sup-
plementing with excited-state functions chosen to
achieve desired bonding characteristics, we allow
for relaxation effects of orbital expansion or con-
traction due to crystal formation. Since these
atomic STO basis orbitals enter into the computa-
tion as nodeless functions, the formation of the
nodal character of the crystal states is determined

entirely by solution of the crystal secular equation.
Thus, we allow variational freedom for the pos-
sibility of the existence of crystal states of various
nodal structure of given symmetry (e. g. , SP as
well as 2P); the energy at which such Bloch eigen-
functions are formed is determined from solution
of the secular equation. In this procedure, then,
we obtain N eigenfunctions when we use N Bloch
basis states formed of STO's, including all the core
states as well as the valence and lower conduction
states.

Research sponsored by the U. S. Atomic Energy Com-
mission under contract with the Union Carbide Corpora-
tion, by the Air Force Office of Scientific Research, and

by the Advanced Research Projects Agency through the
Northwes tern University Materials Research Center.

TAlfred P. Sloan Research Fellow.
'F. Herman, R. L. Kortum, and C. D. Kuglin, Intern.

J. Quantum Chem. 1S, 533 (1967). This article gives a
good brief review of the development of band-theory treat-
ments and experimental studies on diamond.

2L. Saravia and D. Brust, Phys. Rev. '70, 683 (1968).
3L. A. Hemstreet, Jr. , C. Y. Fong, and M. L. Cohen,

Phys. Rev. B 2, 2054 (1970).
R. C. Chancy, C. C. Lin, and E. E. Lafon, Phys.

Rev. B 2, 459 (1970).
5G. S. Painter and D. E. Ellis, Phys. Rev. B 1, 4747

(1970).
J. C. Slater, Phys. Bev. 81, 385 (1951).
D. E. Ellis and G. S. Painter, Phys. Bev. B 2, 2887

(1970).
J. C. Slater, Solid State and Molecular Theory Group

Semiannual Progress Report No. 71, Massachusetts In-
stitute of Technology, 1969 (unpublished); J. C. Slater
and J. H. Wood, Los Alamos Scientific Laboratory Report
LA-DC-12001, 1970 (unpublished).

Methods in Computationa/ Physics, edited by B. Adler,
S. Fernbach, and M. Rotenberg (Academic, New York,
1968), Vol. 8; Computationa/ Methods in Band Theory,
edited by P. M. Marcus, J. F. Janak, and A. R. Williams
(Plenum, New York, 1971). These two references form
an updated review of energy-band methods.

' D. J. Stukel, R. N. Euwema, T. C. Collins, F. Her-
man, and B. L. Kortum, Phys. Rev. 179, 740 (1969).

"P. D. DeCicco, Phys. Bev. 153, 931 (1967).
' L. F. Mattheiss, Phys. Rev. 181, 987 (1969).

W. E. Rudge, Phys. Rev. 181, 1024 (1969).
'4J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498

(1954); G. Dresselhaus and M. S. Dresselhaus, ibid.
160, 649 (1967).

'5C. Herring, Phys. Rev. ~57 1169 (1940); T. O. Wood-
ruff, Solid State Phys. 4, 367 (1957), and references
therein.

~6F. Bloch, Z. Physik 52, 555 (1928).
"C. D. Clark, P. J. Dean, and P. V. Harris, Proc.

Roy. Soc. (London) A277, 312 (1964).
' P. J. Dean and E. C. Lightowlers, Phys. Rev. 140,

A352 (1965); E. O. Kane, ibid. 146, 558 (1966).
'SR. A. Roberts and W. C. Walker, Phys. Rev. 161,

730 (1967).
L. A. Schmid, Phys. Rev. 92, 1373 (1953).
F. Herman and S. Skillman, Atomic Strgctuye Calcu-

lations (Prentice-Hall, Englewood Cliffs, N. J. , 1963).
G. S. Painter, Intern. J.Quantum Chem. (to bepublished).

23R. Gaspar, Acta Phys. Hung. 3, 263 {1954); W. Kohn
and L. J. Sham, Phys. Bev. 140, A1133 (1965).

24R. Keown, Phys. Rev. 150, 568 {1966).
5C. B. Haselgrove, Math. Comput. 15, 323 (1961);

H. Conroy, J. Chem. Phys. 47, 5307 (1967); D. E. Ellis,
Intern. J. Quantum Chem. 2, 35 (1968).

H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786
{1959).


