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The far-infrared optical constants of KI were studied in the vicinity of the TO(k=0) phonon
frequency v0= 101 cm (in wave-number units), Experimental values of the optical constants
at T= 300 K were determined from transmission and reflection measurements employing a
Michelson interferometer operated in the asymmetric mode. Theoretical values were calcu-
lated from a theory which utilizes thermodynamic Green's functions to include the effects of
the interaction of the optically active phonon with other phonons because of cubic anharmonicity.
Phonon-dispersion data for the calculation were generated from a shell model, with param-
eters selected by Dolling to give the phonon frequencies as determined from neutron-diffrac-
tion experiments. Good agreement for the optical constants in the region approximately 20-
175 cm was obtained by using a nearest-neighbor central-force model and adjusting the third
derivative of the K'-I bond potential to 4"'(ro) = —3.6&10 erg/cm .

I. INTRODUCTION

The dominant interaction of infrared radiation
in cubic ionic diatomic crystals is with the TO lat-
tice-vibrational mode of the same wave vector k
as the incident electromagnetic wave and with

polarization in the electric field direction. This
interaction results in the fundamental absorption
band or reststrahl band, characterized by very
high absorption and reflection in the neighborhood of
the TO(k = 0) phonon frequency or "eigenfrequency"

vo ("frequency" here measured in wave-number
units cm '). To account for the detailed shape of
the band, one must consider the dampening effect
of the anharmonic parts of the interionic forces on

the optically active vibrational mode. Theoretical
studies of this effect have been carried out by

Cowley, ' Gurevich and Ipatova, and Wallis, Ipatova,
and Maradudin. s These authors, using theromo-
dynamic Green's-function techniques, have derived
expressions for the lattice contribution to the com-
plex dielectric susceptibility. Their expressions
differ from that calculated on the basis of a purely
harmonic model in that a complex self-energy term
is added to the denominator. This term expresses
the effect of three- and four-phonon interactions due

to cubic and quartic terms in the anharmonic po-
tential, respectively.

In view of the theoretical effort mentioned above,
the availability of phonon-dispersion data for many
crystals of the NaCl structure type, and recent ad-
vances in far-infrared spectroscopy, we have un-
dertaken detailed measurements of the optical con-
stants n and k, the index of refraction and the ex-
tinction coefficient, respectively, of some of these
crystals in the neighborhood of their eigenfrequen-
cies. The results for KCl and KBr have already
been published. ' In this paper we present the ex-
perimental results for IG at T= 300'K, along with
a calculation of the optical constants including only
the effects of cubic anharmonicity. KI Was chosen
because of the availability of phonon-dispersion
data based on actual neutron-diffraction experi-
ments' at 77 K and because its absorption band
falls in the optimum region for employment of the
experimental technique used in this work. The
room-temperature eigenfrequency of KI is vo= 101
cm '.

The optical constants were determined from
transmission and reflection experiments using a
Michelson interferometer operated in the asym-
metric mode, as described by Bell and by Russell
and Bell. In the asymmetric mode the sample is
placed in one of the arms of the interferometer.
With the sample removed from its position, an in-
terferogram, or detector signal as a function of



FAB-INFBABED OPTICAL CONSTANTS OF KI

optical-path difference between the arms, is taken.
This interferogram is symmetric about the "white-

light" peak which occurs at zero optical-path differ-
ence. With the sample in place the interferogram
becomes asymmetric. By comparing the complex
Fourier transforms of the sample and "background"
interferograms, the relative amplitude and phase
of each spectral component as affected by the sam-
ple can be determined. From the amplitude and
phase the real and imaginary parts of the complex
index of refraction 8= n+ ik can be computed. The
technique thus has an advantage over conventional
pomer spectroscopy, mhere only the square of the
relative amplitude is measured and dispersion re-
lations must be used to obtain phase information.
The technique is limited to longer mavelengths,
however, owing to the sensitivity, particularly of
the amplitude, to various possible deviations from
ideal sample and instrument geometry. In this
work reliable phase information could be taken at
frequencies as high as V00 cm, mhile the high-
frequency limit for reliable amplitude information
mas considerably lower, depending upon the sam-
ple used. The lom-frequency bmit, approximately
20 cm, mas set by the spectral distribution of
emission from the high-pressure Hg are used as
a source of radiation.

In the calculation presented here, the theoretical
development of Comley mas follomed closely. On
the basis of a quasiharmonic approximation, where
the Hamiltonian is renormalized at each tempera-
ture, Comley derives an expression for the dielec-
tric susceptibility in terms of a thermodynamic
Green's function. The renormalized frequencies
for any temperature T & 0 correspond to the peaks
in the infrared or inelastic neutron scattering spec-
tra. Using the shell model of Dolling et al. and
readjusting certain force constants to account for
the temperature difference between that of their
experiment and that of ours, we have computed the
frequencies and polarizations of phonons for k val-
ues at the 1000 points in the Brillouin zone gen-
erated from the 48 points in an irreducible element
of the zone originally chosen by Kellerman. With
this eigendata sample, me have calculated the self-
energy and the optical constants. Only the anhar-
monieity in the nearest-neighbor bonds was in-
cluded. Four parameters mere adjusted to give
agreement with experiment. They are the limiting
dielectric constants &(0) and c(~), the eigenfre-
quency vo, and the third derivative mith respect to
the nearest-neighbor separation distance x of the
K -I bond potential 4 (x), evaluated at the equilib-
rium point + vo

II. EXPERIMENTAL

To determine the optical constants of KI, trans-
mission experiments mere performed on lamellar

samples as thin as 100 pm, while reQection experi-
ments were performed on much thicker (approxi-
mately lcm) samples having only one lapped and
pobshed surface. The reQection samples were
prepared as described by Johnson and Bell.
Transmission samples with optically usable circu-
lar regions as large as —,

' in. in diameter mere pre-
pared in the following manner. After lapping and
polishing one surface of a relatively thick cylin-
drical piece of crystalline KI obtained from the
Harsham Chemical Company, the prepared surface
mas fastened mith an Epoxy cement to a brass plate
with a &-in. -diameter hole at the center. The
brass plate was then secured with screms to the
inner-end surface of a tmo-part cylindrical sample
holder for lapping of the other side of the sample.
The outer-end surface of the sample holder then
served as an adjustable reference plane determin-
ing the thickness of the sample. During this op-
eration the hole mas filled by a brass disk of pre-
cisely the thickness of the brass plate for support
of the region of the sample to be used for optical
transmission. After preparation the sample mas
retained on the brass plate and could be handled
easily mithout danger of cracking. As discussed
below, it is important that the spread in thickness
across the face of the sample be minimized for use
in amplitude spectroscopy. Although care mas
taken to keep the surfaces parallel, variations in
thickness of a fem p, m mere difficult to avoid.

Although reflection measurements alone can be
used in principle to determine the optical constants,
practical difficulties in placement of the sample
for reflection can cause an error in the phase. '
On the other hand, the thinnest KI transmission
samples me mere able to prepare had an opaque
region from approximately 90 to 160 cm (see
Fig. 1). Using the values of the optical constants
measured in transmission in the wings of the ab-
sorption region, the uncertainty in the absolute
phase in the reQection measurements mas re-
moved. Thus the reQection measurements could
be used in the region opaque to transmission. Am-
plitude spectroscopy mas also used to advantage
in approaching the eigenfrequency in transmission.
That is, since the detector responds to amplitude
rather than power reduction, the equivalent ab-
sorption coefficient measurement by power spec-
troscopy mould require a sample half as thick.

To employ digital techniques in computation of
the Fourier transforms of the interferograms, de-
tector power P(x) was measured for a finite num-
ber of evenly spaced values of the optical path x.
For an optical-path increment &x, the maximum
frequency which can be included in the spectrum
for an unambiguous Fourier transform is v ~
= (2&x) . The sampling interval X, a finite mul-
tiple of &x, determines the resolution hv = 2/Xs.
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Although &x and X for background and sample in-
terferograms were chosen to be identical, the cen-
ter of the measuring interval for the sample in-
terferogram was sometimes shifted forward by an
optical-path length L with respect to that of the
background interferogram, as discussed below.

The basic relationship between the complex Fou-

rier transform p, of the background interferogram
and that of the sample interferogram Pz (the fre-
quency dependence is implicit) is6

P2=8'Pa ~

(2)

where r is the complex amplitude ref lectivity of
the sample, f"= (l —n)/(l n) +For tran. smission,
where the background interferogram is taken with
the sample simply removed,

-2efub
g, —.e

~ 2y ~ & 2 l 2&i vb f (2 l+1 )6-1 ]
1=0

(3)

Here t is the complex amplitude transmittance and

b is the sample thickness. Th function g also
may contain a factor e '", where L is the arbi-
trary optical-path shift chosen to "center" the
sample interferogram in the case of transmission,

where g =ye'~ is the Fourier transform of the im-
pulse response function of the sample. This de-
pends upon the geometry of the sample and the mode
of measurement. For reflection from a single
surface, where the background interferogram is
taken with a mirror in place of the sample,

or an unwanted and unpredictable value of the order
of a few pm due to errors in mirror-sample in-
terchangeability in the case of reflection. Equa-
tion (3) for transmission is in the form of a series
of partial waves, the higher orders of which are
the familiar channeled spectrum due to multiple
reflections between the surfaces. The interfero-
gram for each term is then roughly an "echo" of
the background interferogram, the l th echo being
displaced an optical-path distance b[(2l+ l)n —l]
from the center of the background interferogram
(with L = 0). Owing to the finite sampling interval
X, the higher orders beyond some value l will not
be included in the measured sample interferogram,
so that the series (3) can be terminated at l = l „.
For the present values of b and n and the resolution
br=5 cm ', l was never greater than 2.

Since the detector in the asymmetric interferom-
eter responds to the relative amplitude of radiation
integrated across the face of a transmission sam-
ple, a variation in thickness across this face causes
a variation in the phase, resulting in a reduction in
the integrated amplitude. For a given frequency
v, the effect will be serious for order l provided
nb &(v[(2l+ l)n —l]) ', where nb is the average
spread in thickness. We corrected for this effect
using the correction factor~

sin(vvnb[(2l+ l)n —l]]
vvnb[(2l+ l)ii —l]

for each term in (3). The parameter nb was de-
termined for each sample from the decrease in
channeled spectrum amplitude with frequency in
the high-frequency region of low absorption. This
4b was then used in the computation of n at lower
frequencies.
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FIG. 2. Power reflectance g„and the phase P„aver-
aged from measurements on two polished samples of KI.

Since (3) cannot be solved explicitly for 8 in
terms of g„a spectral point-by-point iterative
procedure was developed for a computer calcula-
tion. The complex index A was evaluated at each
point from the value of the argument of the expo-
nential in the l= 0 term, this argument being com-
puted by using trial values of A in the remaining
parts dependent upon n. Since the imaginary part
of the argument (the phase) is only defined modulo
2m, the calculation for the initial point in a given
spectral interval was chosen to give the most rea-
sonable value of n, while the phase cycle for suc-
ceeding points was chosen to assure continuity of n.

In the absence of other methods for determining
the average thickness of our very fragile samples
to the desired accuracy, we used the known index
values in the region approximately 340-630 cm '
to determine the thickness bp for each sample,
which would give these index values in this region
by our technique. Figure 1 shows the amplitude
transmittance g, and phase P, for a sample for
which bp=119 2+0. 5 p, m and &b=3. 0+1.0 pm.
The presence of channeled spectrum out to 400 cm ~

is indicative of a relatively high-quality sample.
Note that the channeled spectrum in the phase func-
tion is too small to be seen on the scale of Fig. 1.

Figure 2 shows the power reflectance ga (ob-
tained by squaring our amplitude ref lectivity val-
ues) and the phase g„averaged from several mea-
surements on two reflection samples. Figure 3
shows the very low reflectance values in greater
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FIG. 3. Power reflectance g„of KI in the region of very
low reflectance.

detail. The mirror -sample optical-path difference
was evaluated using the optical constants deter-
mined in transmission at v=85 cm . It is signif-
icant to note that the Kramers-Kronig analysis of
Hadni et al. based on power spectroscopic mea-11

surements with resolution apparently at least as
great as that used here failed to reveal any of the
structure shown at the phase peak in Fig. 2. The
power reflectance here shows no definite structure
in the region of the very noticeable structure in
the phase near 155 cm, indicating that higher ac-
curacy would be needed to obtain this structure
from the power reflectance alone.

In Fig. 4 we summarize the results of deter-
mination of the optical constants of KI from several
transmission and reflection experiments. The
asymmetric technique was used for all values ex-
cept the values of k in the region v & 190 cm ',
where a conventional power transmission experi-
ment was carried out on a 700- p.m-thick sample.
This was done because of unreliable amplitude
data for a sample this thick at the higher frequen-
cies. Using the linear dependence of n on v in the
low-frequency limit, an extrapolation to v= 0 was
made, as shown in Fig. 5. The value so deter-
mined, n(0) = 2. 24+0. 01, gives a zero-frequency
dielectric constant of e (0) = n (0) = 5. 02 + 0. 04. Re-
ported values of the static dielectric constants ~,
range from 4. 94 to 5. 09. ' 5 The structure shown
here near 40 cm, not visible in Fig. 4, is evident-
ly associated with the structure in the extinction
coefficient below the eigenfrequency. The relatively
easily obtained and accurate values of the index of
refraction in this spectral region can be attributed
to the ability of the asymmetric technique to yield
phase information in a transmission experiment.
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plexity of the calculation we consider only that
part due to cubic anharmonicity.

The cubic part of the anharmonic Hamiltonian
can be expressed as
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Rg jg 173/3

&&&(ki jx)&(ka ja) &(ks ja) (6)
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FIG. 4. Optical constants n and k of KI determined from
transmission and reflection measurements.

where the operators & (kj) are linear combinations
of creation and annihilation operators, A(kj)=a(kj)
++ (- kj). The potential-energy coefficients
V(k~ jq, k»j», k~ j») can be found from the coefficients
for the Taylor-series expansion of the potential en-
ergy in terms of the ionic vibrational coordinates
u, (KL ). Here n is a Cartesian index, K numbers
the ions within a unit cell, K= I or 2, and L num-
bers the unit cells, L = 0, 1, . . . , X—1, where N is
the number of unit cells in the crystal. The trans-
formation is

HI. THEORETICAL

Using the expre881on derived by Cowley fo1
the ionic contribution to the complex dielectric
susceptibility for cubic crystals, and the elemen-
tary formula of electromagnetic theory A = &,
where i is the complex dielectric constant, we ob-
tain

&&'(~) = &(")

[&(0) —e(~)][&a',+ 2(sob, (Ojo, 0)]
(v~0 —(oa+ 2(oo [n(Ojo, co) iI'(Oj (&,

—(u)]

6&&& g 1/&&

(&L)=Z —. m„(Z'~kj)
2ÃM j

&&
e&l (&r+P&;&g(kj) (q)

In this expression ~& is the mass of the &th ion,
»& „(&I kj) is a real eigenvector component, r„ is
a vector from the origin of the unit cell to the Kth
ion, and rl. is a vector from the origin of the I.= 0
unit cell to that of the Lth unit cell. %'e will not
write the expression for the most general potential-
energy coefficient, since we are only interested in

The symbol w is used for angular frequencies,
(d= 2&&cv. Tile bracketed quantity ln the denomi-
nator of (5) is the renormalized self-energy of the

TO(0) mode, divided by h. The TO(0) mode here
is specified by wave vector k= 0 and a branch in-
dex j=jo. The real part &(Ojo, &u) of this complex
function is the frequency shift and the negative
imaginary part I'(Ojo, &o) is the inverse lifetime
of the Ojo mode. Since the inverse lifetime van-
ishes in the low- and high-frequency limits,
» (0) = E(0) and n (~) = c(~), the high-frequency
dielectric constant being greater than unity due
to all processes resonating above ~0. Taking
coo-=&a(Ojo) as the quasiharmonic eigenfrequency

for the temperature T & 0 rather than the true har-
monic eigenfrequency requires that the real part
of the self-energy, now the renormalized self-
energy, vanish at ~= (do. Here we compute only
the frequency-dependent parts of the self-energy,

2.5

I i

20 30 40 50 60
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FIG. 5. Index of refraction I of KI in the low-frequency
region obtained from transmission measurements. The
abscissa is proportional to the square of frequency.
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a special case, as discussed below. We note here
that this coefficient vanishes unless k1+ k2+ k3= G,
where G is a reciprocal-lattice vector. This leads
to conservation of wave vector in multiphonon inter-
actions governed by anharmonicity.

The third-order frequency-dependent contribu-
tion to the self-energy, using an infinitesimal pos-

I

itive parameter q to avoid singularities in the usual
manner for Fourier transforms, is '

Ba(Ojo o))= ——.~ ~ Il'(Ojo kijx kaja)I'
1fi f2f2

x lim E(~+iq) . (8)
vl -0

The function E(+) is given by

1 1~ ~

~ ~ ~ ~

~(&alii)

~ ~(&s)s)+ ~ ~(ai i) ~()si")) ~)-
1 1

(o(kaja) —o)(in~i)+ o) (d(kaja) —(o(k~6) —~

Here n(kj} is a thermally averaged population num-
ber for mode kj, n(kj)= (e""( ~"'ar —1) ~, where
k& is the Boltzmann constant. The frequency shift
and inverse lifetime are then given by

&(Ojo, o))= (1/K) Re[Do(0j o, &u}-Da(0 jo~ o)o)] ~

(10)
&(0jo '")= —(1/@)lm[&s(0 jo, (d)1,

where Re and Im denote real and imaginary parts,

respectively. Owing to conservation of wave vec-
tor, the double sum over wave vector in (8) can be
reduced to a single sum, since k1+ k2= G= 0, where
only wave vectors in the first Brillouin zone need
be considered. Thus only the coefficient

&(0jo, kj„—kja) is needed.
To express the coefficient V(Ojo, kj~, —kja} in a

form suitable for computation, we first define the
quantity

(kjlja) [m. (1 lkj~) . (2 1kja)+m "(1lkji)m. (2 1kja)]- [m (2 lkji)m ~ (1 lkja)+m ~ (2 lkj, )m (1 lkja)] .

Taking the wave vector 0 of the incoming wave in the
positive x direction and the wave motion specified by
j0 along the z axis, we find, using the transformation
(7), that

1l2

3 8ÃM M p(() (d(kj, )(o(kj }

x I (zxy, kjsja) (12)

where p is the reduced mass M~Ma/(Mq+ Ma) and
the coefficient on the right-hand side is defined by

L (o'&r, kj&ja)= agaw. (kjfja)

+Ba[wa()(kj~ja)+w„„(kj~ja)]] sin(k ro)

+ Ba[w () (kjq ja) sin(k()ro)+ w „(kj~ja) sin(k „ro)] .

(13)

Here &0 is the nearest-neighbor equilibrium K'- I
separation distance, or half the lattice constant,
and the parameters As and Bs are given in terms of
the nearest-neighbor interionic central potential
4'(r)by -'

Aa —4'" (ro)

Ba (1/ro) 4"(r--o) —(1/rao) (k'(ro) .
The summation (8) over the entire Brillouin zone

can be reduced to a summation over only an ir-
reducible element of the zone by applying the 48
transformations of the full cubic group. One such
irreducible element, which was used in the calcu-
lation described below, is that such that k„, k„and
k, are all positive, and k„&k„&k,. Considering the
effect on the eigenvectors m(K Ikj) and subsequently
on V(Ojo, kj&, —kja) given in (12), (11), and (13) re-
sulting from application of the transformations, and
using the invariance of the phonon frequencies under
these transformations, we find that (8) becomes

—452
NpM M (d1 2 0

xP„,
a
'"

~,~a e ~(&ig) ~(4a)

«(c'Py, kj~ja) limE(~+iq), (15}
n-0

where o.Py=xyz, yzx, or zxy for a =x, y, or z,
respectively, and g„,denotes summation only over
the irreducible element of the zone.
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IV. CALCULATION x j[n(kj, )+n(kj 2)+ 1]+ tn(kj~)-n(Tcjz)t} . (16)

We consider first the calculation of the frequen-
cy-dependent part of the self-energy due to cubic
anharmonicity. This is given in Eq. (15) as a sum
over phonon wave vector k and branch indices j&

and jq, where k is limited to an irreducible element
of the Brillouin zone. To obtain eigenfrequencies
&o(kj) and eigenvector components m (& ikj) to be
used in the calculation, the shell model of Woods
et al. ' and Cowley et al. with parameters selected
by Dolling et al. was used. The 6&6 Fourier-
transformed dynamical matrix for the shell model
was computed and diagonalized for k values at the
48 evenly spaced points in an irreducible element
of the Brillouin zone chosen originally by Keller-
man. ' The complete 11-parameter model of Doll-
ing et al. was used. This model includes core and
shell charges and core-shell force constants for
both ions as well as force constants for nearest-
neighbor and next-nearest-neighbor interactions.
Since their parameters were selected to give a best
fit" to frequencies determined by neutron-diffraction
experiments at T= 77 K and our experiment was
performed at T= 300'K, a slight temperature cor-
rection was necessary. The parameters control-
ling the interionic force constants were multiplied
by 0. 924, the value necessary to give the room-
temperature TO(0) mode frequency correctly, keep-
ing the core-shell force constants and charges con-
stant.

To compute the self-energy, a computer pro-
gram was written based on (15) with subroutines
based on (9) to give the function E(&}and on (13)
and (11) to give the modified potential-energy co-
efficient I (npy, kj~ja}. To give a smooth form to
the real and imaginary parts, the parameter p was
held at 2. 5 cm . This was large enough to spread
the peaks associated with the individual phonon pro-
cesses using our eigendata sample of 1000 points
in the Brillouin zone. Since the half-width of each
of the "6-function" peaks is approximately 2q, the
resolution was comparable to that used in the ex-
perimental work. In the program, variables were
defined for each spectral point, taken 2. 5 cm
apart, so that the contributions for all frequencies
for a given coefficient f (aPr, kj,j,) could be found

and added to the value of the self-energy already
in storage before proceeding to the next kj,j, com-
bination. The following relation, valid in the q - 0
limit, was used as a check on our calculation:

&(Ojo, co)d&u=
—4mS

+p.M&M ~

I
1

&
1

I
1

I

I

E
O

20—0
O

z'

~(0j,p)

-—I'(Oj, ,V)

Q

O
a

—12—

I i I ) I i l

50 100 150 200 250
WAVE NUMBER (cm )

The summations in the right-hand side of (16) were
evaluated along with those in the self-energy (15).
Final values of &(0jo, &u) for all of the spectral
points were then used to perform a numerical in-
tegration to obtain the integral on the left-hand
side. The equality was found to hold to better than

29o. Since some of the points selected in the ir-
reducible element of the Brillouin zone are on sur-
faces of this element and thus correspond to an ele-
ment of the zone smaller than the &ooo part of the
zone in the case of the interior points, a slight
modification of (15) and (16) was necessary. Con-
tributions for those points on the boundaries were
divided by an appropriate factor, keeping N = 1000.

Figure 6 shows the frequency shift and inverse
lifetime obtained from a calculation of Dz(0 j~, (u),

using (10) to obtain the real and imaginary parts
of the renormalized self-energy. The parameters
dependent upon the nearest-neighbor potential used
in this calculation were A, 3= —3. Gx 10' erg/cm~
and Bs= 5. 4x10' erg/cm . The former was chosen
to give agreement with the optical constants, dis-
cussed below, while the latter was computed from
shell-model data using (14).

The optical constants n and 4, compared with ex-
perimental values in Figs. 7 and 8, were calculated
from the frequency shift and inverse lifetime using

FIG. 6. Calculated frequency shift 6(0jo, ~) and the
inverse lifetime I'(Ojo, w) of the YO(0) mode for KI.
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FIG. 7. Experimental and calculated index of refrac-
tion for KI.

The general agreement between theory and ex-
periment can be considered quite good. The only
drastic disagreement, that for k' above 175 cm
suggests that the inclusion of quartic anharmonieity
would be necessary to give 4 correctly. This is
because the maximum frequency sum for two pho-
nons of the same wave vector ~(kj~)+ &(kjm) is
around 190 cm '. We shall return to this point
later. The general statement made by other au-
thors ' that agreement in the region above the
eigenfrequency is easier to obtain than below the
eigenfrequency certainly does not apply to this
case. Although part of this may be due to our bet-
ter experimental values below the eigenfrequeney,
our method of selecting the parameter A~= 4'"'(ro)
may have a bearing here also.

The method generally used to obtain anharmonic
parameters such as our constant A3 is to assume
that the anharmonicity is caused by the short-range
repulsive forces alone, then to use a heuristic ex-
pression' for the potential, such as

(5) with the experimentally determined values e(0)
= 5. 02 (our experiment), e(~)= 2. 69, ' and the gen-
erally accepted eigenfrequency &vo/2vc = 101 cm ~.

The parameter A. z was chosen to give agreement
with our experimental results for k' at the eigen-
freguency. The value so found was A~= (-3.6+0. 3)
&&10 erg/cm .

V. DISCUSSION

monic shell model of Dolling et aE. , we obtain A. 3
= —6. VX10' erg/cm, in marked disagreement with
our value. From the lattice constant and the com-
pressibility alone, Born and Huang' derive values
of & and p from which As= —4. 5&&10' erg/cm . It
can be verified that if a correction is made to this
latter value for the nearest-neighbor electrostatic
contribution, good agreement with our value is
reached. There is, however, little justification
for including only the nearest-neighbor contribution
to the electrostatic potential. Even more disturb-
ing is the apparent irreconcilability of our result
with those of others' ' 3 who have obtained rea-
sonable results for anharmonic properties in the
alkali halides using parameters ~ and p derived
'solely from harmonic models based on the phonon
frequencies.

Some authors ' have emphasized that quartic
anharmonicity, particularly at temperatures above
the Debye temperature and for crystals with a sub-
stantial frequency gap between the optic and
acoustic branches, may give a contribution ccm-
parable to or even greater than that of cubic an-
harmonicity. KI at room temperature seems to be
a good candidate in which to look for quartic con-
tributions. As we have pointed out, quartic anhar-
monicity is necessary to account for our values of
k above 175 cm ~, but here k is very small in mag-
nitude so that a quartic term would not necessarily
give a substantial enough contribution to influence
the optical constants in other regions. Further-
more, this would only decrease the value of A3 re-
quired to give agreement with our experiment. Such

I 0.0

I.O—

O.I—

4(r)= xe "~~, (1V) 0.0I—

where & and p are determined from experiment.
Ipatova et al. give a general argument for the ne-
glect of the electrostatic forces in dealing with an-
harmonicity. Aside from questions of the validity
of the expression for the potential, there is the
question as to which experimental values should be
used to obtain the constants & and p. Using thy
first and second derivatives derived from the har-
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FIG. 8. Experimental and calculated extinction coef-
ficient for KI.
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a contribution, however, would be expected to cause
further spreading of the peaks in the wings of the
absorption region, causing better agreement with
experiment in this respect.

It is possible that a more refined model may be
necessary in order to more meaningfully measure
the anharmonic constants and the relative effects
of cubic and quartic anharmonicity on the optical
properties. Such a model should include forces
other than central forces between nearest-neigh-
bor ions. No serious attempt has yet been made
to include the effects of electrostatic. and ionic
depolarization forces in an anharmonic calcula-
tion. It would be far more desirable, however,
to be able to obtain the anharmonic constants from
measurable quantities which are more simply re-
lated to these constants.

A few words seem in order with regard to the
magnitudes of the high- and low-frequency dielec-
tric constants e(~) and e(0). For &(~) we have used
the square of the experimental asymptotic high-fre-
quency index of refraction. Since the shell model
includes the polarizabilities of the ions, it can be
used to calculate a value for e(~). Dolling et al.
find e(~)= 2. 41, substantially lower than the experi-
mental value of 2. 69. Comparing the Cowley sus-
ceptibility formula' with our Eq. (5), we should
have

[e (0)- e (~)] [~0+ 2&so &(0j„0)]=4vZ'r/v, , (18)

where v, is the volume of the unit cell S0, and Z&
is the effective ionic charge acteduponbythe macro-
scopic electric field in the long-wavelength limit.
For the shell model used here we find that Z~

=1.0348, where e is the electronic charge. Using
the shell-model value of e(~), we find e(0)=4. 43,
again substantially below the experimental value.
The ratio e(0)/e(~) in both cases is very near 1.88.
This is no coincidence in view of the Lyddane-
Sachs- Teller relation which expresses this ratio
in terms of the frequencies of the LO(0) and TO(0)
modes of vibration, for the case of a purely har-
monic model, where the self-energy contribution
vanishes. The rather large error in these dielec-
tric values contributes to the lack of confidence in
the ability of this shell model for KI to give the
force parameters ~ and p correctly.

VI. CONCLUSION

The optical constants of KI were calculated on
the basis of a model which includes cubic anhar-
monicity in a central nearest-neighbor potential
4(r). Adjustment of the third derivative 4'"(ro)
led to good agreement with experiment in the spec-
tral region where three-phonon interactions are
allowed by energy conservation to contribute to the
self-energy. The value of the potential-energy pa-
rameter so obtained is roughly half that calculated
from the shell model of Dolling et al. , using the
expression C (r)= &e "". Although the validity of
such a calculation was questioned, the deficiencies
in our model were also pointed out.
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