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coupled susceptibility component that is responsible
for the susceptibility temperature dependence
through lattice expansion. In some alloys of Ti,
the observation that changes in slope of y(T) tend
to occur at about the same temperatures as changes
in the lattice-parameter thermal-expansion coeffi-
cients gives some support to this postulate. How-

ever, a good experimental test of the influence of
lattice expansion on magnetic susceptibility (in
particular, y„~' ) would be to compare (By/BT)~

with either (By/BT)„or (By/B V)r.
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The Raman spectrum of trigonal tellurium has been obtained at 295 and 90 'K. The Raman-
active A~ singlet and two E doublets are identified by the scattering polarization selection rules,
and the E-mode LO- TO splittings and linear wave-vector shifts are observed. The natural
linewidths of the phonons are resolved and some weak second-order structure is evident. A

spectrum of amorphous tellurium is also presented. The data on trigonal tellurium, together
with neutron-scattering and infrared reflectivity measurements, are used to construct a lat-
tice-dynamical model based on a symmetrized Fourier-expansion scheme incorporating gen-
eralized noncentral forces.

I. INTRODUCTION

The lattice vibrations of trigonal tellurium have
been studied recently by neutron scattering, in-
frared ref lectivity, and Raman scattering. ' The
principal Raman modes of A, +2E symmetry have

been identified by Pinczuk, Lucovsky, and Burstein3
and by Torrie. The latter work, however, con-
tains some spurious lines and somewhat inconclusive
polarization data. Complementary Raman data are
presented here together with a lattice-dynamics
calculation of the phonon spectrum. New results
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include the doublet E-mode LO- TO splittings and

linear wave-vector shifts, the resolved linewidths
of the modes, definitive polarization selection rules,
and second-order structure. The first-order Ra-
man and infrared data are confined to the center
of the Brillouin zone whereas the neutron data are
available along the four high-symmetry axes of the
full zone. Nevertheless, the Raman measurements
are more precise than the others and do yield some
phonon-dispersion information for small wave vec-
tors away from the I' point. The previous phonon
symmetry identifications are generally confirmed
by the Raman-scattering selection rules, except
for the band orderings along the trigonal axis. An-

harmonic effects are readily observed in the tem-
perature dependence of the Raman shifts and line-
widths. The weak second-order structure is tenta-
tively identified as combination frequencies and
overtones based on the neutron measurements and

the lattice model. Finally, the spectrum of an
amorphous form of tellurium obtained by melting
the surface of the crystal with an intense laser beam
xs discussed.

II. CRYSTAL SYMMETRY AND DYNAMICAL MODELS

Tellurium crystallizes with space group D, (or
De) having three atoms per unit cell arranged heli-
cally about the c axis. The symmetries of the op-
tical phonons at the center of the Brillouin zone are
one Raman-active A, singlet, one infrared-active
(extraordinary ray) Am singlet, and two Raman-
and infrared-active (ordinary ray) E doublets.
Though tellurium is homonuclear, there is a dynam-
ic charge associated with the A2 and E modes, '
the s ength of which has been measured in the rest-
strahien. This effective charge is also measured
in the Raman experiment by the splitting of the E
doublet, for wave vector q&c axis, into modes of
longitudinal and transverse polarization. Also,
for q, II c axis, the purely transverse E doublet is
split proportional to q as a consequence of the screw
symmetry of the lattice. This dispersion is mea-
surable by high-resolution Raman scattering since
phonon wave vectors of about 4w lq+ ix (/X may be
probed, where q and x are the real and imaginary
parts, respectively, of the refractive index, and X

is the incident-light wavelength. Such linear wave-
vector shifts should give rise to the phenomenon of
vibration-induced infrared-optical activity which
has not yet been observed.

Lattice-dynamics calculations for trigonal tellu-
rium have been carried out previously by Hulin
and Powell and Martel. ' Hulin endeavored to ex-
plain the elastic constants and infrared-absorp-
tion data that existed at the time with a simple
three-force-constant model. He computed the pho-
non dispersion only along the trigonal b, axis. La-
ter Geick and Schroder discovered, in a similar

calculation on isomorphous selenium, that the Hulin

model contains an instability at the K point of the
Brillouin zone. This instability is avoided by
Powell and Martel in a model which incorporates
central forces out to eighth neighbors. However,
their model is still in substantial disagreement with
their neutron data, and in fact yields a 4-axis dis-
persion remarkably similar to Hulin's. It appears
then that longer-range forces do not provide a rap-
idly convergent fit to the data. In this paper a Fou-
rier-expansion model" is used where the range of
forces is confined to a distance of one unit cell along
the trigonal and binary axes (seventh neighbors) but
where as many noncentral forces as are allowed by
the lattice symmetry are included. Though this
greatly multiplies the number of parameters, the
known data can be fit with a convergent series. No
attempt is made here to refine the model with a
deformable electron cloud —for example, a shell
model. ' Therefore only qualitative statements are
made about measurements relying on the ionicity
or polarizability of the lattice, such as the infrared
strength and the Raman intensity.

The Raman polarizability tensors arising from
the def ormation potential electron-phonon interac-
tion have been given by Loudon. ' For Ds symme-
try, where x, y, and z are the binary, bisectrix,
and trigonal axes,

A, :
cg, E(x): . —c d

b d

E(y): —c
-d

1c —d. '

III. EXPERIMENT

The Raman data are obtained in a standard back-
scattering configuration using an argon ion laser,
a Spex 1400 tandem spectrometer, and an uncooled

Because of the electro-optic effect, these scatter-
ing tensors must be modified if an electric field is
associated with an ion displacement such as an LO
phonon. Thus for a scattering geometry y(x, x)y,
the ETO mode has intensity proportional to Ic I',
whereas with x(y, y)x the ELo mode has intensity
~ Ic'I' which is an interference between the de-
formation potential and electro- optic contributions.
The standard notation for the scattering geometry
represents the incident-light wave vector (incident
polarization and the scattered-light polarization)
and scattered wave vector. A surface back-scatter-
ing geometry is employed since the incident-light
energy of -2. 4 eV is well above the 0. 33-eV band
gap in Te.
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ITT F%130 photomultiplier. Repetitively scanned
data are accumulated in a multichannel analyzer
to enhance the signal-to-noise ratio. The laser
output at 5145 A is single moded to be used in con-
junction with an Iz-vapor absorption filter when the
sample surfaces diffusely scatter an excess amount
of unshifted light. Laser powers of 100-250 mWare
safely focused on tellurium with a 40-mm focal-
length cylindrical lens whereas with a 100-mm
spherical lens, the sample melts at these power
levels.

Tellurium samples obtained from the Alfa, Kenne-
cott, and Xerox Corps. yield indistinguishable spectra.
Special preparation is required for each crystallo-
graphic face. The surface perpendicular to the

trigonal axis, the z face, is string-saw cut and

etched with an H~O: HCl: CrO3 solution; the y face
is used as grown or cleaved; the x face is spark-
planed and polished in a Br: CHBOH etch. Laue
patterns of these surfaces are very sharp, although
the x rays penetrate to a greater depth (-5 p) than

the light.
The spectra obtained from the z face are shown

in Fig. 1. The room-temperature trace in Fig. 1(a)
and the 90 'K (liquid-nitrogen cold-finger Dewar)
traces in Figs. 1(b), 1(c), and 1(d) illustrate the
thermal anharmonic effects on the shifts and widths
of the modes. ' Figures l(a) and 1(b) resulted from
linearly polarized incident light; Figs. 1(c) and 1(d)
from opposite circularly polarized incident light;
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the scattered light is unanalyzed. The Raman selec-
tion rules in Eq. (1) transformed to a circularly
polarized basis such that ETp=ETp(x+fy) indicate
that ETp and ETp scatter their respective circularly
polarized light. Thus both scatter simultaneously
the incident linear polarization. The A, mode ap-
pears in all of these configurations. The small
shifts observed between the oppositely circular po-
larized vibrations are manifestations of the linear
wave-vector splitting allowed along the b, axis of
the Brillouin zone. Here both E«modes shift to
higher energy than their respective ETp modes.
This result is at variance with the inverted band
interpretation given the neutron data. '

The observed linear wave-vector shifts are
broadened due to the wave-vector distribution aris-
ing from the strong absorption of the incident and
scattered light. This distribution of the phonon
wave vector q takes the form of a damped Lorentzian

q/[(q'- qo'- no')'+ (2q ~o)'1

assuming a semi-infinite plane boundary condition.
Here the optical propagation vector &qo = 2o7)/X and
absorption constant o &o= 2vz/X are taken to be the
same for both incident and scattered light. If the
optical constants are substantially different at the
two wavelengths, then the generalization is simply

qo = »[(n~/~() + (&.».))

ancl

o'o--2v[(z, /X, + (z, /X, )].

A direct measurement of the complex refractive
0

index of tellurium at X = 5145 A by the angle-of-in-
cidence ref lectivity technique' yields q = 2. 3 +0. 2
and m=3. 5+0. 2. The peak of the above distribution
occursfor q=4vlq+fzl/1=10 cm which is about
—,'o of the Brillouin-zone-edge wave vector. The inho-
mogeneousbroadeningof the ETp spectra due to this
wave-vector spread is on the order of the splitting
which, in turn, is just slightly less than the residual
homogeneous lifetime broadening of these modes
at 90 K. In order to observe these small splittings
and narrow linewidths, the spectrometer is operated
with 100-p slits yielding the 2-cm -broad instru-
mental profile shown in Fig. 1(e).

In addition to the first-order Raman spectra in
Fig. 1, several persistent weak modes of probable
second-order origin (labeled 2) are evident. This
structure occurs between 100 and 130 cm ', sur-
prisingly, since the neutron data do not reveal any
phonons in the 50-70-cm ' gap. Thus it would appea
that combination frequencies (where frequencies are
wave-number units) rather than overtones are re-
sponsible for the observed second-order structure.
In Sec. V this second-order spectrum is compared

in when convolved with the instrumental profile, Fig.
1(e), reproduce the experimental widths. The large
percentage errors at 90'K represent the difficulty
in resolving these very sharp lines. A complete

to the phonon density of states computed from the
lattice-dynamics model described in Sec. IV.

The Raman spectra from the y and x faces are
presented in Fig. 2. Here the phonon propagation
is normal to the trigonal axis so the E modes are
split into longitudinal and transverse branches.
Figure 2(a), with geometryy(x, x+z)y, contains A,
with strength I&I, ETp with strength Ic I, and ELp
with strength Id' I . The prime refers to the elec-
tro-optic modified scattering tensor component.
The lower E« is not observable since its Id'

I is
unmeasurably small as shown by the y (r, z) y trace.
The LO-TO splitting for the upper E mode is small
but measurable at 90 'K using 100-p slits. The
linewidths of the E modes are slightly sharper here
than for the z face since there are no linear wave-
vector shifts causing inhomogeneous broadening.
There is a negligible effect on the spectrum from
the strong phonon dispersion in the polariton region
because this region is an insignificant portion af
the range of wave vectors probed. Thus the true
lifetime-broadened linewidths are deconvolved from
the y-face spectra.

The lower ELp mode can be observed with inten-
sity Ic' I from an x-face sample as shown in Fig.
2. This trace is taken at room temperature with
200- p, slits and an I&-vapor filter. TheI2 filter
is necessary to eliminate the grating ghosts caused
by the excessive scattering from this difficult-to-
polish surface; unfortunately, it also reduces the
Raman-scattered light by a factor of 4. The slits
were opened to gather more light since high resolu-
tion is unnecessary to observe the large LO shift
for the lower E mode. The position of the ZO pre-
dicted from the measured infrared coupling is
labeled IR.

The electro-optic contribution to the scattering
intensity Ic' I may be evaluated by comparing Figs.
l(a) and 2(c). Relative to the A, intensity (la I in
both traces), it is seen that for the upper E mode
Ic' I - Ic I', whereas for the lower E mode Ic' I

« Ic I . This very weak scattering for the lower
ELp indicates an almost complete destructive inter-
ference between the electro-optic and deformation
potential contributions. However, it should be
noted that the anomalous broadening of the line,
the discrepancy with the IR measured splitting, and
a small residual of "forbidden" ETp scattering may
imply a surface-dependent phenomenon. The upper
E« is apparently unaffected by the surface.

A summary of the Raman shifts and natural line-
widths (full width at half-maximum) in tellurium
at two temperatures is presented in Table I. The
widths given are those of Lorentzian lines which,
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FIG. 2. Raman spectra from tellurium, qlc axis: (a) y(x, x+z)y, 90'K; (b) y(x, z)y, 90'K; (c) xQ, y+z)x, 295'K;
(d) amorphous, 295 'K.

fit to the spectral shape is not attempted, particu-
larly because of the obvious asymmetry of the A,
mode. The cause of this asymmetry is not clear,
though it may arise from a second-order shoulder
or a coupled one- and two-phonon anticrossing. '

The spectrum obtained from amorphous Te is
shown in Fig. 2(d). Here the molten material is
created by focusing 125 mW of laser power with a
100-mm spherical lens onto a crystalline z face.
The spectrum persists after the melt has resolid-
ified —but not recrystallized —at lower laser power
and is independent of the initial face. Spurious lines
in the spectrum from the strong diffusion are sup-
pressed by an interference filter before the sample
and an Iz-vapor filter after. The three principal
bands, peaked at 62, 120, and 146 cm"', are all
completely depolarized and are about two orders of
magnitude more intense than the scattering from
the crystalline A

&
mode. The depolarization is

likely due to scrambling of the incident light by the
randomly oriented birefringent chains of Te.

TABLE I. Raman-scattering data in tellurium.

Mode

Temperature 295'K Temperature 90'K
Frequency Linewidth Frequency Linewidth

(cm ) (cm ) (cm ) (cm )

ETo
Eza-ETo
ETQ ETo

92.2+0.5
12+ 2

4.8 + 0.5 95.2 + 0.5 1.2 + 0.5

—0 60+0 1

A) 120.4+0.5 6.4+0. 5 123.4+0.5 1.5+ 0.5

E
E~ ETQ
ETo-ETo

140.7+ 0.5 2.8 + 0.5 142.9 + 0.5
~ ~ ~ 0.6+0.2

—0.26 + 0. 1

0.4+0.4
~ ~ ~

The Raman spectrum from a disordered system
with short-range correlation may reflect the sin-
gle-phonon density of states of the parent crystal,
suitably weighted by a frequency dependence and a
scattering efficiency. ' The density of states com-
puted in Sec. V will be compared to this spectrum
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of amorphous tellurium.

IV. FOURIER EXPANSION OF DISPERSION RE-
LATIONS FOR CRYSTALS OF D43 SYMMETRY

The unit cell for crystals with D3 structure con-
tains three atoms (molecules) located at

r, =(ta, '0, 0), rz=(- m&e, —,'v3»'a, —,'c},

1
7; = (- &ra, —&v~ra, yc),

where for tellurium a=4. 45 A, c=5. 93 A, and r
= 0. 269. An r of 0. 5 would correspond to D~~ sym-
metry. In order to construct a dynamical matrix
which displays the crystal symmetry, it is conve-
nient to use as basis functions the lattice displace-
ments

fi„"'(q)=(3') "' Z»{e"'» [e"'»u (R, +r»)

+e' 0 u„(R»+ r0}+e' ' 0 u„(R, + r,}]},(2a)

U&,'& (q) = fr&0«(q+ (20/c)(0, 0, 1)), (2b)

D&0«( )

D.,(q)= D,'"(q)
[D"' (q)]

[D&2«(~)]T

D; (q)
D&0«( )

D"'(q)

(q)], (3)

'()
where the submatrices D„"«(q) are 3x 3 matrices
related by

Dr» (q) =Dr,'(q+ (2»»l/c)(0, 0, 1)), (4)

and the dagger in Eq. (3) denotes the Hermitian
transpose. The eigenvalues & of the dynamical
matrix obtained from the secular equation

IDA&(q)- ~' l
I
=o

(J."' (q) = 0'."'(q+ (40/c)(0, 0, 1)) . (2c)

Here N is the number of unit cells; the 8& are the
lattice vectors of the hexagonal Bravais lattice of
D~& symmetry; u„are the individual atomic displace-
ments; and p, is the polarization subscript repre-
senting

X +tP x —zP», ~2, ~2
Although these basis functions serve to establish
the desired symmetry relations, the normal modes
that are determined by this method are independent
of the specific choice of basis functions, provided
they exhibit the proper symmetry characteristics.
To describe the coupling between these basis func-
tions for a crystal with the first two structure fac-
tors vanishing at the hexagonal Brillouin-zone faces,
it is necessary to consider a 9x9 dynamical matrix
of the form

where the subscripts on the right-hand side label
the Ds„symmetry of the submatrix for l = 0. %hen
l = 1 or 2, the symmetry types of the submatrices
are mixed but new labels are unnecessary.

Each of the 3&3 submatrices can be constructed
from a basis of nine linearly independent matrices
such as

0 0 0
Jg= 0 1 0, {Azg}

0 0 —1
(7a)

0 —1
0 0
1 0

0
0, {E}
0

(7b}

0

0

10, {E~},
0

(7c)

2[(J,J +J J,) —J, ],

J'., {A„},
-J', {E„},
-J' {Ea },

{A }, (7d)

(7e)

(7f )

(7g}

i [JgJ,+J,Jg], {E&~},

—i(JgJ+J Jg), {Egg}.

(7li )

(7i)

The fundamental matrices of Eqs. (7a), (7h}, and

(7c) are representations of the angular momentum
operator J = r xp for J= 1 in the basis {z +, —}.They
satisfy the usual rules J J =J(4+1) and JxJ =i J.

yield the angular frequencies ~ of the normal modes
for wave vector q. The dynamical matrix is invari-
ant under time reversal and under all symmetry
operations of the space group which is signified by
the A& symmetry designation.

The q, translational relations, Eq. (4), due to the
threefold screw symmetry reduces the problem to
consideration of only two fundamentally distinct sub-
matrices, namely, D„','(q) and DI»'(q}. The sub-
matrix D„',' (q) has A, symmetry when referred to
the proper point-group symmetry of the tellurium
lattice D, ~ On the other hand, when referred to the
point- group symmetry displayed by the hexagonal
Bravais lattice D6„, the A, symmetry is derived
from the A,~, A, „, B~, B,„symmetry types. Sim-
ilarly the interaction matrix Dz «(q), which corre-
sponds to the two-dimensional E representation of
the group D„ is derived from the E~ E~ Ey~ Eg„
representations of the group Ds& ~ Therefore the sub-
matrices can all be decomposed into

D„"'(q)=D„'" (q)+D„",' (q)+D»»,
'

(q)+D»», ' (q), (6a)

Dz (q)=Dz,"(q)+Dz" (q)+Dz (q}+Dz" (q), (6b)
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These matrices are not unique but are chosen for
their symmetry- transf ormation properties as in-
dicated by their corresponding irreducible repre-
sentations in the curly brackets and where the two-
dimensional representations have a pair of basis
functions E and E*.

The invariance of D„,(q) is assured if the l = 0
submatrices of I'& symmetry are constructed from
a linear combination of I'& symmetry angular mo-

mentum basis matrices with functions of the wave
vector that transform according to I'„such thai I'&

&& I'~ contains I ~. In addition the l =0 subblocks must
be time reversal invariant. Thus odd functions of

q can combine only with the linear J&, whereas even
functions of q can combine only with the bilinear J
matrices [Eqs. (7d)- (7i)] since both q and J change
signs under time inversion. In this way the sub-
matrices (Sa) and (6b) are written

(l)nil ( ie)

Dg) (q) = a &a»' (E,*,)

—a&) ia'(E ie)

—f(a(a (E~~)

22 ( &e)
(2)

aaa" (Ea )

i a)a'(E)e)

&)aa'(Ea )

&aaa 8)e)(/)

(8a)

D„"' (q) = —(a&'a~(Ei„)

a(a'(Ei'. )

—(aia'(Ei. )

saba'8~)

&) ia'(E).)

-saa 8a.)

(8b)

Ds'(', (q) = D~~. s „&(q), (8c)

Ds „(q)=DIg „s &(q), (8d)

b,", (Eae)

ab,'a'(E ie)

—ib(a (Bie)+b,'a (Bae)

—fbi(a (Bie)+bia (Bae)

baa (Eae)

ab &i) (Eg )

b,',"()t„)+'b,',"g„),
ba(a))(E~)

(Se)

—b,'a ' (E i*(()

b,'a'(Bi„)+ ah)a'(B~)

—b,'a (Bi„)—ab,'a'(Bs, ) bia (Ei*„)

baa'( au') 0

—ab aa'(Ea. )

(8f)

DEy (q) =D (Eae B )(q)

Ds, (q) DIE'a xs( )(q)

(Sg)

The matrix elements are given in terms of sums
over the symmetrized Fourier functions of the
wave vector,

«'~" (r ) = ~n&1"(ra)F "w(ra q), (Sa)

b '&'(r ) = ~ )3(e" (r )F"+(r, q) . (Sb)

Time-inversion symmetry requires all the param-

Here the notation DIr')&»»(q) indicates that every
irreducible representation that appears in the ma-
trix elements of (Sa,), (Sb), (8e), or (Sf) is replaced
by the direct product of I'& with I'z, for example,

[Ds" (q)],a = b&a'(E(„xB)e)= b,'a" (Ea(() .

l

eters, & and P, to be real numbers. The complex
notation for the symmetry species in the matrix
elements refers only to the Fourier function, e. g. ,

b'„"(r;)= Z P„"'(r„)[F"„',(r„q)]

The Fourier coefficients, & and P, are the force-
constant parameters of the model and the integers
rn, n, and P denote the range of the forces, estab-
lishing the link between any atom and the lattice
site ())&a, )(3pa, )me) away.

The symmetrized Fourier functions F are con-
structed to be periodic in the Brillouin zone, ex-
hibiting the indicated symmetry character for l = 0.
For the general lattice point (na, K3pa, —',mc) there
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+ cos an (- g —(')], (10a)

F"„'(Aa„, q) =S"'(g)[cosn$+cos$n(- $+$')

is a Fourier function for every irreducible repre-
sentation of the group D6& including two for each E
representation. In the application considered here,
however, the expansion converges with the range
of the forces restricted to one unit cell along the
binary axis (n —1) and one unit cell along the tri-
gonal axis (m —3). The longer range forces as-
sociated with p 40 are neglected and the index p is
suppressed in what follows. The symmetrized Fou-
rier functions of the wave vector for the lattice
site (na, 0, &mc) are then given by

F"„'(A«, q)=C„'"(f)[coen)+ cosan(- $+(')

gonal axes, ~ and P, is demonstrated. These two

axes, with identical point-group symmetry, are
nevertheless distinguishable under time-inversion
symmetry. In the case of the electronic levels in

Te, this leads to the assignment of the valence-
band extrema along the P axis, ' rather than the
4 axis, based on experimental evidence.

The generalization of the dynamical matrix to a
molecular or multicomponent D, lattice such as a-
quartz (n-SiOa) and cinnabar (n-HgS) or a shell
model is straightforward. For k sublattices (ions

+ shells per molecule) the dynamical matrix may

be divided up into a

krak

array of 9x9 submatrices.
These submatrices are all derivable from the form
of D„,(q) [Eq. (3)] if the reduced sublattice basis
functions are properly symmetrized. For example,
the dynamical matrix for e-quartz is given by

+cosan(- ( —$')], (10b)

F"„'(B,„,q) = C ' "
(g )[sin n $ + sin a~ n (- $ + $ ')

+ sin an (- ( —$')],

[Da, (q)]aa

D(n- SiOa) = [D„.(q)]aa.

[D~;(q)]aa"

[D~; (q)]aa

[D~i(q)]a a

[Daa(q)]a a"

[D~i(q) laa-

[D~; (q)]a a-

[D~, (q)]a-a-

F'" (Ba, q) = S„'"(g)[sinn(+ sinan(- $ + $ ')

+sinan(- $ —$')], (10d)

F (E&, q)=C'"(&)[cosn$+Qcos-, n(- (+$')

+Q~cosan(- $ —$')], (10e)

F'„"(Ea„,q) =iS"'(f )[cosn$ + Q cosa n (- & + $')

+ Q*cos an(- $ —$')], (10f)

F"„~(E,„,q)=C'"(f)[ ins$n+Qsinan(- $+$')

+ Q*sinan (- $ —g')], (10g)

F"„' (E,a, q) = iS' '(t )[sinn) + Q sin a n (- $ + (')

where k labels the Si ion motion, k' is the symmet-
ric combination 0+0' of oxygen motion, and k" is
the antisymmetric combination 0 —O'. The 9x 9
matrices D„(q) and D„a(q) are derived from D„(q)

1
by crossing every D6& irreducible representation
in Eqs. (6) and (8) according to A,'=A, x (A«+A»)
and Aa-A, x(Ba, +Ba„) The s. impler two-sublat-
tice case of cinnabar (or tellurium shell model)
requires only the 2x2 k and k' subblock of Eq. (11),
where k refers to the Hg (or core) motion and k'
the S (or shell) motion. Another special case of the
formalism occurs for Da symmetry (e. g. , P-
quartz). This higher symmetry allows a reduction
in the number of independent matrix elements since
Eqs. (6a) and (6b) are truncated according to

Q sin —'n(- ] —]')], (loh)
D„",' (q) =D„"„'(q)+D„"'(q), (12a)

where g =cq„)=aq„$'= /3aq„, Q=e "
C'"(g) = cos&m(g+ 2ml), S'"(t') = sin~a (t'+2wl).
For this restricted case there are no Fourier func-
tions of A,„, Az, Bj, or B2„symmetry types.

The symmetrized form of the dynamical matrix,
[Eq. (3)] for the Da lattice is now completely de-
fined. Equation (3) also represents the most gen-
eral form of the Hermitian matrix for the disper-
sion relations of the electronic p states in telluri-
um (or selenium). All the additional degener-
acies of levels resulting from the vanishing struc-
ture factors for this lattice are contained implicitly.
This is illustrated in Appendix A where the factor-
ization of the dynamical matrix along the two tri-

DE (q) = De'a (q) +Dea„(q) (12b)

D~,' (0) = [De"(o)] =Dz" (o) = o, (13)

which implies that the acoustic branch frequencies
must vanish at q=0. Furthermore, for the lattice
to be stable, it is necessary that all terms linear
in q vanish for the acoustic modes. This implies

for D6. Returning now to the lattice vibrational prob-
lem in tellurium, some additional constraints must
be imposed on the dynamical matrix to ensure uni-
form translational invariance and lattice stability.
The first constraint is specified by
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V, D„",' (q) ~2.,=0 . (14)

D„"'(q)=D„''(0)+q [V,D~I (q)]o

+-.qq: [V.V,D"'(q)lo+ ~ ~ ~, (»a)

Ds"(q) =Do"(0)+q [V,D))"(q)]o+ ~ ~ ~ . (15b)

The constraints (13) and (14) greatly simplify the
dynamical matrix which can be written to lowest
nonvanishing powers of q as

oqq: [v, v.D4I,'(q)]o- ~' 1

q. [V,D)) (q)]o

q [V,D2(q)]o
2Doyt- (u 1

(16)

where D2(q) is the 3X6 matrix,

D.(q) =[ID'"(q)]', D."'(q)], (17a)

and D„t is the 6&6 matrix for the optical modes

Doyt =
D (1) (0) [D (o)(0)])

D'"(o) D"' (0)
(17b)

At q =0, the optical eigenmodes are obtained by
diagonalizihg D„t with a unitary transformation
U„t such that

1 2
opt oyt Uoyt = r& ~pa ~ (18)

Then the secular equation (16) may be written

where the 3&3 elastic constant matrix C is given
by

(19)

C/p= —.'[V, V, D„",'(q)],
—[V.D2(q)]o ~..') (6)()/(dr, ) &.,( [V, J)(q)]o (2o)

The second term on the right-hand side of (20) rep-
resents the interaction of the I'-point optical and
acoustical modes as discussed previously by Miller
and Axe. ' The diagonalization of the optical dy-
namical matrix allows this perturbation to be written
as a sum over the zone-center optical eigenmodes.
Miller and Axe' demonstrate that only Raman-ac-
tive modes contribute to this sum.

Otherwise the eigenvalues for the shear-wave dou-
blet propagating along the c axis would be v -+q,.

In order to make contact with the measured elastic
constants, the dynamical matrix is expanded in a
Taylor series for small q. Thus each of the 3X3
submatrices in Eq. (3) takes the form

The secular equation for the acoustic modes (19)
can be written in the general symmetry-allowed
form

qq: C =8(q), (2

such that the Hermitian matrix 8(q) has matrix
elements

2c33qg+ C44q+q (21b)

8'»= (1/)(2 )(c»+ c44)q, q —(i/) 2) c,4q+, (21c)

613 12

2 1
822= C44 q + 4 (3C11- C(2)q q

I 1
2$

= 8 14qgq + 4 (C ll + C 12) q~

~33 = |'-22

(21d)

(21e)

(21f)

(21g)

where q, = q, + i q„. This follows from the definitions
(20), (8), and (9) and expansions of the Fourier
functions (10). The c,&

coefficients are expressed
in standard Voigt notation to conform to the mea-
sured elastic constants. In this symmetrized model
the primed elastic constants are distinct from the
corresponding unprimed constants. However, in-
finitesimal rotational invariance, as discussed by
Lax, + would imply that the shear indices of the
elastic constants are symmetric, hence c44= c44 and

I
C14 = C14'

V. LATTICE-iMODEL RESULTS AND COMPARISON
WITH EXPERIMENTS

The present Raman experiments, augmented by
the recently measured inelastic neutron scattering, '

the infrared ref lectivity, and the acoustic measure-
ments of the elastic constants provide a great deal
of information on the phonon dispersion of tellurium
in high-symmetry regions of the Brillouin zone.
The existing lattice models" inadequately represent
these data throughout the zone, even though central
forces out to eighth neighbors are considered. In
Sec. III, the most general form of the dynamical
matrix based on the symmetry of the lattice is
written as a Fourier expansion in reciprocal-lat-
tice space. The coefficients of this expansion are
determined from experiments and not by recourse
to any theoretical model. The advantage of this
expansion over the previous models lies in its gen-
erality —any particular force- constant model must
have the form given here though not necessarily all
its flexibility. The disadvantage lies in the fact
that there are many expansion parameters and,
therefore, many data are necessary to determine
all the constants. The fitting procedure and the
parameters used are given in Appendix B.

In this section the results of the lattice model for
the phonon dispersion along the 4, S, P, T, and Z
axes and the density of states are given. The Bril-
louin-zone notation, is that of Kittel, + and at the l"
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F1Q. 3. Phonon dispersion in tellurium along high-symmetry axes of Brillouin zone. The curves are the symme-
trized Fourier-expansion lattice-dynamics model; the dots are neutron data (Refs. 1 and 21); the square and slopes
are Raman data.

point, symmetry species I'„I'2, and F3 correspond
to the species A„A2, and E, respectively. The
phonon dispersion for the high-symmetry axes is
shown in Fig. 3. Neutron data are plotted as solid
dots with the Powell and Martel' measurements
along 4, S, I', and T, and the Gissler, Axmann,
and Springer~2 measurements along Z. The Raman
and infrared data are shown as open squares and
linear shifts at the I' point. The acoustic velocities
are fit exactly in the model. Along the 4 axis,
where the data are most complete and accurate, the
model is heavily weighted to fit these measure-
ments. In the other directions, the Fourier expan-
sion is arbitrarily truncated at third neighbors (see
Appendix B) because of the great number of possible
parameters and the sketchy data. The fit could be
markedly improved in these directions if warranted
by better data.

Three regions of the dispersion curves are of par-
ticular note. The first is the +~~ & +&3 band order-
ing in the upper optical branches near the I" point.
Here, contrary to the previous models, the Raman
experiment indicates that the relative 4~- &3 or-
dering is the same for both optical I'3 modes. Al-
ternatively, the assignment ~, »~~ for both I'3
optical branches results in a worse fit at the A point
for the lower optical modes and a less convergent

expansion. The second interesting region is the
T, and T2 band crossings of the longitudinal- and
fast-transverse-acoustic modes. This is necessi-
tated by the measured elastic constants which in-
dicate that the longitudinal wave is the slower of
the two. Third, the fit to the transverse-acoustic
branch is much improved over the other models
though the near degeneracy with the na mode (re-
ported experimentally' out to q, -m/2c) could not
be forced. This model implies, therefore, a larger
linear wave-vector splitting of the two circularly
polarized shear-wave velocities, and consequently
a larger acoustical rotary power, than the neutron
measurements yield.

The phonon density of states computed by a Monte
Carlo selection of about 4000 points in the Brillouin
zone is shown in Fig. 4. For all the dispersion and
band crossings evident along the high-symmetry
axes, it is remarkable that such sharp structure
exists in the full-zone density of states. There-
fore, it would be inappropriate to assign any of the
structure to high-symmetry critical points in the
zone. Each of the nine branches remains relative-
ly distinct, isotropic, and dispersionless in a gen-
eral region of the zone. Phonon modes near the
zone center have little effect on the density of states
as seen by the low density at the I', frequency and,
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of course, in the acoustic region. There is a com-
plete absence of states in the 100-120 cm '

gap
and a strong minimum between 55 and 70 cm '.
This latter minimum implies that the second-order
Raman structure seen in Fig. 1 does not arise from
overtones but is more likely due to combinations of say,
the 33-cm ' acoustic branch peak with the 77-, 86-,
or 95-cm ' peaks from the lower optical branches.

The Raman spectrum of amorphous tellurium,
Fig. 2(d), bears only casual resemblance to the
single-phonon density of states of the crystal. The
three principal bands observed lack the fine struc-
ture of the density of states, and the peak frequen-
cies are all upshifted to rather low-density regions
of Fig. 4. Also the sharp low-frequency band in

the amorphous material is at variance with the broad
acoustic-progenitor interpretation. Theref ore it
might be concluded that this amorphous tellurium
has little short-range order characteristic of the
trigonal crystal. However, x-ray scattering does
indicate the persistence of helical chains above the
melting point of tellurium, and there is apparently
no evidence of ring formation such as is observed
in selenium amorphous and a monoclinic phases.
Thus the interpretation of the Raman spectrum of
this laser-melted amorphous tellurium remains open.

The phonon specific heat of tellurium is calculated
from the density of states and is shown in Fig. 5.

The Debye temperature is -157 oK as extrapolated
from the T' portion of the curve at low temperature.
This is in good agreement with 8~= 153 'K measured
by P. L. Smith, as it shou) d be since the lattice mod-
el is so intimately based on experiment and since the
heat capacity is insensitive to the detailed structure.

Note added in Proof. The spectrum of Fig. 2(d),
attributed to an amorphous state of laser-premelted
tellurium, is due to an oxide created at high tem-
peratures. The same characteristic spectrum is
obtained from a powdered sample of tetragonal
TeQ, . The authors are grateful to B. Cabane for
pointing out the improbability of obtaining amor-
phous tellurium from the melt.
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F.".' (A„,q, ) = 3C.'"g) cos~4&n5,

F"„' (A2„, q, ) = 3$"'(t; ) cos ~«5,
F"„'(B,„,q, ) = 3C'"(g) sin~«5,

F"„(B»,q, ) = 3$"~(f)sinyvg5,

(Ala)

(Alb)

(Alc)

(A1d)

This greatly reduces the number of matrix elements
in Eq. (8} so that the Qx 9 dynamical matrix factors
into three 3&3's of the form Z"'(q, ) whose matrix
elements are given by

APPENDIX A: FACTORIZATION OF DYNAMICAL MATRIX

As an illustration of the formalism developed in
Sec. V, it is instructive to work out the analytically
simple examples of the phonon-dispersion relations
along the 4, and P axes. Here the dynamical matrix
factors into three 3x3 matrices as required by sym-
metry. Along these axes the phonon wave vector is
given by q = ((4v5/Sa), 0, q, ), where 5 = 0 for the 5, axis
and 6 =1 for the P axis. The only nonvanishing Fou-
rier functions [Eq. (10)]are

Z&3 (qi)=zz, (q, )
(t) (1)+

=f ~ [y (c)c""R)-y (s)$.'""(&)], (»d)

z(l &( } z([le(

= —f K[yPz(c)c""(i;}+yPz(s)$""(g)],(A2e)

Z,',"(q,) = Z,'2"(q,) =P [y23(c)C"'(g)+yP(s)$'"(f) ] .

yP&(c) = 3+.&11 (Agg) cos Tv+5,

ya&(s) = 3K„o»"(Aa„) cos ~ «5,
(A3a)

(A3b)

yam(c) = 3Z„[p|3"(A,~) cost«5 —ip, z"(B|„)sinfvn5 ],
(A3c)

Here as seen from(10), the index l is cyclical so
l + 3 = l. The y coefficients are given in terms of the
force- constant parameters

z,',"(q,) =E y„(c)c.'"g), (A2a) yam(s) = 3Z„[p,z (Am„) cosrsn5+i p, 2"(B»)sinrvn5 ],
(A3d)

Z,',"(q,}=+ [y»(c)C""(t')- ymT (s)S '(L ) ], (A2b)

Zss'(q. ) =~ [yRE(c}C.""(&)+ymm (s)$.""(&)], (»c)

y,",(c)= 3L P,~"(A ~) cosvvn5,

y2~(s) = —3i P„P,~"(B»)sinvwn5 .

(A3e)
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The three matrices Z'"(q, ) have different properties
for the 4 and P axes under time inversion. Along
the 4 axis the y coefficients are purely real, where-
as along P some of these coefficients are complex
and the yss(s) term yields an additional q, depen-
dence. This fundamental difference between the
two axes has important consequences for the elec-
tronic energy-band problem. ' '"

The degeneracies of the modes at the I', K, A,
and H points of the Brillouin zone follow from the
values of the Fourier functions [(10) or Al)]. At the
1 and K points, q, =0=/ so that

n "(A)s)=0, (AVa)

+ P)s"(A) )C"'(0)=~ P)s"(As.)S'"(0)=o (AVb)

+milss (A)s)C'"(0)=0,

& m&ss"(Aa )=0

(AVc)

(A7d)

(14}, have been used to derive (A5). These con-
straints and the measured values of the matrix ele-
ments of (A5) yield the following relations between
the force-constant parameters of the model:

1 for ml =0, 3, 6 ~ ~

C'"(0)=cos svml = —s for ml =1, 4, 7 ~ ~ ~

I
—

& for ml=2, 5, 8 ~ ~

(A4a)

ss/p sZ (s mc) u»"(A)s), (AVe)

~', = 3~.(ass"(A~}C.'"(0)

S'"(0)= sin Ysml =
0 for ml =0, 3, 6 ~ ~

s )/3 for ml = 1, 4, 7 ~ ~ ~ . (A4b)
2' for ml =2, 5, 8 ~ ~

—&ss"( g, )S~ '(0)+ I ss"( )s) ], (A7f)

&o~rs=3 Z [&ss (A)s)C~ (0)

Thus C )(0)=1, SN)(0)=0, C )(0)=C )(0), Gnd
S' '(0) = —Sis) (0) which lead to the relations

Zii'(0) = Zii (0), Zss (0) = Zss'(0), Zss'(0) = Zss (0),

Z)s (0) = —Zis'(0), Zis (0) = —Zis (0), Zss'(0) = Zss'*(0).

(c'ss/p)q. '
Z' '(q, }=MZ' '(q, )M '= e*q,

o(q, )

o (q,')

o(q ) &mrs

(A5)

Hence Z"'(0) and Z' '(0) have degenerate eigenvalues
and are compatible with the two-dimensional repre-
sentations I"3 or E3. Similarly at the A and H points,
q, = v/c and Zi ' (v/c) and Z' ' (v/c) have de-
generate eigenvalues compatible with the doublet As
or H3 modes. Note that the conventional symmetry
labels 1, 2, and 3 along the 4 and P axes of Fig. 3
correspond to the notation l = 0, 2, and 1 of the text.

The matrices Z' )(0) and Z'"(v/c) for the nonde-
generate levels at I', K, A, and H factor further in-
to one I', (K„A„roH,) mode and two I"s(&s, As, or
Hs) modes Near .the 1 point the Zis) (q, ) matrix
may be transformed into the form

—n»"(Aa )S'"(o)—Pas" (A) )], (AVg)

e = (3s/)t2) E (smc)

x [P "(A, )S")(0)—P, "(A „)C' )(0)] . (A7h)

The eigenvectors associated with the Z' '(q, )
matrix in the limit q, 0 are obtained from the
transformation M on the basis functions U„"'(0},
Eil. (2). Thus the normal modes are U,' (0), the
longitudinal-acoustic mode of I"s symmetry; (I/M2)
[U."'(0)+U.' '(0) ], the symmetric 1",breathing
mode; and(l/v 2)[U" (0) —U,' (0)], the antisymmet-
ric I'2 twist mode. The measured elastic constant
is obtained from (85) to zeroth-order in wave vec-
tor,

css/p = c ss/p —
I
e

I
'/ ~ri

To this order only the Raman-active I', mode affects
the elastic constant c,3 since the interaction with
the & is quadratic in q,. This result is a simple2.
illustration of the general theory of the interaction
between acoustic and optical modes given in Eq.
(20) and by Miller and Axe. 's

To first order in wave vector, a similar, but pa-
rameter-dependent, matrix transforms Z"s'

(q, )
into the form

1 0 0

M =M '= 0 1/v2 1/v2

0 I/)t2 —I//2

(A6)

to lowest order in q, . Here the unitary matrix M
which diagonalizes Z' '(q, ) at the I' point is

Zi 1 ~ s)
(q )

2
~g + Egqg

- &CCq»

ocq

acq

+es'cqs ((c'„/p)+e, q, )q,'

(A9)

The translational and stability constraints, (13) and
near the I point. The + signs refer to the l =1 or
2 representations. The two zone-center I'z optical



RAMAN SPECTRA AND LATTICE DYNAMICS OF TE LLURIUM 369

modes are labeled E, and E~. Here all the matrix
elements have allowed linear wave-vector terms.
The linear q, shifts of the Raman modes measured
in this experiment are equated with e, and ~~. The
term +c,q, is a first-order spatial dispersion
correction to the elastic constant (&44/p) of the cir-
cularly polarized shear waves U,' '(0). This ac-
counts for the phenomenon of acoustical activity
which has been observed in isomorphous a-quartz.
The off-diagonal matrix elements represent inter-
actions between the I', modes similar to Eq. (A8).

The properly symmetrized dynamical matrix
D„|(q)also factors into a 4 x4 and a 5 x 5 matrix
along the T and S axes of the Brillouin zone. Since
the set of basis functions (2) have been chosen to
manifestly block diagonalize D„,(q) along the n and
P axes, a straightforward transformation into a
(x, y, z) representation is required to factorize the
matrix along T and S.

APPENDIX B: FITTING PROCEDURE FOR TELLURIUM

PHONON-DISPERSION RELATIONS

The experimental measurement of the phonon
normal modes over the entire Brillouin zone would

make possible a determination of the force-con-
stant parameters, a",P (I'~) and PPP (I', ), of Eqs.

(9a)- (9b). The factorization of the dynamical ma-
trix, Eq. (3), along high-symmetry axes is con-
sidered in Appendix A. The simplifications which
occur at high-symmetry points and axes make pos-
sible a systematic procedure for the evaluation of
the force-constant parameters from experimental
data.

The analysis of Appendix A shows that simple
expressions exist for the b, and P axes. Along the
4 axis there are six independent parameters for
each value of m 40 plus four parameters for m =0.
Thus there are 22 parameters for m ~ 3. Since
there is no dependence on n, there is nothing to be
gained in fitting the Ll axis by including this param-
eter. If, however, there are data for both the 4
and P axes, these two axes can be fit independently
and in complete generality by taking n = 0, m ( 3
terms (22 constants) for the 6 axis and n = 1, m ~ 3
terms (32 constants) for the P axis. There is no
need to introduce higher values of n, because only
linear combinations given by Eqs. (A3a)-(A3f) en-
ter the matrices for the levels. Thus, an imper-
fect fit to experimental data would indicate that the
convergence is not sufficiently rapid and that m &3

terms are also necessary.
For any lower-symmetry axis or a general point

in the Brillouin zone, all the terms having E sym-

TABLE II. Fourier coefficients in tellurium in units of (10 rad/sec) .

P2sy)

P»&2.)
P»(B,„)
P»(&&)
P2s+g )
0'is(Ei )
Pis(Eiu)
P22(Eis)
Qs2(Eg )
&is(Ey)

P2)(Eg)
Ps2(Eg)
Pis(E~)
0.»(E„)
&is(Ei )
Pii(Ei, )

Ps&(Ey)
Pis(Ey)

is(E~)
Pis(E2 )
P22(E2 )

(o, o, o)

1.281
0.950
0.027
0.191

~ ~ ~

(0, 0, $)

—0.462
—0.529

O. 496
0.450
0.082
0.135

~ ~ ~

(0 ~ 0, $)

—0.479
—0.031
-0.030
—O. 084

0.099
—0.007

O. 024
—0.077

0.242
—0.079
—0.111

0.016
~ ~ ~

0.026
0.006

-0.126
0.083

0.142

—0.024
0.046
0.162

—0.247
0.241

—0.107
0.022

—0.325
0.0

(n, o, ~3~)

(0, 0, 1) (1,0, 0) (1,0, $)

—0.391
—0.318
—0.180

0.023
0.054

—0.142
—0. 323
—0.214
—0.007

0.024
—0.012
—0.082
—0.023
—0.023

0.013
0.009
0.054
0.0

—0.113
—0.009
—O. 121
-0.018

0.124
—0.092

0.017
0.092

—O. 005

(1,o, ~)

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

(1,0, 1)

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.192
0.0
0.0
0.0
0.0
0.0
0.0
0.0
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metry enter. There are nine terms for (na, 0, 0)
and 18 terms for a more general point (sa, 0, & mc),
m 40. Thus there are a total of 63 new terms in-
volving a general point in the Brillouin zone for
n ~ 1 and m ~ 3 for a grand total of 117 constants.

Not all of these 117 parameters are used in the
current fit because of insufficient experimentaldata.
In fact, only the 62 nonzero parameters shown in
Table II are used and not all of these can be inde-
pendently specified because of special constraints
on the dynamical matrix.

The fitting is done first along the 4 axis where
22 parameters enter for m ~ 3 (only those of A~
and Am„symmetry). To determine these param-
eters, data are available for two velocities of
sound, for positions of four modes at I' and six
at A, and for slopes of the 2I'& modes at I'. In ad-
dition, it is necessary to satisfy three constraints
associated with the translational symmetry of the
entire crystal along the e axis and the stability of
the crystal, i. e. , no linear terms in co are aIlowed
for the acoustic I'3 mode. This gives a total of 19
conditions to determine 22 constants. Since there
are also neutron data available at intermediate
points along the axis, the problem is overdeter-
mined and use is made of a least-squares fitting
procedure. The resulting fit is shown in Fig. 3.
Both the elastic constants and the frequencies of
the modes at I' and at A are fit exactly. The other
experiments are fit to within the experimental er-
ror. The phonon frequencies along the b axis are
fit easily, and considerable confidence can be
placed in the resulting dispersion curves. The
truncation of the expansion seems to be consistent
with existing data. The slopes of the dispersion
curves at the I' point are particularly sensitive to
truncation because slopes and curvatures weigh
higher Fourier components more heavily.

The next step is the fitting af the H- and K-point

frequencies using the neutron data. At the present
time, these data are less reliable and, indeed, at
the H point not all the modes have been identified.
From the fitting point of view, all constants having

A&, A~„, B&„, and B~ symmetries enter into the
determination of the frequencies of the modes along
the I' axis. Fitting the dispersion curves along the
P axis requires a total of 32 new constants for
n «1 and m ~3. Since the current neutron data is
incomplete along this axis, there is not sufficient
data to evaluate all the constants and only 14 addi-
tional constants (namely, those for s = 1, m ~ 1)
were introduced. More neutron data for the entire
H praxis -(P axis) would be invaluable in determin-
ing the additional parameters.

Lastly, the I'-K axis (or T axis) is fitted. For
this axis, all terms havingA, g, A~„, Bg„, Bas Ea,
E~„and E, E&„enter into the determination of the
dispersion curves. Thus a total of 63 additional
constants enter. To specify these parameters, one
stability constraint, four elastic constants, and the
neutron results along any of the low-symmetry axes
can be used. In the present fitting only the T axis
is considered and with one exception the terms are
truncated after (a, 0, 0) and(a, 0, &c). The one ex-
ception is the term which relates to the c» elastic
constant. Because the experiments indicated a
large value for this constant, it is felt that at least
two terms in the Fourier expansion should be re-
tained. Once again the number of experiments
greatly underdetermines the Fourier coefficients.
Furthermore, the calculation of the normal modes
for a general point in the zone requires the diagon-
alization of a 9~9 Hermitian matrix. At this time,
the accuracy and amount of data for the modes off
the 4 axis is not sufficient to motivate a more com-
plete analysis. The model presented here is con-
sistent with most of the known experiments on the
phonon-dispersion curves.
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Some Implications of an Expression for the Response of the Electron Liquid*
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The pair correlation function, the screening of a fixed impurity charge, the correlation en-
ergy, the cohesive energy of alkali metals, and the plasmon dispersion relation in the small-k
limit are calculated using an expression for the dielectric function derived in a previous
paper. Results are compared with those obtained from other theories.

I. INTRODUCTION

1-G(R, (u)QO(R, (u)
'

where Qo(k, ~) is Lindhard's~ function. For com-
putational reasons we gave explicit results only
for G(k, 0), on the assumption that the term (A3)
in I can be neglected. The first noteworthy feature
is that it satisfies the compressibility sum rule

limkm e(k, 0) =
p 7T Cp

(1.2)

with a = (4/Qv)'~', and k in units of kr (where C is
the compressibility of the electron liquid and Cp
that of the gas) more accurately than do all other
available approximations in which the sum rule is
not explicitly imposed. This note summarizes the
results of calculations based on &z for some other
properties of the electron liquid (i.e. , the degener-
ate gas of interacting electrons): the pair correla-
tion function, the screening of a fixed impurity

In a previous paper' hereafter referred to as I,
we derived an expression [denoted henceforth by
e&(k, &u)] for the dielectric response function of the
electron liquid by means of a momentum-conserv-
ing decoupling for the Green's functions involved.
(Decoupling by this method is equivalent to imposing
the f sum rule on the response function. ) This ex-
pression is of the form first suggested by Hubbard,

charge, the correlation energy, the cohesive energy of
alkali metals, and the plasmon dispersion in the small-,
k limit. Inaddition we show that in the large-k limit,
e,(k, u&) includes the effect of a correction to the
screening in the random-phase approximation
(RPA) previously calculated by Geldart and Taylor. 5

In the following it is assumed throughout that
G(k, &u) is only weakly dependent on &u so that the
dielectric function may be written as

e(k, (u} = 1 + Qo(k, &a) )/[1 —G(k) QD(k, (o)], (1.3)

g (r) = [1/N(N —1)] (@0
I Q 6 (r + r, —r

& ) I 40 &

gft f

is related to the static form factor

(2. 1}

S(k) = (1/N) (4'0
I Pa P. Iq'0&-

as follows:

(2. 2)

g(r) = Z [S(k) —1]e' '"+1,N - 1 gyp

that is, changing the sum into an integral,

(2. 3)

with G(k) =G(k, 0).
This approximation has been widely used in the

literature ' ' due to the mathematical difficulties
inherent in the computation of the (d dependence of
G. The complete expression for G(k, &u) is given
in I.

II ~ CALCULATION AND RESULTS

A. Pair Correlation Function g(r)

It is well known that the pair correlation function


