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A theory for the self-focusing of laser light in InSb is presented. The nonlinear dielectric
constant is calculated in the effective-mass approximation and a closed expression is obtained.
Similarly closed expressions are obtained for the higher-harmonic-generation coefficients.
The equations of self-focusing are shown to follow from a variational principle thereby provid-
ing us with a generalization of Fermat's principle. Detailed calculations give, for typical laser
.conditions, a self-focusing length of -2 mm.

I. INTRODUCTION

As a consequence of the invention of the laser,
a host of nonlinear optical effects have been dis-
covered. One of the most interesting effects is the
self-focusing of light beams. This topic has re-
ceived much attention in the literature, both theo-
retically Rnd experimentally. ~ Several mechanisms
have been proposed for the self-focusing phenome-
non. Among them are the Kerr effect, electro-
striction, thermal perturbation of the medium,
nonlinear electronic polarization, and forward stim-
ulated Brillouin scattering. At first the effect
was studied in bquids but the investigations quickly
expanded to include solids, vapors, Rnd plasmas. ~

In this paper we propose a new mechanism for the
self-focusing of electromagnetic waves in degen-
erate semiconductors such as InSb. The effect
arises because of the velocity-dependent mass of
the conduction electrons. As we will see this yields
a nonlinear dielectric constant. The connection of
this with self-focusing will be spelled out in detail
later. The existence of the velocity-dependent
mass has been exploited successfully in another
nonlinear optical effect —the mixing of light waves.
It was demonstxated there that the nonlinear cur-
rents can be quite substantial. Thus we expect to
find a fairly strong self-focusing effect also.

Whenever one is interested in transmitting in-
tense x'Rd1Rtlon through R crystal the nece881ty fo1
estimating the self-focusing effect becomes im-
portant. Thus it could play an important role in
such experiments as parametric conversion, har-
monic generation, optical mixing, self-induced
transparency, and laser design studies. In addition
seU-focusing px'ov1des us wltil R procedure fox' in-
jecting a very large field into a limited region in
the crystal. This could lead to interesting studies
of the dynamics of hot conduction electrons or the
generation of lattice imperfections. By studying
the self-focusing profile it is possible to draw con-
clusions about the nonlinear dielectric constant
of the sample.

In Sec. II we derive an expression for the non-
linear dielectric constant. At first we develop a
series expansion for the dielectric function & in
the field strength. In the cold plasma approxima-
tion we are able to obtain a closed fox"mula for g.
In addition we derive closed expressions for the
(2m+ i)th harmonic-generation coefficient.

In Sec. ID the self-focusing phenomenon is
studied. A variational principle is used to obtain
a generalization of Fermat's principle. By making
the standard eikonal approximation a simple me-
chanical analog appears relating self-focusing to
central force motion.

In Sec. IV detailed calculations are carried out
for InSb. We find that under typical laser conditions
we can obtain self-focusing in approximately
2 mm.

Finally Sec. V summarizes the main limitations
of the theory.

II. CALCULATION OF NONLINEAR DIELECTRIC
CONSTANT

We consider a degenerate semiconductor such as
InSb with g electrons per cm3 in the conduction
band. It is assumed that n is sufficiently small that
collective effects play a negligible role. Also the
crystal Rnisotropy will be neglected. As shown

by Kane, the dynamics of these electrons; owing
to their interaction with the lattice, is governed to
a high degree of accuracy by the Hamiltonian,

~, = [(~,/2)" ~,o'/2 *]"'. (l)

Here E~ is the gap energy separating the bottom of
the conduction band from the top of the valence
band, m* is the effective mass of the electron near
the band'8 bottom, and p is the electronic momen-
tum. As we go to high p, Eg. (l) becomes less
accurate but our attention will be confined to fairly
low p.

The Hamiltonian in Eq. (l) formally resembles
that of a relativistic electron. Indeed if we define
an equivalent speed of light c* by

c*= (Z, /2m')'", (2a)
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we obtain

[ 4 2 4 4+ g2p2]1/2 (2b)

As we will be interested only in the long-wavelength
response of the semiconductor, we will not resort
to a quantum description. We note that in a rela-
tivistic situation the velocity and the momentum
are not linearly related. Whereas the electronic
current is proportional to the velocity, the tem-
poral evolution of the momentum is governed lin-
early by the electromagnetic field. Thus we have
a nonlinear dependence of the current on the field.
It is this effect which is responsible for the non-
linear dielectric constant to be derived shortly.

The introduction of the electromagnetic field in
Eq. (2b) is accomplished via the minimal substitu-
tion p-p+(e/c)A. This leads to

tpg+v ~ v
)2]1/2

= —e E+ —& B~l . (3)

Assume we have a wave E = E2cos(k ~ r —a&t) passing
the electron. Then the right-hand term of Eq. (3)
may be written as

v-—(k ~ r —art)= —ar 1 — k ~ v (

CV c ) (5)

Hence, consistent with the neglect of the magnetic
field, we may neglect the factor v z~ v/c and treat
r as though it were constant. Equation (4) may be
integrated to give

m v eEo
( / ),]1/, = q2+ sin(k ~ r —(ut), (6)

—eE2 cos(kz —&ut) E2+ vx(k && E2)c

where e~ is the lattice dielectric constant. Since
z & c* and c* is roughly two orders of magnitude
smaller than c, the magnetic term is negligible.
Hence, unlike the situation in a true relativistic
plasma, magnetic effects are negligible. Conse-
quently we have

d m*v
[1 (v/c )2]1/2

—eR cos(k ~ r —u&t) .

In general the integration of Eq. (4) is complicated
because of the fact that r depends on t in the right-
hand term. If we examine the phase of the cosine
in detail, however, we notice that

where we have let $ =k ~ r —art. Equation (7) clearly
displays the nonlinear dependence of J on Ep. We
note that in addition to having a fundamental, all
odd harmonics of ~ will be present (the even har-
monics will disappear upon averaging). In order
to obtain the average current of the electrons, we
must integrate J over the Fermi-Dirac momentum
distribution. The procedure of first solving
Newton's equation of motion and then performing
an average is equivalent to solving the Boltzmann
equation in an external field. Thus

(J) f dq2foJ
f dhh) f2

where

f2= [1+expp(8 —t1)] ' .
Here p= 1/k 2T and

g [ g2 g4+ 1c2 2]1/2

(6)

(9)

(J)=~~ J„sin(2n+1)8 .
n=p

Hence

(12)J„=— d$ (J)sin(2n+1)$ .
p

In Appendix A we develop a series expansion for
J„. For Jp the leading terms are

ne 1+—, 62 2

J m*(o (1+n)2~

8 * * 1

where b, = (q2/m*c*) . If we write the dielectric
constant as

In Eq. (9) the chemical potential i1 is approximately
the "rest energy" m*c*2 plus the Fermi energy.

Since in this paper we are interested only in self-
focusing and not harmonic generation, the only part
of Eq. (7) that is important is the part which varies
as sing. It is important to note that there is no
cos$ dependence. Thus J and Ep are 90' out of
phase with each other and there is no absorption.
There is, however, a small amount of coupling to
the higher harmonics. This effect will subsequently
be omitted. In general we have

where qp is the initial momentum of the electron.
In integrating Eq. (4) we have implicitly assumed
that the electromagnetic field has been adiabatically
switched on.

The current density vector in the sample is given
by J= —nev. Thus, from Eq. (6) we obtain

q2+ (e E2/&u) sin&
((m*c')2+ [q, + (e E2/(o) sin(]2j"'

E' = fp+E2Ep+64Ep+ '
p

2 4

then

one
&p=&Z, —

~ 2 &p,

3 ( e 24wne2

6 I(m 4 c4 (g

(14)

(15a)

(15 )
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In Eg. (15) we have included the lattice dielectric
constant. Here Ao and A.2 refer to the first and
second averages appearing in Eq. (13).

In the case where the Fermi energy is low and
the tempexature is also low, Ao and A2 may be re-
placed by unity. The former condition guarantees
that the Fermi level bes in the nonrelativistic re-
gion. Thus (q, /(m*c*)') can be neglected, as well
as higher powers. The latter condition is imposed
so that the high-temperature tail of the Fermi dis-
tribution does not contribute significantly. Thus
me will assume that

(8'/2m*)(3r'n)'" «E, ,

We will call the conditions imposed by Eg. {16)the
"cold dilute plasma" assumptions.

Under these assumptions it is possible to go back
to Eq. (12) and obtain a closed expression for 4„.
Details fox obtaining this formula are presented
in Appendix B. Fox the fundamental hax'Inonlc this
gives

Z~=-nec*v5 F(-,', —,'; 2; 5), (IV)

where 6 = y/(1+y) and y= (eEO/m*c*a&) . For small
field strengths it reduces to Eg. (13) (except for the
thermal averages). In the limit of high field
strengths it becomes constant. The dielectric con-
stant corresponding to Eq. (IV) is

4vne' F(-,', —,';2;5)
~g~R (1 + y)1/2

For high field strengths (y- ~) we have

as Eo-

The dielectric constant rises monotonically from
its value eo of Eq. (15a) to e~ as Zo is increased
from zexo to infinity. The coefficient &~ of Eq.
(14) will be negative.

If we were to define the plasma frequency as the
root of the equation & =0 then for small fields we
have

(o, = 4vne'/m*e J. .2

In general the plasma frequency would be dependent
on the field strength. In order to have propagation
in the crystal we must have co &co~, of course.

Having obtained an expression for the nonlinear
dielectric constant let us now proceed to study its
effect on the self-focusing of electromagnetic
radiation.

III. SELF-FOCUSING EQUATIONS

The fact that the dielectric constant displays a
nonlinear behavior has a profound inQuence on the
propagation of electromagnetic waves through the

medium. For a beam whose intensity profile is
not homogeneous we obtain gradients in the dielec-
tric function. These result in a self-refraction of
the beam. For the case where &2&0 the beam will
refract into the region where the field intensity is
greatest. This produces a self-focusing effect.
Since all beams in nature possess Quctuations,
self-focusing will occur even for "uniform" beams.
The requirement for self-focusing is that the re-
fraction effect be sufficient to overcome the dif-
fraction tendency. The latter arises from the con-
finement of the beam to some finite width.

A coInpx'eheIlslve review of the electrodynamics
of self-focusing has been presented by Akhmanov,
Suhkoxokov, and Khokolov. ' We present here an
alternate derivation of the self-focusing equations
which proceeds dix ectly from a variational prin-
ciple. Our approach yields sevex al benefits not
enjoyed by the derivation of the px evious authors.
Firstly, we have the computational advantage of
having a variational principle. In principle this
could be used computationally to optimize trial
focusing trajectories. Secondly it provides us with

a natural extension of Fermat's principle.
We begin with the expression for the Lagrangian

density for an electromagnetic wave interacting
with a nonlinear dielectric

&=(~,E'-S')/8v+ f p dE=S, +Z, , (21

where P is the polarization vector. The variation
principle is that

6(I/v) f dt f dry =0, (22)

where we assume the end points of time (0, 7) are
held fixed. In the fxee part of the Lagrangian Zo

we regard the fields as stemming from the vector
potential A (in Coulomb gauge)

BA
(22a

et

Upon reallzlng that, to f1x'st ox'dex' 1n Cg, the d1x'ec-

tion of A's polarization is unaltered, we look for a
solution of the form

E = Zo i cos(~t —kz —kS) =Eoi cosa .

We look for stationary monochromatic solutions
so Eo and S are time independent and slowly varying
functions of space. Azimuthal symmetry will be
assumed for Eo and S.

The time integration of the action principle can
be executed with the effect that cos ~ and sin 5
are replaced by their average values —,'. In the in-
tegration of , we introduce the electric suscep-
tlblllty
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(25)

The main variation of P ~ dE is through the E part
of P rather than the y part, so we replace f P ~ dE
by y(ZO) f E ~ d E. For Z', we take Z,'/2f' [cf. Eq.
(2Vb)]. Hence we obtain the variation principle

S= q (z)+-,' ft'P(z), (2'7a)

z2 [z /f(z)]2e-2R /(af& (2n )

In the above equation E& is the initial prevailing
field intensity in the crystal, f(z) is the dimension-
less radius of the beam, and a is the initial beam
radius. The boundary conditions are

sS /es' 1 es ' 4&&(z',)+Zo 2 —+i—+ —— — Zo =0.
az &~z 2 8R

(26)
From this it is a simple matter to derive the self-
focusing equations of Akhmonov, Sukhorokov, and
Khokolov. ' They follow if we neglect the (BZJsz)z
and (&S/&z) terms in the spirit of the eikonal equa-
tions. Henceforth we will make this approximation.
In analogy with the approach of Akhmanov,
Sukhorokov, and Khokolov' we pick the following
trial functions:

where we have used the fact that & = &~+4m'.
Equation (31) can be given a simple mechanical

analog. Let

m = e/ Z( a /64,
L, = ~,z,V/(32'),
v= z,'a'[~, —~(z,'/2f ')]/32,

(S2a)

(s2b)

(32c)

then Eq. (31) becomes the Hamiltonian for a par-
ticle of mass I and angular momentum I. moving
in a potential V. Thus

(33)

All our familiar notions regarding potential motion
can be transferred directly to the self-focusing
problem.

In particular we find the concept of effective po-
tential~ to be quite important. Thus we let
V,« = V+L /2mf . If V,«has an absolute minimum
then we have the possibility of self-focusing. This
corresponds to the mechanical analog of having
bound noncircular orbits. At the minimum of V,«
we would have self-trapping which is analogous to
circular orbits.

In a self-focusing situation the focal length is
given by the "time" required to go from one root
of Eq. (33) to another. Denoting the two f "radii"
by 1 and F we have

~(0)=o=P(o), f(0)=1, (26a)
1

[(2/m) (H —V )j'" (s4)

and, denoting derivatives with respect to z by a
prime,

q '(o) = o = p'(o) =f (o) . (26b)

If we perform the R integration and examine Eq.
(26) we see that z now plays the role conventionally
alloted to the time variable. The quantities y, P,
and f are now dynamical variables in this "time"
variable. The R integration is elementary and
leads to a Lagrangian

4gy 1 't2

32 t/, Qfk )

In the particular case that e is quadratic in Z, /f
this integral can be carried out. Then only if

L2
+f V &0

2m f-0
(s5)

can we obtain self-focusing. This equation repre-
sents the competition between the diffraction and
refraction effects. It defines a critical power
below which no self-focusing can occur. The beam
will, in this approximation, shrink to zero radius
(i. e. , F=o) in a distance

z,'= [-(2/m)f'v„, ]
'" . (s6)

g~ E.2g2 47t g 1 2 pg
(so)

Note that the term y' is superfluous since it is an
exact differential. The corresponding Hamiltonian
is

In the more general case we must resort to explicit
integration of Eq. (34).

Transcribing Eqs. (35) and (36) back into the
optical language we obtain the conventional for-
mulas for the critical power and focal length. ' The
field at the entrance to the crystal is related to the
incident power through the relation

EI„E)a2 2

32
Ic/') (

1
)c c —c

The equations of motion for P~ inform us that
P =f '/f, so we obtain finally that

(31)

6 (S
i+/c Icc')

Thus the critical power becomes

(3'7)
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FIG. 1. Nonlinear dielectric constant as a function of
the dimensionless parameter y = (eEp/m*c*~)2. The dashed
line is the quadratic approximation to &.
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~
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and the focal length is

(38)

Zyo ——
~ ka (P/P„—1) (39)

From Eq. (39) we see that a real solution for Zz
can only exist for P& P„. If P were very much
larger than P„ the k dependence of Z~ would dis-
appear. This indicates that the diffraction is not
important in this limit.

IV. RESULTS FOR InSb

Having derived detailed expressions for the non-
linear dielectric constant and having reviewed the
theory of self-focusing we now proceed to apply
the formalism to a case of practical interest. InSb
was chosen for several reasons. It has a low elec-
tronic effective mass, m*= m, /60 (where m, is the
mass of a free electron), and relatively small gap
energy, K~=0. 234 eV. We find c*=1.11&10
cm/sec. The ratio of the velocity of light to c* is
270. This validates the approximations of Eqs.
(4) and (6). Here e~ was taken to be 16.

If the experiment is performed at liquid-nitrogen
temperature (T= 77'K) the free-carrier absorption
is minimal. The radiation frequency is taken to
be ~ = 1.742 && 10' rad/sec corresponding to the
10.81-g line (in vacuum) of the CO~ laser For this.

where E, is defined in Eq. (27b). For I„,we take
I„,= (c/8v)EO and obtain

e 3277

(1 + ~~ )2 ~toh 105 (41)

We find y„,= 0. 107. Our calculations will be made
for y = 0. 10. This corresponds to an input power
of 2560 W, where we have taken the radius of the
beam to be 0.0054 cm (five vacuum wavelengths).

In the quadratic approximation Eq. (39) gives
1.79 mm. for the focal length. The results of the
numerical integration are presented in the next few

figures. In Fig. 2 the effective potential is pre-
sented. The repulsive part of the potential repre-
sents the diffraction effect while the attractive part
is due to the refraction. The horizontal dashed line
indicates the trajectory followed by the normalized
beam radius f. Also shown is the quadratic ap-
proximation to the effective potential. The trajec-
tory in this case would go to f= 0. In the exact
case it goes only to f=0. 12. Thus there is a five-
fold shrinkage in beam size and a corresponding
sixty-five-fold increase in central beam intensity.

frequency two-photon absorption is energetically
forbidden and therefore it is easy to transmit the
radiation through the crystal. The absorption
length was estimated to be ~ 1 cm.

In order to keep the free-carrier absorption
reasonably small the carrier concentration was
taken to be n = 2& 10' per cm . This gives a plasma
frequency of 1.54&&10'~ rad/sec. Since &u» &u~

the neglect of cooperative plasma effects is justi-
fied. Then & will never differ very much from &I,,
although, of course, it is just this difference which
is responsible for self-focusing.

For the above parameters, the cold dilute plasma
approximation is well justified. Thus [see Eq.
(16)] 8 (3v n) ~3/(2m*E )=0.07 and keT/E, =0.03.
Then we find @=15.86 and &~=1.26&&10 esu. In
Fig. 1 we have plotted the dielectric constant & as
a function of the dimensionless variable y defined
in Eq. (17). The dashed line represents the qua-
dratic approximation to y. Note that the departure
from the quadratic approximation sets in fairly
early at y =0.2. For high y the saturation effect
is exhibited.

From Eq. (39) it seems as if we can make ZP as
small as we want by simply increasing P. Unfor-
tunately when the incident intensity exceeds a crit-
ical mean intensity, surface ionization will occur.
This critical intensity I„,is approximately 3~10
W/cm . To minimize Zz we would, in general,
like to work close to I„,.

If we take the above parameters then the critical
power of Eq. (38) is P„=552W. The argument of
& involves Eo=-,' E, . Thus we take

y = (e/m*c*u&0) —,E, , (40)
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FIG. 2. Effective potential as a function of the dimen-
sionless width of the beam f. The dashed curve is the
quadratic approximation. The horizontal dashed line is
the trajectory of the beam radius.
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FIG. 3. Dimensionless beam radius f as a function of
the dimensionless distance down the beam z/a. Curves
are drawn for values of a/&=5, 10, and 15.

The revised focal length is 2. 06 mm. After focus-
ing to the minimum the beam size will bounce back
to its initial position. This process will continue
periodically with period 2Z&.

In Fig. 3 the width of the beam a is presented as
a function of z. The y parameter was held fixed
at y = 0. 1 while a/t, was set equal to 5, 10, and 15.

FIG. 4. Ratio of focal length to beam radius as a func-
tion of the dimensionless parameter y for five different
initial beam radii a.

The vertical scale is the dimensionless beam size
and the horizontal scale is z/a. We have only
shown one-half of the "period" but the curve is
symmetrical about the turning point. In Fig. 4 the
ratio of focal length to beam radius is plotted as a
function of y for several a values. (We remind the
reader that X„,= 10.81II,. ) Because of our neglect
of losses, the lower curves are not to be taken too
literally. They are only given to illustrate the
trends.

V. CONCLUSION

In conclusion we see that self-focusing in InSb
is possible with currently available technology. A
summary of some of the constraints obeyed in ar-
riving at this conclusion is presented pictorially in
Fig. 5. The curves drawn pertain to the quadratic
approximation to &, but similar conclusions follow
from the exact q case.

We plot P/P„vs a/X in Fig. 5. For P/P„& 1
we are in a region where the diffraction is so strong
relative to the self-refraction that no self-focusing
can occur. On the other hand, for small a/X and
large P/P„, surface ionization breakdown will
occur. This limitation might, in principle, be lifted
by prefocusing the beam or by coating the surface
appropriately. Also shown are the lines of constant
focal length for Z& -—1, 2, 3, and 4 mm. For large
focal length (& 1 cm) we have another limitation—
namely, that of absorption by the solid for the
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Likewise ( —n)" is expanded into the sum

(- )"=( '/&)'" ~ I" (2q .A)" A'™(-)"
(m

(A8)

Equation (8) calls for an angular average on the
mom enta. Thus

((q A)"
&

= (qoA)" "f /(n —m+1)

where we have defined f„„as1 or 0 depending on
whether n+ m is even or odd. The gradient opera-
tion is trivial and gives

v„A""= (m+ n)A (AV)

Equation (12) requires an integration to project out
a given harmonic. This is accomplished through
the following formula:

d& sin(2j+1)$ sin " '$
P 0

~ ~

FIG. 5. Region @&here self-focusing is possible in the
P/P~-a/g plane. Four lines of constant focal length are
indicated.

present choice of electron density.
Our paper shows that it is possible to pick the

parameters in such a way that self-focusing can be
observed.

( )1 (2)mm-8 (A8)
—,
' (m+n)+j

Combining Eqs. (Al)-(A8) we obtain

tt

J; = - neh &0 Z Z (- )"(2c*)~
n=0 ttt=0

«0 ~U)
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APPENDIX A: PO'WER-SERIES EXPANSION OF J„

Q, =(4 /8 &,

(g) 1
( g) n m+n

(A10)

In this Appendix we derive an expression for the
power-series expansion of J„, the nth harmonic of
the current. Unfortunately it does not appear pos-
sible to compress the expression into a known
closed function. Nevertheless the expansion should
be useful for evaluating the higher-order nonlinear
currents.

Letting A = (eEO/&o) sin), we can write Eq. (V)

more concisely as

,
(

I+n-1~
) (A11)

APPENDIX 8: J„ IN COLD PLASMA APPROXIMATION

In this Appendix we derive an expression for J„
in the cold plasma approximation. This is equi-
valent to putting q0= 0 in Eq. (7). Upon combining
this with Eq. (12) we obtalll

X= —nec*v„[(m*c*)'+(q, +A)']'" .
Letting

o. = (c*/&)'(2qo. A+A'),

and employing Eq. (10) we obtain

J= neg v„(l—+ n)' ~' .
The square root is expanded as

(1+n)'i'=1+-, n+Z ( ——, )„
( —n

tt 3

(Al)

(A2)

(A8)

att—sec A
J„,= d$ + +,2 3]F12 sin(2n+ 1)f

0

where A = (eEO/&u) sin]. Let

y = (eEO/m*c*&u)

& =~/1+v.

Then we have
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Ea sin) sin(2s+ 1)$
cT„.——tlec 5 d$

)
g )gyp

2~~1"(u+ l)
(y+1)t

' RP2P (av)

where 0 ~ 6 & 1. We expand sin(2n+ 1)$ as

sin(2n+1))=Z A, sin "$,

where F is the Gauss hypergeometric function.
Thus we find

2 - + I'(k+~)J„=—net*~5 ~ Eo m Ag
(~ 1)t

(ss)

The following integral is required:
2g s~Rk+Rg

[1 —6 eos'(]'" d$

Thus J„ is expressible as a finite sum of closed
functions. Equation (BS) is valid for arbitrary field
strength.

In the particular case where n = 0 me find

J0 = —nee*~5E(—,', —,'; 2; 5) .
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