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A further study is made of the properties of the simple tight-binding Hamiltonian for which
Weaire has recently shown that a band gap exists in a tetrahedrally bonded solid regardless of
its structure. An exact transformation of the density of states is found which relates it to that
generated by a much simpler Hamiltonian, providing, at once, an alternative proof of Weaire's
result and a powerful tool for future study of this Hamiltonian. Various generalizations and ex-
tensions of the model are discussed. These include the definition of a Hamiltonian appropriate
to a compound semiconductor and the generalization of the proof of the existence of a gap to
cover this case. The resulting structure-independentformula for the gap, in terms of its homo-
polar and heteropolar parts, bears a -close resemblance to that used in Phillips's semiempirical
theory of tetrahedrally bonded semiconductors.

I. INTRODUCTION

In a previous paper, ' of which this may be re-
garded as a continuation, a simple tight-binding
theory of an amorphous semiconductor such as Si
or Ge was formulated and some of its consequences
were explored. The Hamiltonian used was of tight-
binding type, with orbitals Q&& associated with each
atom i and bond j of a fourfold-coordinated struc-
ture, and matrix elements of the Hamiltonian only
between orbitals associated with the same atom (V, )
or the same bond (V~). For such a Hamiltonian,
the electronic density of states may be shown'~
to consist of two bands separated by a gap in which
the density of states is zero regardless of the de-
tails of the structure. ~ For I V,/Vai & 2, which is
the case appropriate to Si or Ge, there are two
states per atom in each band and they are, indeed,
the "valence' and "conduction" bands long familiar
in the study of the band structure of crystals. Fur-
thermore, it may be shown' that the average char-
acter of states at each energy is completely deter-
mined for such a Hamiltonian, in the sense that
the weighting of s-like (P-like) and bonding (anti-
bonding) contributions to any wave function corre-
sponding to that energy may be derived. In addi-
tion, such a Hamiltonian always produces 5 func-
tions in the density of states at the top of each
band. ' %e believe this to be an important finding
for the interpretation of experimental measure-
ments of the density of states in these solids.

Various extensions, generalizations, and alter-
native derivations of the results of Ref. 1 will be
presented here. We begin in Sec. II with the proof
of a theorem which considerably simplifies any of
a wide class of problems involving the Hamiltonian
of Ref. 1 by reducing it, by an exact transforma-
tion, to a similar problem involving the same
structure but only one kind of matrix element in

the Hamiltonian. It is a remarkable result, one
which could hardly have been found ab initio with-
out the strong suspicion, based on results of cal-
culations for the diamond and Bethe lattices, '
that such a result indeed existed t Armed with this
theorem, one may give an alternative and more
elegant proof of the existence of a band gap in the
density of states. However, it is of much wider
utility than this. We show in Secs. III and IV that
it may be used to short-circuit much of the mathe-
matics involved in obtaining the density of states
for the diamond and Bethe lattices. It may also
be used to develop a relationship between the total
energy of the valence band and the statistics of
closed paths of bonds in any given structure.

In Sec. V we define a slightly different Hamilto-
nian appropriate to a compound amorphous semi-
conductor (e.g. , a III-V compound), and it is shown

that, subject to certain assumptions, the proof~'
of the existence of a gap can be generalized to cover
this case. Moreover, the formula which emerges
for the band gap in a compound semiconductor, in
terms of "homopolar" and "heteropolar" parts, may
well be of considerable interest for crystalline as
well as amorphous compounds (in view of the re-
cent work of Phillips and Van Vechtene on crystal-
line compound semiconductors which is based on a
similar and essentially empirical formula).

Section VI contains various other generalizations
of the model, including the use of a statistical dis-
tribution of overlap parameters in the Hamilto-
nian. We also comment, for completeness, on the
work of others in this area. ~

II. TRANSFORMATION TO ONE-BAND HAMILTONIAN

The Hamiltonian of Refs. 1 and 2 involves two
kinds of matrix elements of magnitude V& and U2.
It generates two bands of states (the valence and
conduction bands), and we therefore call it a, two-
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band Hamiltonian. We will derive here a transfor-
mation of the Green's function, and hence the den-
sity of states, associated with such a Hamiltonian
to that associated with a one-band Hamiltonian con-
taining a sirgle parameter V. This transformation
can be used to establish a number of general prop-
erties that are structure independent. It also
greatly simplifies calculations with the two-band
Hamiltonian since these may be performed with the
much simpler one-band Hamiltonian and then trans-
formed to give the xequired results. This, at first,
seems to be a case of getting something for noth-
ing, but it mill be seen that all of the relevant infor'-
mation concerning the connectivity of the structure
is contained in the one-band Hamiltonian, so it is
not unreasonable that the mathematics involved in
the two cases should be demonstrably equivalent.

The two-band Hamiltonian used in Refs. 1 and 2
is given by

mhere the atoms of the tetrahedrally coordinated
structure are labeled by an index i and the bonds j.
The orbitals P»» are assumed to form an orthonor-
mal set. The first term in (1) comes from the
overlap between orbitals associated with the same
atom and the second term from the overlap along
a bond between neighboring atoms. For the pur-
poses of this section only, me find it convenient to
introduce a constant term V, into Eq. (1). This
can be done by removing the j4j restriction in
the first summation so that each orbital has an
ovexlap V~ with itself as well as with the other
three orbitals associated wit). .. the same atom. This
constant energy mill be removed at the end of the
calculation in this section. So we x ewrite the tmo-
band Hamiltonian in (1) as H'3', where

If"'= Z V )4»»&&4»»)+ Z Vale;»&&4'»»I .
4&fs, j

(2)
The one-band Hamiltonian II'" is formed from a

single-orbital P» at each site, which has an overlap
V with the orbitals associated with each of its four
nearest neighbors. We have

a'"= Q V~@,&&y,,
~

. (3)
t

In the following paragraphs the superscripts (1)
and (2} always refer to the one- and two-band cases,
respectively, and me mill use e for the energy in
the one-band problem and E in the two-band prob-
lem. If the reader does not wish to delve into the
intricacies of the mathematics, he may proceed
to E»I. (I'I), which is the statement of the relation-
ship between the one- and tmo-band problems.

We can define a Green's function G "(e) for the
Hamiltonian II' ' by

where there are N atoms in the structure. Using
the fact that the P» are a complete set of states for
the Hamiltonian II"', me can mxite the density of
states»» (e) as

and»»"' (&) is normalized to 1. We can set up a
diagrammatic formulation for the evaluation of the
Green's function by expanding the denominator in
(4) as a geometric series:

aa"'(~)=z z &» I(, -) ~»i) .

The contribution of the nth term in (6) can be rep-
resented by a closed diagx'axn with n lines mhexe
each line is assigned a weight V/&. Some typical
diagrams are shown in Fig. 1(a).

The following analogous expressions to (4), (5),
and (6) can be given for II '2':

s"'(Z) =- »» '1m[a"'(E)],

The density of states n (E) is normalized to 4 tn
this case, as there are four states per atom. A
diagrammatic expansion for (9}will contain two
kinds of bnes. Those involving V2/E are repre-
sented by a solid line with an arrow, whexeas those
involving V,/E are represented by a dotted line with
an ax rom. Some typical diagrams for H~ ' are
shown in Pig. 1(b).

It is immediately apparent that there is a great

FIG. 1. Some typical diagrams associated with the one-
band Hamiltonian (a) and the two-band Hamiltonian (b).
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similarity between the diagrams in Figs. 1(a) and

1(b); V and V2 play a similar role in that they are
associated with lines joining different atoms. On
the other hand, Vi is associated with lines joining
two of the four points which represent the basis
functions Q, ~ associated with a given atom. There
are infinitely many diagrams in the two-band prob-
lem containing the same arrangement of V2 lines as
that of the V lines in a given diagram for the one-
band problem. Our technique, which is to develop
the necessary recipe for the generation of all the
diagrams for the two-band case from those of the
one-band case, is of a familiar kind in diagrammatic
theories, being in the nature of a "renormalization"
of the latter problem.

The precise form of the renormalization requires
considerable care to be taken in the counting of the
degeneracy of diagrams. A single line in Fig. 1(a)
with weight U/e is replaced by a single solid line
with weight V2/E in Fig. 1(b) together with at least
a single dashed line V,/E. The complete replace-
ment factor Z/E for V/e is obtained by summing all
the Possible &nays of going around a single vertex
using only the dotted lines of that vertex and the four
nearest solid lines. Each diagram in the renormal-
ized picture may be visualized as a "daisy chain, "
with each daisy consisting of a U2/E line followed
by the summation of all possible V,/E and V2/E
lines associated with the same vertex. We now pro-
ceed to make this summation.

From any one point in a vertex, one can draw an
arbitrary (even) number of solid Vz/E lines back
and forth along a single bond before departing on a
dashed V,/E line. The total contribution of these
diagrams is denoted by X, where

X =1+(V2/E)'+(V2/E) +(V /E} +' ' '

= 1/[1- (V,/E)'] .
We must now string together alternating products of

(V,/E) and X to make the required summation. Note
that a dotted line can finish on the same point at
which it began, as well as the three adjacent points,
because of our inclusion of the constant V, term in

This is not represented explicitly in the dia-
grams in Fig. 1(b), but could be drawn as a dashed
loop starting and finishing at the same point. The
vertex correction Z/E is given by

—= ——x+ —x4 —x+—x 4 —.x4—x+ ~ ~ ~V2 Vi Vi Vi Vi Vi Vl
E E E E E E E E

V, V, X
E' [1-4(V,/E)X]

= v, v,/(E'-4v, E- v,') .

The general form of this series is obvious —each
successive term corresponds to a set of diagrams
which involves one more dotted line joining two of
the four points associated with a given vertex (i. e. ,
atom) and therefore contains an extra factor of 4
(V,/E), (the number 4 represents the four choices
which one has at each step in the construction of
one such diagram). Only one steo (the first one} is
constrained to come from a particular one of the four
points, and this accounts for the presence of a single
factor of V,/E in each term of the series.

Apart from two counting corrections, which we
shall shortly evaluate, we now have the desired
recipe for G' ', i.e. , given G"', in terms of V/e,
we are to replace V/c by Z/E.

Among the diagrams associated with G'3', there
are sets of diagrams which are similar in every
respect, save that they start (and end} at a different
point on the closed path which each one of them de-
fines. If two such diagrams start and end at differ-
ent points on the path, but these points are joined
by a path which does not depart from the given atom
and so is buried in the renormalized vertex, we
must ensure that both paths are counted in the re-
normalized picture. In fact, each term contributing
to this particular renormalized vertex should con-
tain an extra weighting of m, where m is the num-
ber of links (i. e. , the power of 1/E) in that term.
This is easily accomplished by differentiation of
Z/E with respect to E ' and multiplication by E ',
giving

Z -| &(Z/E) 2Z (1 —2'/E)
E 8(1/E) V, V2

In addition to making the substitution of Z/E for V/e,
we should also multiply e G"' by Z /Z, since each
diagram must contain a single Z vertex to incor-
porate the correction explained above. The renor-
malization procedure is now correct except that the
first term in the expansion does not take proper ac-
count of the fact that all diagrams must be closed.
We shall therefore work out the expression which
should replace Zs/Z as the first term There .are
two kinds of contributions to be considered, both of
which correspond to diagrams containing only dashed
and solid lines associated with a singLe atom, the
two kinds being those that start on that atom and
those that start on a neighbor. They give two ser-
ies:

4 X+X —X+X—X'4 X+X~X4—— X4—X+. . . +4 —X—X+X—X4—X+X —X4—X4—X+. . .Vi Vi V Vi V1 V2 Vi Vi V1 Vi Vi Vi

E E E E E E E E E E E E E

=4X+4—'X' 1-- -'X +4—' ~ X' (12)E 1-(v,/E)' z '



where the origin of the factors of 4 is similar to
that in Eq. (10).

We shall now write &t""' in a form which exposes
its dependence on V/e . I et us denote the eigen-
values of Il'" by e„, where n is an index that goes
from 1 to N and labels the eigenstates. In the crys-
tal, n will correspond to band and crystal momen-
tum labels, but this will not be so in the amorphous
solid. It is convenient to further define the dimen-
sionless reduced energy eigenvalues Z„=c„/V. The
relationship between |""'and e„ is

(13)

Making use of the correspondence between Green's
functions for the one- and two-band problems es-
tRbl1shed Rbove by cons1derRt1on of diagrammatic
expansions we can now change (13) into a formula
for EG'@. To obtain EG' ' we replace V/e by Z/E,
and then make the two corrections discussed above.
First we multiply everything by Z /Z, then add the
correct value for the first diagram 2/[1 —(V~/E) I
+Z /Z, and subtract the incorrect value of Z~/Z.
We obtain

z'
Z K~ I-(Z/E}~„

2 Z Z
1-(V,/E)' '

Z Z

Using the expressions for X' and Z given in Eqs.
(10) and (11) we obtain

G(a)
N „(E —4V, E - V~) —Vivg e„

+ + -- — . (15)1
E+V, E-V,

FinaQy, we shift all the energies by V& to get from
II' ' back to our basic Hamiltonian as given in Eq.
{1}.The Green's function G for this Hamiltonian
is given by

1 p 2(E —Vg)

„[(E-v,)'- v', -4v', j —v, v, ~„

+
1

+ . (18)1
E+ V)+ V2 E+ Vg- Va

The poles of this Green's function occur at

E = Vg+ (Vp+4vg+ Vgv27„)'

Z=- V, —Vp, E= —V, + V, .
Given the distribution of eigenvalues e„ for the

one-band Hamiltonian associated with any structure,
Eq. (IV) is a prescription for the generation of the
eigenvalue spectrum of the two-band Hamiltonian
for the same structure.

If the spectrum of eigenvalues e„ is a continuous
band in the infinite limit, Eq. (17) generates two
corresponding bands. Since these derive from the
+ sign in {1V) they are clearly symmetric about V,.
Each band has a total weight of unity.

The study which led to the derivation of the txans-
formation (11)was largely motivated by a desire to
find the necessary conditions for this symmetry,
which was observed in calculations of density of
states for Bethe and diamond structures perfoxmed
before the transformation (17) was found. Surpris-
ingly, it turns out to be completely general for the
type of Hamiltonian used here. One might expect
a simple pxoof by "symmetry arguments, "but we
have not found any. It should be remembex ed that
it is only part of the density of states that has this
symmetry. The other two roots in Eq. (I'7) repre-
sent 5 functions in the density of states at —Vj —Va

and —V&+ V3, both with weight 1. These are anti-
bonding and bonding p states, xespectively. The de-
generacy of the antibonding and bonding p states was
discussed in Ref. ', where arguments about the
number of matching conditions involved in the match-
ing of p states on different atoms were used. The
analysis given in this section gives the same result
in a rather more natural way and, furthermore,
shows very clearly that the 5 functions in the den-
sity of states arise solely from the tetrahedral co-
ordination (they come entirely from the diagram
that involves a single vertex and its bonds).

We can use Eqs. (17) to give an alternative deri-
vation of the bounds established in Refs. 1 and 2.
The one-band Hamiltonian H'" given in (3) can be
written as an NxN matrix, where each row and each
column contains four entries V, the other N-4 ele-
ments being zero. Using the theorem of Pex'on,
the eigenvalues are bounded by —4V and 4V and so
we have

(18)

Inserting the bounds {18}into (IV) to obtain the
bounds for the two-band case, we see that the ex-
tremities of the two bands occur at 3V&+ Va and
—V, + V2. This is the result first obtained by Neaire
and further discussed in Ref. 1.

One can always construct a state with eigenvalue
corresponding to the upper bound in (18)—it is just
the state with equal amplitude on every site. One
can construct a state at the lower bound only i.f the
structure has no odd rings, so that it can be divided
into two sublattices such that an atom in one sub-
lattice has neighbors only on the other. ' '3 For
such a structure the density of states in the one-
band problem must be symmetric about the origin.
(This is because given an eigenstate of energy e one
can form an eigenstate of energy —e by changing the
sign of the weighting of all the orbitals on one of the
two sublattices. ) This symmetry is apparent in the



(//1

82
I,

z4A

8
0 -4 -2 0 2 4

RFDUCED KNERGY C

FIG. 2. Density of states for the one-band Hamiltogian.
l3iamond structure: solid line. Bethe lattice: dashed
line. The reduced energy &= &/I/'.

calculated densities of states of the diamond and
Bethe structures shown in Fig. 2. Details of the
calculation are contained in Secs. III and IV. Fig-
ure 3 shows the corresponding densities of states
for the two-band problem as generated by the trans-
formation (IV).

Note that for the case of the Bethe lattice, neither
bound is attained in the infinite limit. This shows
that, although one can construct a state at the upper
bound, this is not automaticaQy indicative of the
edge of a continuous band at that energy, in the in-

finite limit. For the case of the Bethe lattice, this
state of weight unity (and therefore negligible for
N-~) is left stranded by itself while the other
states form a continuous band with an edge at a low-
er energy. It is not yet clear whether this curious
property is a consequence of the unphysical nature
of the Bethe structure (see Sec. IV).

III. DIAMOND STRUCTURE

As an illustration of the utility of the result proved
in Sec. II we hex'e examine its application to the
case of the diamond structure. The one-band Ham-
iltonian (8) allows overlaps between an atom and its
four neighbors which lie on the other fcc sublattice
of the diamond structure. Thexe are two atoms in
the unit cell and so we use Bloch's theorem to re-
duce the secular matrix to a 2~ 2 matrix. If the
neighbors of the atom at the origin are at s(t(- 1, -1,
-1), —,'a(-1, 1, 1), —,'a(l, —1, 1), and -'(t(1, 1, -1) (see
Fig. 13 of Ref. 1), then the secular determinant
whose roots are the energy eigenvalues 8 (k) takes
the form

i(22~2„&s/2 e 1(t)ssSs) s/2+ & (())sass)s/2]

I/(1+e 1 (sss2„)s/2 +& ( (2ss)~13 +& ((ttt/'2 ) /2]

alld so

8= +2V(1+ ()t„„)' (20)

bounds are attained.
To get the density of states for the two-band case,

we merely insert (22) into (16) and using (3) we ob-
tain

&gag cospk'g+ cosgk~c+ cos pl 8 cos&kgQ

+ cos g kg 0 cos g O'„0 . (21)

In Sec. II we defined reduced energy eigenvalues
The label n is here equivalent to k, together

with a band index l equal to 1 or 3, according to
whether the negative ox' positive sign is taken in
(20). Wltll this collvelltloll, we have

2„=e(k, I)/V

)t2(1+ + )1/2

Equation(13) then takes the form

tt '(E)=-—[Ã —Vl) —4Vl- V2](E- Vl)
~3) 8

nN

j.

[(8—Vl) —4Vl -V22] —4V, V2 (1+ (2„„,)

tv(t /vs)=)/2

s ($/IQ=)/2

1 '~ 26
N „" e —4V2(1+ a,„,) (28)

This can be expressed in terms of tabulated integrals
I„,(2) for the fcc lattice' [see Eq. (B5), Ref. 1]
and in this way we obtain for the density of states

Ivt /)til "1

-4 «2

2/)vs[

This density of states is shown in Fig. 2. It can be
seen that it is symmetx'ic about the origin and the

FLQ. 3. Density of states for the bvo-band Hamiltonian.
Diamond structure: solid line. Bethe lattice: dashed
line. The vertical lines represent & functions, each of
unit ~eight.
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FIG. 4. Bethe lattice for coordination number 4.

providing an approximate treatment of any given lat-
tice in that the diagrams with no closed loops (Cay-
ley trees '~ ) are summed exactly. This is interest-
ing in the context of the amorphous solids, since no

ring structure is assumed. Therefore, the Bethe
approximation may be a good starting point for a
discussion of amorphous systems, representing,
as it does, an unprejudiced "common denominator"
of all fourfold coordinated structures.

The manner in which the Bethe lattice is depicted
in Fig. 4 makes the central atom appear to play a
special role. In fact, it does not in an infinite sys-
tem, since all sites are equivalent. Let us label
the centrally placed atom 0 in Fig. 4, its neighbors
1, and so on, proceeding outwards. The method of
'calculation for the one-band Hamiltonian parallels
that of Onsager et al. ,

' but the notation is a little
different. We define one-band Green's functions

+6(E+ Vi+ V0)+6(E+ Vi —V0) . (25) ) (P~ In)(n I P,)g;, = &~
n & —&n

(26)

This result was obtained in Appendix B of Ref. 1 by
solving the two-band Hamiltonian in the usual way in
terms of an 8&&8 secular matrix.

ln practice, one can simply evaluate (24) and
transform the resultant density of states using (17).
The density of states is shown in Fig. 3.

The amount of labor saved by applying the result
of Sec. II is significant even in this simple case.

G"'(e)= (1/N)g, g„.
The equation of motion for g&& gives

(27)

where ~n) is an eigenstate with energy e„. Then the
quantity of interest G "'(e), defined in Eq. (4), may
be written

IV. BETHE LATTICE

The Bethe lattice is a mathematical construct
that is rather artificial, but it illustrates a number
of useful points. Bethe' discussed the thermody-
namics of the Heisenberg ferromagnet by using a
cluster approximation. Domb" seems to have been
the first to realize that the approximation becomes
exact on a lattice that contains no closed loops; we
will refer to this as the Bethe lattice. A compre-
hensive discussion of some relevant properties of
this lattice can be found in the recent work of On-
sager et al. ' for the one-band Hamiltonian appro-
priate to the ice problem and in that of Nagle et al. '
for the two-band case.

The Bethe lattice for coordination number 4 is
illustrated by Fig. 4. The Bethe lattice constitutes
one of the pathological cases excluded from our
original discussion. ' The ratio of surface to volume
does not go to zero in the limit of an infinite sys-
tem, and surface effects cannot be discarded as is
usual in that limit. Just how one isolates bulk and
surface properties in this case is an interesting
question which we will gloss over somewhat here,
referring the reader to Refs. 16 and 17. Our re-
sults apply to the bulk density of states and the the-
orems proved in Refs. 1 and 2 apply.

In addition to being an interesting test case in its
own right, the Bethe lattice may be regarded as

(28)

&g~= VW. -~ o+ 3Vg..so.

To solve these equations we put

g n+1 0 /R n 0

and so we get an equation for n. We obtain

en = V+ 3Va

therefore,

n = [c + (e0 —12V0)'~ ']/6V. (30)

The absolute value of goo can be obtained from & and
the inhomogeneous equation in (29):

e = 1/g00+ 4Vn,

1
e —4Vn

Putting j = 0 we obtain the following set of equations
from (28):

egoo= 1+4Vggo,

eg&o= Vgoo+ 3Vg2o ~

(29)
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3
e y 2(e2 12V2)~/3 (31)

For large e gap I//t and so we select the positive
root in (31). Because all sites are equivalent, g;;

goo for all i and so from Eq (.27),

e+ 2(e2 12V2)l/2

The density of states, as given by Eq. (5), is
12V2 62 1la"'( )=— — — —(12V)" «(12V)16V2

(32)

=0, elsewhere.

n' '(E)=+4

16V~ V2 —[(E —V~) —Va —
4 Vq]

(85)

where the + sign is to be taken depending on whether
E &~ V, . (This result has also been obtained by Nagle
et af. without using the theorem of Sec. II. ) The
two bands from (19) are shown as broken lines in

Fig. 3. Again, as in the one-band case, most of
the structure in the diamond lattice is smoothed out
and the bounds for the band edges are not attained.
Of course, we must once again include the 5 func-
tions in the density of states, so two of the bounds
are attained due to the presence of these 0 functions.

As in the case of the diamond structure, this
treatment of the Bethe lattice owes most of its sim-
plicity to the theorem of Sec. II. As has been dis-
cussed by us elsewhere, the comparison of the den-
sities of states for the two cases in Fig. 3 neatly
demonstrates that while the 5 functions in the den-
sity of states are structure-independent features
due only to the coordination of nearest neighbors,
the two peaks in the valence and conduction bands
of the diamond structure must be associated with
its long-range order since they are almost entirely
nonexistent in the case of the Bethe lattice.

V. GAP IN COMPOUND SEMICONDUCTOR

This density of states is shown as the dotted line in
Fig. 2. It can be seen that the band is rather fea-
tureless and the bounds are nowhere attained. In
fact, for a finite system, there is just one state at
+4V. To obtain the two-band density of states, we
make the substitution

e (E —Vi) —Vq —4Vi
V V~ Vq

as prescribed by the first part of Eq. (17). We note
that

n"'( )ed@ =n' '(E)dE,

and so

Mu= —V~v- Vou .

For B we have

Mu= —V2v+ Vou .

(36)

For simplicity we choose quasiperiodic boundary
conditions. ' Summing the quantity u* M%, obtained
by evaluating the squared. modulus of both sides of
these equations over all states i, we obtain

4 u* Iif'u=~ (v2lvl'+ v,'lul') (40)

Note the vanishing of the cross term linear in Vo.
This is due to the cancellation of the two contribu-
tions which each bond of the structure makes to this
term. We now use

Z (lul'- lvl')=0 (41)

which vanishes for a similar reason, to obtain from

semiconductors are by no means confined to the ele-
mental solids to which the results obtained by us so
far apply. In particular, III-V compounds have been
the subject of recent work. Inasmuch as experi-
mental results have suggested the presence of a
band gap in an amorphous elemental semiconductor,
they do likewise for the compound semiconductors.
We will show in this section that the result of Refs.
1 and 2 concerning the existence of a gap in the den-
sity of states may also be obtained for a slightly dif-
ferent Hamiltonian which is appropriate to such a
compound. This Hamiltonian is essentially the
same as (1), except for the addition of an extra
term. Once again we assume a tetrahedrally coor-
dinated structure, but we make one further restric-
tion on the structure, namely, that it satisfies the
"opposite neighbors" property mentioned in Sec. II.
We can then further assume that one of the two sub-
lattices of the structure is occupied by A atoms, the
other by B atoms. The Hamiltonian that we use to
describe this system is related to (1) by

(86)
id

where

+ 1 if site i is on the A sublattice
—1 if site i is on the f3 sublattice . (37)

Note that the extra term is diagonal. We might also
include a different overlap V& between orbitals on
the same site according to whether it is occupied
by an A or a B atom, but it is then more difficult
to make progress with the theory.

We will give only a skeleton proof of the existence
of a gap since it is an almost trivial generalization
of the proof given in Refs. 1 and 2 for the Hamilto-
nian without the Vo term.

We write down the equations analogous to Eq. (3)
of Ref. 1 on Eq. (3) of Ref. 2, with the same defini-
tions, at sites of A. and B type. For A we have

Current experimental investigations of amorphous (40)
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Z, [u* M u —(Vz~+ Vo} Iu I
]= 0 . (42) easily generalizes to a proof of the existence of a

gap of magnitude
Now the rest of the proof follows precisely as in
Refs. 1 and 2 from a consideration of the properties
of the matrix M, except that the quantity (V', + Vo)
takes the place of V2. There is a band gap between
valence and conduction bands of magnitude (at least)

2(v,"v,')' '-4I v,
I

. (43)

The effect of associating a different diagonal term
in the Hamiltonian with A and B sites is to widen the
gap, provided we are in the usual regime

I Vyl & ~2
I V2I

appropriate to most real systems.
Once again we stress that Eq. (27) is a structure-

independent result, except that we have imposed one
important condition on the structure, which will be
further discussed in Sec. VII. It applies inter alia
to the diamond and wurtzite structures.

Formula (2V) has a familiar appearance —it is
somewhat similar to the structure-independent for-
mula used in the recent work of Phillips and Van
Vechten, which is

gap = (E~+ C')"' (44)

Here EI, is the "homopolar" gap, that which obtains
when the difference between the component atoms
is neglected; and C is the "heteropolar" contribution
to the gap, playing a role analogous to Vo in the
present theory.

Of course, it is not immediately apparent that the
"band gap" involved is quite the same in the two
cases. If our Hamiltonian is used to approximate
the broad features of a more realistic band struc-
ture, "our gap is much larger than the gap of
the latter, and we believe it to be at least roughly
equivalent to the average or "Penn" gap in the Phil-
lips-Pan Vechten theory. In that case, a further
study of the differences between (43), which has the
merits of being rigorously derived from a well-de-
fined Hamiltonian by a method which is independent
of structure, and the empirically based Eq. (44)
may prove fruitful.

VI. OTHER GENERALIZATIONS

A. Nonconstant V& and V2

The proof ' of the existence of a gap for a tetra-
hedrally bonded solid of arbitrary structure was
founded on the assumption of constant matrix ele-
ments V, and V2 throughout the structure. Since
real amorphous structures must necessarily involve
some scatter in the values of these parameters due
to local deviations of bond length and angle from
their ideal values, it is interesting to consider the
effect of introducing such a scatter into the theory.
Suppose, then, that V& and V~ have values distributed
between the bounds V&+ &„V&+ ~~, where && and
42 are positive. Then the method of Refs. 1 and 2'

assuming that we are in the region I V,/V2I & —,',
which applies to most real systems. If (45) is neg-
ative this is to be interpreted as zero.

It is certainly interesting to note that for a small
amount of disorder in the values of V, ar.d V2 the

gap does not immediately close; but the result is
not as powerful as it might at first appear. Overlap
integrals of the type represented by V& and V~ us-
ually vary considerably with bond length and angle.
It would probably require deviations of bond length
and angle from their ideal values of only a few per-
cent to make (45) negative, for realistic values of

V, and V& and a realistic assessment of their de-
pendence on structure. For some further discus-
sion, see Sec. VII.

B. Work of Heine and Ziman

Heine has given an alternative proof of the
existence of a band gap for the Hamiltonian (1) in
the region IV,/V&I & ~. The essence of his treat-
ment is a change of basis functions to pure bonding
and antibonding orbitals associated with each bond.
He then proves the existence of a gap for a simpli-
fied Hamiltonian, in which the interaction of bonding
and antibonding orbitals is left out, and goes on to
show that switching on an interaction between such
orbitals cannot decrease the gap. It might appear,
at first, that there is some redundancy in having
three different proofs of one theorem (Ref. 2, the
present work and Heine's}, but they are based on
rather different approaches and are complementary
to a high degree in that, when one looks beyond the
basic result, there are different lessons to be
learned from each of the three treatments. For in-
stance, Heine has shown that his proof generalizes
trivially to the case in which another overlap is in-
cluded in the Hamiltonian, a result which does not
seem to follow in any simple way from either of the
other two treatments. In our language, this is the
interaction between orbitals associated with neigh-
boring atoms but not the same bond. Incidentally,
the 5 functions survive unscathed in the density
of states for this new Hamiltonian, so although it
goes some way towards a more realistic descrip-
tion of the band structure of crystalline Si and Ge,
it does not remove the most glaring deficiency of
the Hamiltonian (1) in that regard. To do so it is
necessary to go one step further in the incorporation
of further interactions into the Hamiltonian. Not
only do our present methods encounter difficulties
at that stage, but the interactions themselves be-
come difficult to assess because they are dependent
on the local dihedral angle of the structure.
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It is appropriate to mention here the recent work
of Ziman, ' who has explored a tight-binding model
for an amorphous semiconductor. However, he
does so by considering a realistic Hamiltonian, with
further neighbor overlaps, rather than the more
idealized Hamiltonian which we have discussed.
His arguments are therefore of a more qualitative
nature since, as we noted above, it is difficult to
found a rigorous mathematical theory on such a Ham-
iltonian. They do, however, have many points in
common with Ref s. 1, 2, and the present work, and
the reader who is interested in the problem of put-
ting some flesh on the bare bones of a theory based
on the Hamiltonian (1) should consider Ziman's
work in conjunction mith this paper.

VII. CONCLUSION

Recent experimental work on the simpler amor-
phous semiconductors has been, for the most part,
devoted to a study of the band gap. The proof2 of
the existence of such a gap for the Hamiltonian (1)
goes some way toward explaining the observation
of a band gap in the amorphous state. Two ques-
tions then naturally arise. Firstly, how best are
we to study further aspects of the theory based on
this Hamiltonian, such as details of the density of
states, the cohesive energy, etc. ? As we have
seen in Sec. II, this is best done by a transforma-
tion which greatly simplifies the Hamiltonian. Sec-
ondly, how are our conclusions, particularly re-
garding the existence of the gap, affected by the gen-
eralization of the Hamiltonian to a more realistic
form? This was discussed in Sec. VI. Phillips
has surmised that the inclusion of the effects of lo.-
cal deviations from perfect tetrahedral coordination,
together with the interaction of more distant orbitals,
would generally result in a finite (though presumably
small) density of states in what would otherwise be
the band gap for a structure of the kind constructed
by Polk. This, indeed, mould appear to be true.

If one accepts the conclusion that a zero density of
states in the gap is implied by recent experimental
results, there still remains a conflict between
theory and experiment. Phillips suggests that for
a real amorphous solid, the condition that the free
energy be minimized results in a particular struc-
ture which is such that there are no states in the
gap. This is an appealing hypothesis but, at pres-
ent, remains no more than that.

One generalization, which can be made fairly
easily, is that examined in Sec. V, where it was
shown that a gap existed for a Hamiltonian appro-
priate to an amorphous compound semiconductor.
The proof was based on a condition which deserves
further comment, namely, that the structure had the
"opposite-neighbors" property. This may not be so
in practice, for it is difficult to build a realistic
model of an amorphous tetrahedrally bonded struc-
ture without. fivefold rings, which necessarily in-
fringe this condition. On the other hand, one feels
that it would be unfavorable on energetic grounds for
a III-V or II- VI compound to form a structure in
which all nearest-neighbor pairs of atoms were not
of different species. One is therefore faced with
two incompatible requirements for the structure.
Clearly, future study of the details of the structure
of such semiconductors is needed. In any case, it
is likely that the conditions of the proof given here
are not seriously infringed in reality —that is to say,
the percentage of nearest-neighbor pairs of similar
atoms must surely be very low.
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The lattice thermal conductivity of germanium has been analyzed on the basis of the Callaway
model in the temperature range 2-1100 'K. At high temperatures four-phonon processes are
seen to play an important role in the determination of the thermal resistivity of germanium. In
order to take account of the nonlinear behavior of the dispersion relations of the crystal lattice,
the phonon wave vector is assumed to be certain simple but different functions of the phonon
frequency for longitudinal and transverse branches. Three-phonon processes having different
temperature dependences in the various temperature ranges have been used in the calculations.
Very good agreement with the experimental results has been obtained.

I. INTRODUCTION

The need to include four-phonon processes in
explaining the lattice thermal conductivity of solids
at high temperatures has already been recognized. '-
The thermal resistivity of a solid due to four-phonon
processes for longitudinal phonons was calcul. ated
by Pomeranchuk. ~

As an exact treatment of the lattice thermal con-
ductivity of solids is hampered by the lack of knowi-
edge of the crystal vibration spectra and the an-
harmonic forces, and by the difficulty of obtaining
the exact solution of the Boltzmann equation, a
simplified phenomenological model due to Callawayv
has been widely used' '3 at low temperatures, to
explain the thermal conductivity of a number of
solids. In the Callaway model we use the Debye
approximation l.e. , a lln8ax' relation between
phonon frequency ~ and phonon wave vector q, which
is satisfactory only for very long-wavelength pho-
nons, which are the main carriers of heat at very
low temperatures. At high temperatures the de-
parture of the dispersion relation from linearity
should be taken into account. Further, the different
behavior of longitudinal and transverse phonons
should also be allowed for. Some of these points
have been considered by several workers~*'3 "to
explain successfully the thermal conductivity of a
number of solids.

In earlier studies no proper distinction was made
bebveen the phonon group and phonon phase veloc-
ities, which is very important especially for the
case of high-frequency phonons. In order to ac-
count fox' the depax'tux'8 of the dispersion relation
of phonons from a linear one, a simple function of
frequency, e.g. , a quadratic function for the phonon
wave vector, has been used in earlier analyses. ' '

In the case of germanium the dispersive nature of
the longitudinal ahd the transverse phonons is
nearly accounted for if one takes quadratic and
cubic forms of the frequency dependence of the
wave vectors. Simil. ar functions have been used
in the ease of GaAs 8 to explain the experimental
lattice thermal conductivity. We may, thus, ex-
press the phonon group and phase velocities as the
functions of the phonon frequency. The first Bril-
louin zone ls taken to be sphex'lcally symmetric
and the two transverse branches to be degenerate.
To account for the resistance incurred by the three-
phonon processes, Guthrie' has suggested that
three-phonon relaxation times can be expressed byT, where m is an exponent which is a function
of the temperature T. The different values of the
exponent rn are chosen to determine the relaxation
rates in the different temperature ranges.

II. THEORY

Callaway's' model for the l.attice thermal con-
ductivity can be expressed as a sum of two integral
terms. The relative magnitudes of these two terms
vary from substance to substance. The contribu-
tion of the second term, which is usually called the
correction term, is seen to be negligibl. e in com-
parison to the fii st one in a majority of caseS. 8' 4'

But in some cases, like helium, where the normal
processes are dominant, it imparts a major con-
tribution. In germanium the normal processes are
not very important, and we therefore ignore the
contribution of the second term. Further, we do
not consider the contribution of optical phonons,
which is l.ikely to be negligible in the case of ger-
manium. The Brillouin zone of Ge, which has a
diamond-type structure, is assumed to be spher-
ically symmetric. The contx ibutions of the three


