4 THEORY OF INDIRECT EXCITATION OF SOUND BY LIGHT

we will nevertheless vary parameters rather freely in
order to most clearly illustrate various dependences.
Evidently, the actual values of A and B can vary quite
widely depending on the sizes of D, P, €, |9(0)!, and M,
for example.

BThe analogy here is to a vibrating string with fixed
vs free ends.
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% This follows from an equation-of-motion analysis as
detailed, e.g., by B. Bendow, Ref. 18(c).

%See, e.g., R. Loudon, J. Phys. 26, 667 (1965).

%General theory of gap variation due to pressure and
temperature in semiconductors is discussed by E. J.
Johnson, in Ref. 6(b), and references therein; for spe-
cifics regarding narrow-gap materials see Ref. 11,
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The electronic structure of three group-1V elements is examined using a nonlocal pseudo-

potential determined primarily by physical considerations.

An ionic contribution to the poten-

tial is separated from the valence and covalent portion of the interaction, and is constructed
in an empty-core approximation, in terms of a set of angular-momentum—dependent core radii
R;. A modified version of the Penn dielectric function is used to determine the valence charge

potential.

Comparison with experiment results in substantial improvement over what has pre-

viously been achieved using the local empirical model (EPM).

I. INTRODUCTION

Over the past several years the pseudopotential
method has proven to be effective in describing the
electronic spectra of many covalently bonded semi-
conductors. In the early studies the Fourier co-
efficients of potential were treated as disposable
parameters and fitted to selected experimental
data.! The resulting analysis for a wide range of
experiment was sufficiently good that one could be
reasonably certain that no major revisions of the
electronic structure of the materials studied would
thereafter be necessary. Continuation of the original
scheme to a variety of compounds by Cohen and
collaborators? showed that the technique would work
with the same effectiveness as for the group-IV
materials. Further work by Saravia and the author
demonstrated that one could in addition successfully
calculate deformations of the electronic structure
associated with hydrostatic and uniaxial strains.

Several considerations make it worthwhile to
reexamine the electronic structure of the group-IV
materials. Perhaps the most compelling of these
is the central role played by these substances in the
Periodic Table. For example, given the electronic
structure of Ge, one would hope to be able to get
those of GaAs, ZnSe, CuBr, etc., as a series of
well-defined ever-increasing perturbations on that
of the central member of the sequence. Indeed,
within a pseudopotential framework such a start
has already been made by the author.* Using a
nearly self -consistent model, he found it possible
to construct potentials for several of the III-V
compounds without the use of any empirical inputs
other than those provided by the group-IV elements.
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Comparison was made between calculated and ex-
perimental values for 42 electronic transitions in
these materials. The over-all agreement was as
good as that achieved through either first-principles®
or purely empirical methods.® It is natural, there-
fore, to suppose that any improvements in the
pseudopotentials for the group-IV crystals will put
us in a position to do more definitive work in the
related AB compounds.

Examination of the current situation in Ge will
suffice to indicate the present state of the art re-
garding band-structure theory in semiconductors.
The original local version of the pseudopotential
was able to specify the important energy levels to
an accuracy of about 0.1 eV.! There were, how-
ever, a few levels that could only be located to
within something slightly better than 0.5 eV. Of
most concern at the time was the large optical-re-
flectivity peak near 4.3 eV. This appeared to be
0.4 eV too low in the theoretical spectrum.®” A
subsequent paper using the pseudopotential method
did not meet with any more success in improving
upon this problem. ? Passing on to electronic
multiplet associated with the I'y;: = I'y5 transition,
we note that considerable and intensive efforts
have been made recently which apparently finally
resolve this elusive transition. Donovan et al.®
have made an exhaustive examination of the leading
edge of their photoemission EDC’s and place the
center of mass of the multiplet slightly below
3.2 eV. The same authors, noting the lack of
polarization dependence of their transverse electro-
reflectance signal, definitively assign the 3. 2-eV
multiplet to this I" excitation. Careful piezo-optic
measurements also place the gap at the above
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value.? Our own studies® as well as subsequent
ones® put it at 3.5 eV ©_an error of somewhat
over 0.3 eV.

The above paragraph then suggests the order of
magnitude of the corrections that we will be seeking
in this paper. Sufficient work has been done with
the local pseudopotential model to assure us that we
cannot look for any further improvements by a
variation of the Fourier coefficients; instead, it
will be necessary to explore nonlocal effects. It
should be clear that only a small departure from
the early local version will be required.

An additional goal here will be the clear separation
of valence and core contributions to the pseudopo-
tential. This is necessary as we wish to make a
strict distinction between environmental and in-
trinsic ion effects within the framework of our
model. Indeed, as will become apparent, it is pre-
cisely this classification which is necessary to make
possible a systematic derivation of the potential for
a wide range of materials and structures.

II. CONSTRUCTION OF POTENTIAL

A. Ionic Component

Since the early studies of Kleinman and Phillips, !
considerable effort has been made to formally
justify the use of a pseudopotential to replace the
true atomic potential in the core region. By the
core region we mean that portion of space occupied
by the tightly bound electrons which normally do not
enter into the chemical or valency characteristics
of the atomic species. For the materials considered
here this is simply the region of space occupied by
all the electrons inside the valence shell of the atom.
This point must be reconsidered when we have
weakly bound d states present, as is the case for
the transition substances, or weakly bonded f or-
bitals, as is the case for the rare earths.

Cohen and Heine'? showed that one could use the
requirement of orthogonalization of the core and
valence wave functions together with the Pauli ex-
clusion principle to generate an operator V. This
extra term has the characteristic of nearly canceling
the true potential in the core. Ashcroft!® simply
allowed the total pseudopotential to go to zero in-
side the core radius. The author has shown® !4
that the empty-core approximation will work rea-
sonably well when applied directly to the III-V
compounds. In its conventional form one writes
the empty core model

Vir)=0, 7 <R,
=Ze/r, v>R,. (1)

Recent considerations by Heine and Abarenkov,**
Shaw and Harrison, !* and Shaw'” have shown how
one can justify the use of a similar potential from
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the standpoint of the quantum-defect method. The
basic idea is to examine the bare ion. One then
chooses a model core potential in such a manner
that a Coulomb wave function in the exterior region
has a continuous logarithmic derivative at the core
boundary. An additional constraint on the surrogate
core potential is that it reproduces the observed
ionic spectrum. In order to make the spectra come
out right for states of arbitrary angular momentum
it is necessary to make the core potential depend
somewhat on 7 value. In this way the potential be-
comes momentum dependent and the local restriction
is lifted.

The point of view adopted in this paper is some-
what different from that of the above authors. In
order to motivate it we reexamine the central re-
sult of Cohen and Heine. Through the use of a
variational argument on the kinetic energy they ar-
rived at the following result for the core potential
of the ion:

Vionic,pseudo =Vion _El V;e s (2)
where
VE=2n(0% | Vien| ¢ 6, - 3)

In Eq. (3) 6} are occupied core orbitals with prin-
cipal quantum number . ¢ is the smooth pseudo-
wave-function which in the region exterior to the
core of the bare ion is expected to be Coulombic.
The form of V% is such that one would indeed expect
to find the potential canceled inside the region oc-
cupied by the core orbitals. One would, however,
expect the range of the cancellation to depend on Z,
as the core orbital dimension will quite certainly
depend on angular momentum. Bearing this in
mind we then shall write an angular-dependent
empty-core model for the bare ion as follows:

Vionic,pseudo(lr) =0, v <R'
=Ze/v, v>R,
for I occupied in the core, (4)

Vlionic,pseum(’r) = Ze/1'
for I unoccupied in the core , (5)

where Z is the ionic charge. The core radii should
be roughly proportional to the dimension of the
largest core orbital of corresponding momentum.
For example, in the case of Ge we expect to have
as a first approximation

R, , 4= CX(dimension of core orbital of
s, p, or d symmetry). (6)

Following Lee and Falicov'® we may summarize
Eqgs. (4)-(6) in the convenient form

_ + 1710
Vionic,pseudo"zt 77 Vionic,pseudo 77 » (7)

where m, is a projection operator for the /th com-
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TABLE I. Some of the principal gaps in Si, Ge, and a~Sn with spin-orbit effects removed.
(Ey) (E,) (Ey) (E¢) (E{)
Al Ll F25:—>I‘2', A3_.A1 Lal—’L‘ 22”23 X4"’X1 I‘25:—'I‘15 L3l"’L3
local empirical
Si model* 1.1 1.9 3.8 3.1 3.1 4.4 4.0 3.4 5.4
t present study 1.0 2.0 3.6 3.3 3.3 4.3 4.2 3.4 5.2
experiment 1.1 (2.1?)¢ (4.0?)¢ 3.4° oo 4.4t <o 3.4° 5.58
local empirical
G model?* 1.0 0.6 0.6 2.0 1.8 3.8 3.6 3.6 5.4
© present study 0.8 0.8 0.9 2.5 2.4 4.3 4.5 3.1 5.8
experiment 1.0* 0.8P 1.0° 2.3¢° e 4.3 3. 2m1 5, 8%
local empirical
-8 model’ 1.1 0.6 -0.1 ~1,5% 1.4 ~3.1F 3.1 3.0 4.4
a=sn present study 0.9 0.3 —-0.2 1.6k 1.5 3.4k 3.5 2.5 4.6
experiment cee 0,31 -0.2! 1.6° 3. 509 2.4° 4.4°

2Reference 1.

bF, Herman, R. L. Kortum, and C. D. Kuglin, in
Quantum Theovy of Atoms Molecules and Solids, edited
by P. O. Lowdin (Academic, New York, 1966).

°This is based on an extended extrapolation of Ge, GeSi
alloy data and has not been directly observed; see F. Bas-
sani and D. Brust, Phys. Rev. 131, 1524 (1963).

dThis is—like Ref. c—an alloy extrapolation and could
easily be in error by the amount of the difference between
experiment and theory; see J. S. Kline, F. H. Pollak,
and M. Cardona, Helv. Phys. Acta 172, 816 (1968).

°M. Cardona, Solid State Physics, Suppl. 11, edited by
H. Ehrenreich, F. Seitz, and D. Turnbull (Academic,
New York, 1969).

fWe identify this transition with the energy of the large
optical peak. For a discussion and experimental literature
see Ref. a.

ponent of angular momentum. Using the expansion
in spherical harmonics appropriate for plane waves
results in

(k’l Vionlc,nsoudo| k )

= 4
5

) (21 +1) P, (6 )
1=0 Sl

R’y
Xf Vioni c,pseudo(r)jl (k'}’)jl(kl’)’) Tzdr . (8)
0

Here j, are spherical Bessel functions, 6, is the
angle between % and k', and €, is the volume of a
unit cell. Provided we are far from a resonance,
it is possible to make an expansion of the integral
in Eq. (8). In order to get good convergence it is
necessary to expand out to terms including com-
binations of % and 2’ to the sixth power. Such an
expansion greatly facilitates the speed of computa-
tion compared to what is required if the integrals
are explicitly evaluated.

The core size is approximately determined ac-
cording to Slater’s rules. We can then write

C(n)

Rl(n) = Z,“(n,l) s

Z,oﬂ(n:l)=ZN _Zscr(nrl) ’ (9)

®R. R. Z. Zucca and Y. R. Shen, Phys. Rev. B 1, 2669
(1970).

5D, Sell (private communication).

T, M. Donovan, J. E. Fischer, J. Matsuzaki, and
W. E. Spicer (unpublished).

M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141,
789 (1966).

kThese values are based on ¢,(w) calculations performed
by the author (unpublished). The local (EPM) study was
done by repeating the calculations of Cohen and Bergstres-
ser, and may not be final.

IFor a comprehensive discussion of the band structure
near the valence band maximum in ¢-Sn see R. J. Wagner,
Ph. D. thesis (Northwestern University) (unpublished), and
C. F. Lavine, Ph.D. thesis (Northwestern University)
(unpublished).

where Z, is the nuclear charge and Z,. (»,1) is a
screening parameter determined by Slater’s rules.
The coefficient C(#) which appears in the above
equation is evaluated approximately by requiring
that the potential in the local limit reproduce the
well-known form factors for Si, Ge, and «@-Sn.

In order to make the fine corrections discussed
in Sec. I it is necessary to lift the equality between
R, and R, as implied by Slater’s rules (although
Rs=R,). The final results for the range parameters
are shown in Table I together with C,(x) now taken
as momentum dependent. We note that R, <R for
all the cases studied. One can deduce the same re-
sult in fitting the ionic spectra by the quantum-de-
fect method.!?

Before going on, we might note that in Shaw’s
discussion particular emphasis was placed on
making the model potential continuous at the cell
boundary. This it was shown will minimize the
kinetic energy most effectively. With respect to
the momentum representation of the potential such
a choice will make the tail oscillations damp out
most rapidly. This is not an important considera-
tion for the present discussion as we will only be
interested in the relatively small 2 components of



3500

the potential, Differences between the Shaw model
and the empty-core model will be quite small as far
as the band structure is concerned. It should also
be pointed out that Shaw found a weak energy depen-
dence in the model potential. Again, we are work-
ing over a sufficiently small energy range to neglect
this effect.

B. Valence Component

The total atomic pseudopotential may be written
as the sum of two terms:

(10)

with the ionic portion determined as fully discussed
in Sec. IIA. Utilizing the RPA approximation we
shall write the screening potential induced by the
ionic component:

V’atomic,puucb = Vionic,nseuvb + Vscreening ’

Vsereening™ Vlonic,nsoum(z:?) - 1) (11)
To properly account for the presence of a sizable
gap in the electronic spectra of the crystals under
consideration we start with Penn’s dielectric func-
tion. 1°

To be explicit we shall use the symbol €,(g, E,)
to represent Penn’s function. The quantity E. which
appears is not to be taken as the energy gap of the
semiconductor in the conventional sense of the
minimum spacing between the valence and conduc-
tion bands. As proved by Heine and Jones® it rep-
resents the average gap across the large (Jones’s)
zone face. As Heine and Jones demonstrated, the
spherical model of the electronic dispersion rela-
tions taken by Penn is a satisfactory approximation
for the purpose of computing the wave -mumber de-
pendence of the dielectric function. On the other
hand, the simple two-plane wave expansion for bond-
ing and antibonding states used by Penn substantially
overestimates the interband coupling strength. #
In order to account for this in a satisfactory way
we make the following replacement:

€,(q, E;)=1+B[e,lq,E.) 1] .

The appropriate choice is B=0.65.%
In addition we must correct the Penn model so as
to include exchange. This is done according to the

(12)

substitution®® %

e¥(g,E)=1+[¢;(q, Eo) -1][1 -f4(@)] , (13)
with

sl =5( 1+ 55 19
and we choose

K¢=(2/mK, . (15)

Here K, is the Fermi momentum of a free electron
gas with a density equal to the system under study.
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Then Eq. (11) becomes

1
Vscranins= Vlonlc,pseudo( m - 1) . (16)
We now have a complete prescription for calcu-
lating the atomic contribution to the crystal pseudo-
potential. First we find the ionic portion according

 to the procedures delineated in Sec. II A. Thenusing

Egs. (10) and (11) together with the dielectric func-
tion discussed just above we arrive at the necessary
result.

The argument is not yet complete at this point.
It is well known that one can expect a fairly sub-
stantial amount of charge to be localized in covalent
bonds for the diamond crystals due to interference

effects outside the RPA approximation. For the
present study Phillips’s? expression is adequate:
@p=2¢/€(0) . (17)

Using Poisson’s equation this is immediately con-
verted to a term in the crystal pseudopotential:

V,(3)= ﬁ—z &) [1-7,3)] .

(18)
We need only consider the term V,(3). This is true
since first of all ¢2 appears in the denominator of
Eq. (18). Furthermore the charge is not localized
at a point, and we can expect @,(11) to be about
20% of @4(3).%

We then construct the entire pseudopotential by
inserting the structure factors appropriate to the
diamond structure.® The entire procedure for
setting up and solving the secular equations discussed
in Ref. 25 is then invoked.

Before going on to Sec. III, we should point out
that the energy gap which appears in the dielectric
function is determined in an approximately self-
consistent way. We take

E~E(Z]-3%5), (19)

with the T gap evaluated at a point % of the distance
from the zone center to the zone boundary (Brillouin
zone). % Thus given the ionic potential we can make
a guess for E, and determine €* and thus the crystal
pseudopotential. Then the energy bands are cal-
culated and E, redetermined. If it is not in satis-
factory agreement with E, as guessed, a new cycle
is performed. A little experience with the group-IV
materials makes it possible to guess a sufficiently
good value of E, at the outset to obviate the need for
a second cycle. We should also point out that very
small adjustments in V(8) and V(11) are required;
however, these make corrections in the band struc-
ture of only ~0.1 eV,

II. RESULTS AND CONCLUSIONS

In Table II we give the theoretical results for the
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TABLE II. Effective charge, scaling constant, and
empty-core radius (in atomic units). Here n refers to the
principal quantum of the last filled shell of the atom (»
=2, Si) and [ is the orbital angular momentum.

Zoggn, ) i) Ry(0)
n=2, 1=0 9.85 9.53 0.968
n=2, 1=1 9.85 8.01 0.813.
n=3, 1=0 20.75 20.44 0.985
n=3, 1=1 20.75 18.78 0.905
n=3, 1=2 10.85 17.64 1.626
n=4,1=0 22.25 24.39 1.096
n=4,1=1 22.25 23.63 1.062
n=4, 1=2 10.85 19.53 1.800

important band gaps of Si, Ge, and «-Sn, along with
experiment. A comparison is also made with the
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results of the empirical local model. The very sub-
stantial improvement we have made is immediately
evident. It is particularly gratifying that the tran-
sition energy of the large reflectivity peak now
comes out so well.

It would appear then that future efforts should be
aimed at improving on the theoretical foundations
of the present model. Of particular interest would
be an improved analysis of the corrections to the
RPA. We might also hope to get some improvement
in the exchange and correlation approximation, as
well as a better representation of the screening than
is given by Eq. (11).

The reader might note that spin splitting has been
left out of the present calculation. This is easily
included using the formulation of Saravia and the
author, " and will be done in the near future.

tWork performed under the auspices of the U.S. Atomic
Energy Commission.
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