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Following the procedures of the Kohn-Luttinger one-valley effective-mass approximation
(EMA), but without neglecting the intervalley overlap terms, a multivalley EMA is developed
within the pseudopotential formalism for shallow-level group-V donors in silicon. A phenom
enological two-parameter model impurity potential is proposed which behaves like a square
well at small r and a screened Coulomb potential at large r. The relative smoothness of the
model impurity potential compared with the true impurity potential justifies the use of the EMA.
Within the EMA, the valley-orbit interaction can be incorporated completely in the energy cal-
culations, instead of treated as a perturbation. The effects of the higher-energy subsidiary
valleys and the 1s-2s coupling etc. can also be estimated quantitatively in this EMA. The en-
ergy levels of the group-V donor impurities in silicon are calculated using the variation method.
The two potential parameters are adjusted to fit the observed 1s(A&) 2P~ and 1(T2) 2p~
transition energies. It is shown that the proposed potential describes well the central-cell
effects. For the p states, it is found that the usual one-valley approximation is adequate. It
is also found that in the multivalley approximation the valley-orbit interaction shifts the lz(Af)
level downward and the lg(T2) and ls(E) levels upward relative to the one-valley lz level. The
effects of the uncertainty in the position of the 4~ conduction-band valleys and of the coupling
between the 1g and 2g states on the ground-state energy are shown to be negligible. The con-
tribution from wave-function components of an L& valley of the conduction band to the ground-
state energy is computed to be less than 1% of that from wave-function components of a 4&
valley. It indicates that the higher-energy subsidiary conduction-band valleys may be neglected.
The ground-state-model wave function is used to calculate the photo-ionization cross section
and to predict the Fermi contact hyperfine constants. These results are compared with re-
ported experimental and theoretical results.

I. INTRODUCTION

The Kohn-Luttinger' 3 effective-mass approxi-
mation (EMA) has long been used to describe the
electronic structure of shallow-level impurities in
semiconductors. The impurity potential is assumed
to be a simple Coulomb potential screened by the
static dielectric constant. The agreement is ex-
cellent for the np energy levels for n) 2, but poor
for the s states, especially the 1s state, because
of central-cell effects.

In the case of shallow-level group-V donors in
silicon, although Kohn and Luttinger' 3 wrote the
impurity wave function as a linear combination of
the six wave functions each localized around one of
the L, conduction-band minima, the overlap of
these functions was completely neglected. This
reduced the Schrodinger equation of the donor elec-
tron to six independent equations, one for each
valley. Thus, the EMA of Kohn and Luttinger is
essentially a one-valley EMA. It predicts a sixfold
degeneracy (excluding spin degeneracy) of the s
states, which, because of the tetrahedral symmetry
of the substitutional impurity, are grouped into a
singlet A„a doublet F., and a triplet T~.' How-
ever, infrared absorption experiments by Aggarwal
and Ramdas showed that this degeneracy is lifted,

with the ls(A, ) forming the ground state and the
1s(E) lying slightly above the 1s(T2). This split-
ting of the 1s level is attributed to the valley-orbit
interaction.

The discrepancy between the Kohn-Luttinger one-
valley theory and experiment for the shallow donor
impurities in silicon is usually attributed to (i) the
neglect of the central-cell correction to the impuri-
ty potential, (ii) the invalidity of screening by a
dielectric constant in the vicinity of the impurity
ion, (iii) the breakdown of the effective-mass ap-
proximation in the central-cell region, where the
true impurity potential can no longer be assumed
to be slowly varying, and (iv) the neglect of the
intervalley overlap of the wave-function compo-
nents in the calculation of the s-state energies.

Many attempts have been made to improve the
agreement between the Kohl-Luttinger theory and
experiment by taking into account one or more of
these corrections, ' "or by improving the varia-
tional procedure used in the Kohn-Luttinger meth-
od. ~ Most of these attemptss-v, s, &0 aimed at ac-
counting for the 1s(A, ) ground-state energy within
the one-valley approximation; and. one of the in-
trinsic difficulties of a theory in the one-valley
approximation is its failure to account for the ob-
served valley-orbit splitting of the s states. Fur-
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thexmore, as we shall demonstrate by our results,
any central-cell-correction parameter obtained
by fitting the ground-state energy in the one-valley
approximation will undoubtedly ovex estimate the
true effect of the correction considered.

It is evident that in order to calculate the valley-
orbit splitting of the s states one must employ wave
functions of the proper symmetry and must include
all of the intex valley terms. By simply consider-
ing the symmetry of the A„T~, and F. states of
the ls level in the impurity core region, Kohn and
Luttinger ' were able to order correctly the rela-
tive energies of these states. However, since there
is large variation of the observed valley-orbit in-
teraction from one impurity to another, 4 it is
clear that specific calculations will be required to
account for the chemical trend.

Recently, Baldereschi" considered the simple
Coulomb potential screened by a k-dependent di-
electric function appropriate to the LA values of
the valley separation and treated the intervaQey
terms as a perturbation in Si and Qe. The esti-
mated ls(A, )-is(Tz) splitting was 10.6 meV, which
is about 3 of the ls energy in the one-vaDey approx-
imation. This result clearly demonstrates that the
intervalley overlap of the donor impurity wave
function must be taken into consideration in calcu-
lating the ground-state energy. Furthermore,
since the spbtting is comparable to the 1s enexgy
in the one-valley approximation, it is desirable to
derive a procedure which takes into consideration
the intervalley terxns completely rather than as a
perturbation.

A one-band multivalley calculation of the 1s-
state energy of the group-V shallow donors (P, As,
Sb) in silicon was first carried out by Morita and
Nara. By orthogonalizing the impurity wave func-
tion to the coxe states of the donor, their approach
is in essence within the pseudopotential formalism.
The EMA was used exterior to the impurity core
region where a simple screened Coulomb potential
was assumed, while within the impurity core re-
gion a first-principle true impurity potential was
constructed from ionic potentials and a k-depen-
dent dielectric function. The calculated Is(E) and
Is(Tz) energies were satisfactory, but the calculated
Is(A~) energies gave E(P) & E(As) & E(Sb) for the
three donor impurities, contrary to experimental
results which showed that E(Sb) & E(P) & E(As). If
one assumes that the one-band appxoximation is
valid, then these results indicate that the first-
principle impurity potential obtained by Morita
and Nara is not sufficiently accurate.

In this paper we attempt to take into considera-
tion all of the four col'rections mentioned above.
Corrections (iii) and (iv) are taken into considera-
tion naturally by formulating the problem in the
pseudopotential theory and in the multivalley effec-

II. MODEL IMPURITY POTENTIAL

The true impurity potential U is a sum of terms
which are invariant under the operations of the tetra-
hedral point group. The first few terms are given
by"

U(r)=f(r)+g(r)xyz+h(r) (x +y +z ——'r )+ ~ ~ ~ .
(2. 1)

The spherically symmetric term has the asymptotic
values of

eAZ . elim f(r) = ——
r (2. 2)

where AZ is the difference between the atomic
numbers of the donor and the silicon atoms, and
& is the static dielectric constant of silicon. The
spherically symmetric part of U is by far the most
important in determining the energy levels. The
contribution of the anisotropic terms to the ener-
gies is expected to be small. In fact, since the s
states have definite parities (see Sec. III), the
expection value of g(r)xyz is identically zero for
the s states, so that the first anisotropic term has
no effect on the s-state energies and splitting.
Since it is difficult to estimate g(r) and h(r) even
qualitatively, we shall not consider the anisotropic
terms any further; and for the purpose of discus-
sion we shall simply approximate Uby f(r).

Equation (2. 2) gives the behavior of U at large
values of r and as r- 0. A qualitative behavior of
U at intermediate values of r in the central-cell
x'egion may be obtained as follows. If we picture
a Si.'4 ion as a charge distribution, then the cor-
responding potential is

y(St+4) Zzt8 +82 ds I Z„ Ign(r ) I

(2. 3)

where Za, is the atomic number of silicon, and the
sum is extended over all of the occupied orbitals

tive-mass approximation, and we shall show that
corrections (i) and (ii) can be described well by a
phenomenological two-parameter model impurity
potential.

The outline of this paper is as follows. In Sec.
II, a phenomenological impurity potential is pro-
posed and its physical significance discussed. In
Sec. III, the multivalley EMA is developed and
applied to calculate the energies of the s states,
using the variation method and the proposed poten-
tial. In Sec. IV we discuss the potential param-
eters of the group-V impurities in terms of central-
cell radii and ionic radii. In Sec. V, the validity
of the various approximations made in the energy
calculations is discussed; and in Sec. VI the impu-
x'ity wave functions are used to predict the Fermi
contact hyperfine constants, and to calculate the
photo-ionization cross sections.
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(Is'2s'2p ) of the Si" ion. Since all of the shells
of the Si' ion are filled, the charge density
—eZ„ Ig„ I should be essentially spherically sym-
metric, so that (2. 3) may be rewritten as

3 /

V(s +4) St 8 Q I2ftg( I }r
0 n

z e8

0

+e1, p, (si'4), (2.4)
r

where R„(r) is the radial part of g„(r), and

p, (si') =Z„HR„'(~) (2. 6)

is t e radial electronic charge distribution function
of the Si' ion. Similarly, the potential due to a
group-V impurity ion I"5 is

V(I') = — ' +e' p,(I')+8', p, (I"),
y r

(2. 6)
where p, (I'~} is the radial electronic charge distri-
bution function of the I' ion. The bare impurity
potential is

U, (i) = v(l') —v(s1'}

+ e np, (r ) +e, b.p, (r ),2 d& I 3 d'v

'r Y'
0 r

(2. V)

where zg= [g, —Z„] is the difference between the
atomic numbers of the impurity and the silicon
atoQlsy and

ap, = [p, (I") —p, (si')] .

0 E E E

0 0.2 0.4 0.6 0.8 I.G l.2 IA
r (au,)

I'IG. l. Effective electronic radial charge densities
of the group-V impurity ion cores in silicon. Arrows in-
dicate the positions of the outermost peaks.

Inside the central-cell region, there is little di-
electric screening by the valence electrons, so that
the bare potential is approximately equal to the
screened potenti. al.

It should be noted that as defined by (2. 3) and
(2. 6), the exchange energies have been neglected
in V(si'4) and V(I" ). We may partially take these
exchange terms into account by using atomic core
wave functions which are obtained with the ex-
change energies included. Using the Herman-
Skillman table of atomic orbitals we have com-
puted hp, of the group-V impurities. They are
given in Fig. 1. The oscillations in hp, imply that
the potential U also oscillates in the central-cell
region. This in turn implies that many Fourier
components are needed to expand U.

The one-electron energy E and wave function g of
the impurity- problem are given by the wave equa, -
tion

[8 + U]g=Zg, (2. EE)

where Ho is the one-electron Hamiltonian of the
pure and perfect crystal. Since we are interested
in the particular energies which lie between the
conduction- and the valeIlce-band edges' it 18 nat-
ural to expand g in terms of the Bloch functions
$~0 of the conduction and valence bands. In the
case of a donor impurity in the one-band approxi-
mation, EE is expanded in terms of the conduction-
band Bloch functions P~~. By writing (~0= u, e' '

~,

the periodic function u~~. can be expanded in the
form

cfu~. =~C(G)e'

where 6 is a reciprocal-lattice vector. For sili-
con, u& is made up of 3s- and 3p,-like atomic or-
bitals, so that many 6 components are required
to expand ufu, Using (2. 10) the matrix element
of Umay be written as

&y,'I U~y,', &=~c(c)U(c+k'-k),

(2. Io)

(2. II)
wllel'e U(k) 18 tile Fourler tl'RnsfoI'111 of U(r). Now,

as mentioned above, U(G+k) may not be negligible
compared with U(k), so that the usual effective-
mass approximation, ' ' which neglects U(G+k) for
640, is no longer valid.

In this study, instead of giving up the EMA because
of the strong and rapidly oscillating potential in the
central-cell region, we introduce a phenomenologi-
cal model impurity potential which averages out the
oscillations and yet gives a good description of the
central-cell effects. A more practical reason for
using a phenomenological model potential is that
the true potential cannot be determined from fix st
principles with sufficient accuracy, as evidenced
by the calculations of Morita and Nara. There-
fore, we propose to calculate the energies of the
donor electron from the model wave equation
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where H is the one-electron Hamiltonian of the
perfect crystal,

is the pseudo-wave-function, U~ is the pseudo-im-
purity-potential given by

(2. 1e)

purity wave function only outside the centx al cell.
A further justification of using Eqs. (2. 12) to

(2. 14) to describe the donor electron outside the
central-cell region may be sought in the pseudo-
potential formalism. We have shown in the Appen-
dix that in the pseudopotential formalism the pseudo-
wave-equation of the donor electron may be written
RS

FIG. 2. Comparison of the proposed model impurity
potential and the true impurity potential.

U, C =(U+ V„)C

= UC +Z ~ (E —E ~ ) (g,. i
C ) g, , (2. 17)

(H + U)C =EC, (2. i2)

C =Z„-F(fr) y„'(r) . (2. i4)

Gne of the advantages of working in the EMA is
that the valley-orbit interaction may be easily in-
cluded in the variation calculation of the enex'gies.
Also, in the EMA, some of the sources of dis-
crepancy between theory Rnd experiment can be
examined easily (see Sec. V).

The proposed model impurity potential and the
true impurity potential are shown schematically
in Fig. 2 for comparison. The potential param-
eters b and 8 are adjusted to fit the variationally
calculated ls(A, )» 2p+ and is(Tz) -2p+ transition
energies. At small y, the model potential looks
like a spherical well, with a depth of —e~(B+ b)/q;
and at large ~, it behaves like a screened Coulomb
potential. The turning point is given approximately
by the position of maximum Z,«, i. e. , by B~
= (B+b)/Bb. We shall further discuss the physical
significance of B~ in Sec. IV.

Since the model impurity potential differs from
the true impurity potential only in the central-cell
region, the corresponding model impurity wave
function, which is given by (2. 12) and (2. 14), will
differ from the true impurity wave function also
only in the central-cell region. %e shall make use
of this property later in Sec. VI to calculate the
Fermi contact hyperfine constants and the photo-
ionization cross sections which depend on the im-

where the model potential is taken to be of the form

U(r) = —(e'/er) Z„,(r) = —(e'/e~)(1 —e + Brs '"),
(2. 13)

and the model impurity wave function is expanded
in the form

and gai ls a core-state wave function of the impure
crystal.

As defined, V~ is a nonloeal repulsive potential
which cancels part of Uin the core regions. How-
ever, as shown in the Appendix, because 4 is ex-
panded in the Bloch functions $~0, both the pseudo-
wave-function and the pseudo-impurity-potential
differ from the true wave function and the true
impurity potential only in the core region of the
impurity atom.

Many forms of pseudopotentials have been used
ln px'Rctlee. ' Gne convenient form of R phenom-
enological pseudopotential is the model potential
V„developed by Heine et g/. ' '" It represents the
interaction of a conduction or valence electron with
the ion col'e of an RtoIQ Rnd lt hRs the forID of

V„=—Z, A. ,I', for r& H„

= —Ze'/r for ~& H„, (2. ia)

whex'e I', is the projection operator that picks out
the component of the wave function with angular
momentum I, Rnd Z is the valency of the ion.
Phillips 0 proposed that the pseudopotential form
factor V~(j), including dielectric screemng effects,
for a homopolar covalent crystal has the form
V~ (g) = V„(g)/e(g), where V„(q) is the Fourier trans-
form of V„(r) and e(q) is the dielectric function
of the crystal. This suggests that a possible form
of the pseudo-impurity-potential is

Us(r)=(2 )3 d q
—

(-) s' ', (2. 19)3 «s(q. ) a e

where V„=[V„(impurity) —V„(host)] Further. more,
since only the 8 states have appreciable amplitude
in the core region and hence are affected by the
short-range portion of the impurity potential, V„
ean be Rppl oximatedq fox' gx'oup-V 1Dlpux'ltles ln
Si, by
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velope function into

(
As

Zeff from 0—I
m=O:

!m! even(+0):

! m! odd:

A&+E+ T2,

A, ~+22+ 2E+ T~+ T3,

2'+ 2T3 .
In the one-band approximation, the ls-state wave

functions are given by

C(1")=Z o., (I")Z F, (k)g,'(r),
i= 1

(3. 2)

u, (A, ) = (1, 1, 1, 1, 1, I)/v 8 (3.3)

0
f

I I I i

0 I 2 5 4 5
r (a~.)

FIG. 3. Comparison of the effective charges of the
proposed model impurity potential tzq. {2.13)].and the so-
called screened impurity model potential tmq. {2.19)] for
As in Si.

(1, —1, 0, 0, 0, 0)/V 2

«,.(r,)= (o, o, l, —l, o, o)/v 2

(o, o, o, o, I, -I)/~a,

—,'(I, I, -I, -1,O, O)
o;(&)=

—,'(1, 1, 0, 0, —1, —1).

(S.4)

(S. 5)

= —[Ao(impurity) —Ao(silicon)] for r & R„
= —e/r3 for x&R~ .

(2. 2o)
Equation (2. 19) gives the so-called screened im-

purity model potential used by Jaros. ~'2' As de-
fined it has a discontinuity at r = R„,which renders
it unsuitable, if not unphysical, to be used in varia-
tion calculations. Furthermore, this potential does
not give satisfactory results. When used in the
one-valley approximation, as shown by taros, e the
calculated energies are too small. However, when
it is used in the multivalley approximation, we
found that the calculated Is(A, )-state energies are
larger than the experimental ground-state energies
by more than an order of magnitude.

The proposed model potential U(r) given by (2. 13)
is continuous and has the same form as U„(r) given
by (2. IS). This can best be demonstrated by
plotting the effective charge Z,«defined by U(r)
= —(e /v. r)Z„,(r) Z„, for U(r. ) and U„(r) are
shown in Fig. 3 for As in Si, using Ao given by
Animalu and Heine" and c(q) given by Nara and
Morita. 23

HI. ENERGY LEVELS IN THE MULTIVALLEY EFFECTIVE-
MASS APPROXIMATION

A. Variation Calcuhtions and Results

As shown by Kohn and Luttinger, ' because of
the T„symmetry of the point impurity in silicon
crystal, the donor wave functiondecomposesaccord-
ing to the magnetic quantum number m of the en-

&C(I') la'+ Ule(I")&
(e(I")IC(r')) (S.8)

where I" can be A~, T2, or E.
In principle, Eq. (S.8) gives the energy E(I") in

terms of the variational parameters a, and a, .
However, the evaluation of (4 I C ) and (4 I UI4)
using (3.7) is time consuming since it involves
complicated three-dimensional integrals. Further-
more, because of the intervalley terms, the
kinetic-energy term (C I B l 4 ) is very complicated

The envelope function F, (k) is localized around the
ith of the six hz conduction-band minima. Following
the procedure for the one-valley EMA~'3 we define
the Fourier transform as

F,(r)=(I/WV)QF, (k)e~[f(k-k, ) r], (S. 8)

where k, is the position of the jth conduction-band
minimum, and V is the volume of the crystal. The
envelope functions F, (r) are taken as trial functions
in the variation calculations, and they are assumed
to have the same form as in the one-valley EMA. '
For example, F,(r) is taken to be

F,(r) = [I/(va', a, )'~'] exp(- [(x'+y')/a', + z'/a', ]'"),
(S.7)

where a, and a, are variational parameters, which

may be thought of as the effective Bohr radii of the
1s state.

It can be shown from group-theoretic arguments
that if the impurity potential is assumed to have
tetrahedral symmetry, then there is no mixing of
the 4 (I")'s belonging to different representations.
Therefore, the ls-state energies are given by (2. 12)
and (3.2) as
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FIG. 4. 18+~)- and 18(T&)-state energies of As in
Si as a function of the potentia1 parameters.

(3.9)

&4 I Ul C ) =Z ~, (f')~, (f') I—

(
1 — 1

[4+a Ik, -k& l~] [(2+ah) +c Ik, -k& I ]

2aa(2+ ab)
[(2 + ab)'+ a'

I k, -k, i ']')

('~' =~ '" ""[4 Ik -k I']
16

4, g 4+a Ik& -k& I

(3.11)

The energies are determined by minimizing E(I')
with respect to a. . We use e(59'K) = 11,46 for the

to evaluate if (3. f) is used. Therefore, an alterna-
tive simplification procedure is adopted using the
multivalley spherical-band approximation: (i) F,(r)
is hydrogenic, so that a,=a, =a in Eq. (3.7), and
(ii) E, =E, +8 (k-k, ) /2m* for k near k, .

%'e'use the value of m*=0. 29819mo which gives
the same one-valley 1s energy of 30. 879 meV as the
one-valley ellipsoidal-band case of m, =0.9163mo
and m, =0.1905mo for the impurity potential
—e /&r. We found that this value of m* holds for
11.41 «& 11.70.

Using the spherical-band approximation, the
kinetic-energy term (4 I R I @), the potential-ener-
gy term (C I Ul 4), and the normalization term
(4 I 4 ) can all be reduced to closed forms in terms
of the variational parameter u. For the 1s states,
these terms are

static dlelectrlc constant of 81 which ls deduced
from the room-temperature index of refraction
n = 3.417,26 Rnd the temperature coefficient
(1/s)(ds/dT) =(3.9+o.4)»0-' ( C)-'." The par~-
eters b and J3 are adjusted to fit the experimental
ls(A~) -2p, and ls(T3)- 2p, transition energies.
The position of the 6& conduction-band minima is
assumed to be at k, =0.85k . The effects of k;
are analyzed in Sec. V. The resulti. ng dependence
of the ls(A, ) and ls(T, ) energies on the potential
parameters is illustrated for As in Fig. 4.

For the s states, the intervalley overlap con-
tributes a factor of order 1/(1+ a'lP)' to the
normalization constant (4 I4 ). For the group-V
impurities this amounts to about 10 ', so that the
intervalley overlap of the wave function is indeed
negligible. However, the probability density 4*4
near ~=0 is maximum for the A, state but zero
for the Ta and 8 states due to symmetry. This,
together with the fact that the model impurity po-
tential is large near ~= 0, is responsible for the
spllttlng of the s stRtes.

Using the appropriate trial envelope functions,
the same procedures can be applied to evaluate
the energies of the 2s, 2po, and 2p, states, etc.
For the 2/0(T~) state [m = 0 in Eq. (S.1)]we found
that the intervalley contribution to the energy is
small as expected, and is less than 0. 04%%uo in all
cases for the potential parameters used. This
indicates that for p states the usual one-valley
approximation should be adequate. In the one-
valley approximation, there is no need to make
the spherical-band approximation because varia-
tion calculations can be carried out in the para-
bolic-band approximation. Hence, for the 2p and
3p states the energies are calculated using the one-
valley parabolic-band EMA.

The results of the variation calculations for the
group-V impurities in silicon, together with avail-
able experimental optical data are given in Table
I, where the experimental data have been adjusted
so that the 2p, levels are the same as the theoretical
value (6.33 meV).

The small discrepancies between theory and ex-
periment for the s states are partly due to using
the spherical-band Rpproximatlonq Rnd to the ne
gleet of phonon broadening and shift at the finite
temperature of the experiments. Some other pos-
sible sources of discrepancy will be discussed in
Sec. V.

B. Valley-Orbit Interaction

The intervalley coupling has the effect of lifting
the sixfold degeneracy of the s states predicted by
the one-valley EMA. The energy shifts can be
obtained by comparing the multivalley EMA en-
ergies with the one-valley EMA energy. In Table
II the 1s variational energies in the one-valley.



T. H. NING AND C. T. HAH

approximation using the same potential and param-
etex s as in the multivalley approximation are given.
By comparing with the results of Table I, we see
that for all of the gxoup-V impurities the valley-
orbit interaction shifts the 1s(A, ) level downward

Ec

El, (E)
Els(TZ)

TABLE I, Binding energies of the group-V donors in Si.

Variatlon
parameters

(a.u. )

One —va l ley,
no volley-orbit
interaction

Els«i)

Mul t i
—va I ley,

with volley-orbit
interaction

State gg 8) Experiment

apk

2P+
2s(E}
2s(T2)

P 2s(A()
2pO

lsI)
ls(T2)
ls(Ag)

p+
Pk

2sI)
2s(T2)

As 2s(Ag}
2PO

is%)
ls(T2)
is@))

ap+

2P+
2s(E)
2s(T2)
2sg, )
2pO

ls(E)
ls(T2)
ls Q,))

50.5 31.0
50.5 31.0
37.1 37.1
36.2 36.2
31.4 31.4
34.0 20.5
35.6 35.6
33.7 33.7
23.1 23.1

50.5 31.0
50.5 31.0
37.8 37.8
37.0 37.0
29.7 29.7
34.0 20.5
37.1 37.1
36.4 36.4
18.4 18.4

50.5 31.0
50.5 31.0
37.6 37.6
36.8 36.8
32m 3 32, 3
34.0 20. 5
36.6 36.6
36.1 36.1
26.0 25.0

2. 811
6.326
7.895
8.042
8.947

ll. 352
32.376
33.740
45.469

2.811
6.326
7.790
7.921
9.257

11.352
31.458
32.601
53.690

2.811
6.326
7.824
7.945
8.786

ll. 352
31.753
32.818
42. 680

a. o6(4 2 K)"
6 33(4 2 K}'

~ ~ ~

11.39(4.2'K)"
32.av(69'I)'
ss. v4(59 Qc
46. 47(4. 2 K)c

S.O8(4. 2 K)"
6 33(4 2 K)"

~ ~ ~

9 OS(4 2 K)'
~ ~ o

11.45(4. 2'K)"
31.19(5e 'K)'
s2. 6o(5e 'K)'
5S.69(4.2 K)

2. 99(4.2'K)"
6.33(4.2'K)'

~ ~ e

11.39(4.2 K)~
30.40(59 K)
32. 82(5o z)'
42. 68(4. 2.K)c

50.5
50.5
38.0
37.3
27. 9
34. 0
37.6
36.1
14.0

spa 31.0 2. 811 3.05(4. 2'K)~

2' 31.0 6.326 6.33(4.2 K)e

2s(E) 38.0 7.757 4 ~

2s(T, ) sv. 3 v. 8v2 8.vl(4. 2'K)'
Bi 2s(A;) 27. 9 9.624 ~ ~ ~

2PO 20. 5 11.352 11.34(4. 2'K)
ls(E) 37.6 31.182 ~

ls(T2) 36.1 S2. 161 32.16~
14.o vo. Sol vo. So(4. 2 K}'

~The potential parameters 5 and B.used are given in
Table II.

'See Bef. 33.
'See Bef. 4.
dSee Bef. 31.
'See Bef. 28.
See Bef. 32.

~See Bef. 29. The ls(T2) level of Bi in Si is spin-orbit
split, with the fls(At) —quartet] =39.08 meV and Ils(At)
—doublet] =38.08 meV. Here we have assumed that the

ls(T2) level before spin-orbit splitting (see Bef. 30) has
an energy given by [ls(T2}—ls(Ag)] = Ndoublet) + (32) (quartet
-doublet)), i.e. , I'ls(T2) —is+2)]=38.74 meV.

FIG. 6. Schematical iBustration of the valley-orbit
splitting of the ls levels.

and the 1g(T~) and ls(E) levels upward relative
to the 1s level in the one-valley approximation.
These shifts are illustrated schematically in

Fig. 5.
Table I shows that the degeneracy of the 2s

states is also lifted, the 2s(E)-2s{A,) splitting
being 1.05, 1.47, 0. 96, and 1.87 meV for P, As,
Sb, and Bi, respectively. These compare well
with the estimates of 2s(E)-2s(A, )=1.3, 1.6, and
0.4 meV for P, As, and Sb, respectively, pre-
viously obtained by Kohn and Luttinger' who as-
sumed the 2s(T, ) and 2s(E) states to be degenerate.

The results of Tables I and II show that the cen-
tral-cell correction gives a shift of only about 4
meV to the ground-state energy if the one-valley
approximation is used, while a shift of 12-40 meV
is obtained in the multivalley approximation. Thus,
it is evident that the use of parametric central-
cell correction te fit the one-valley EMA ground-
state energy to experiment, without properly taking
into account the valley-orbit interaction, will over-
estimate the true effect of the correction consid-
ered.

IV. CHEMICAL TREND OF CENTRAL-CELL RADIUS AND
IONIC RADIUS

As discussed earlier, in Sec. II, the proposed
model impurity potential [Eq. (2. 13)j looks like a

Potential
parameters

(a.u. )

Variation
parameter

(a.u. )

P
As
sb
Bi
Coulomb

0.8724
1.2577
1.0118
l.589

v. 310
16.861
8.648

31.92
0.0

32.7
33.6
34.0
33.7
38.4

34.498
33.789
33.548
33.716
30.879

TABLE II. The ls state energy in theone-valley spherical-
band approximation, yn* =0.29819mo.
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TABLE III. Comparison of Bz with R«,.

b B ~z &«
(a.u. ) (a.u. ) (a.u. ) (a.u. ) Rz/R g

P
As
sb
Bi

0.8724
1.2577
1.0118
1.589

7.310
16.861
8.648

31.92

1.283
0.8544
1.104
0.6607

0.765
0.545
0.815
0.630

1.68
1.57
1.35
1.05

spherical well at small r, and it behaves like a
screened Coulomb potential at large x. The bound-
ary is given approximately by the position of
maximum Z„„Rz=(B+b)/Bb. Qualitatively, Rz
represents the radius beyong which the central-cell
correction to the impurity potential is unimportant.
Therefore, we expect Rz to be correlated somehow
with the radius R„,of the effective charge distri-
bution of the impurity ion core.

R„,may be estimated as follows. In Sec. II,
we found that the true impurity potential in the cen-
tral-cell region is given qualitatively by a point
charge of e~Z at the nucleus plus an effective elec-
tronic radial charge density of —e4p, (r) [Eqs.
(2. 7) and (2. 8)]. R„, should be given by some
weighted average of the peak positions of I ~p, I.
However, we shall adopt the simplest definition,
namely R, =position of the outermost maximum
of I hp, I. Examination of Fig. 1 shows that this
definition works well for the group-V impurities,
except for Bi. In the case of Bi, the outermost
maximum of leap, I, which occurs at 0. 890 a. u. ,
is so weak that it certainly overestimates R„,(Bi).
The effective value of R„,(Bi) should lie somewhere
between the outermost and the second outermost
peaks of I hp, I. We shall assume that R„,(Bi)
= 0. 630 a.u. , which is midway between the outer-
most and the second outermost peaks. In Table
IG we compare Rz and R„„ofthe group-V donors.
The comparison shows that Rz is larger than R„,
by about 5-70%. Also, the ratio R~/R„„decreases
as the atomic number increases. As we shall see
immediately below, this chemical trend is com-
pletely consistent with the comparison between ion
radius arid radius of maximum radial charge den-
sity of the ion in crystals.

Slater observed that Pauling's ionic radii3' are
consistently larger than the radii of maximum radi-
al charge density in the outermost shell of electrons
in the corresponding ions, by a ratio of about
1.5-3.0 for the monovalent and divalent ions.
Furthermore, for the ions which belong to the
same group in the Periodic Table, this ratio de-
creases as the atomic number of the ion increases.
This observation suggests that we make a similar
comparison for the group-V ions.

In Table IV, we compare Pauling's ionic radius35
of a group-V ion with the radius of maximum radial

TABLE IV. Comparison of Pauling's ionic radii with
the radii of maximum charge density in the outermost
shell of electrons in the ions.

Ion

p+5

As'
Sb+'
Bi'

Ionic radius
(A')

0.34
0.47
0.62
0.74

Shell radius
of core

O. 184 (2p)
0.274 (3p)
0.440 (4d)
0.542 (5d)

Ratio

1.85
1.71
1.41
1.37

charge density in the outermost shell of electrons
in the ion core. The latter is taken from Table II
of %aber and Cromer, 38 which actually gives the
core orbital of the neutral atoms rather than of the
ions. (The Herman-Skillman orbitals' from which
we obtained R„,are also orbitals of the neutral
atoms. ) The results show that the ionic radius is
larger than the radius of the core charge distribu-
tion by a ratio of about 1.35-1.85. Also, this ratio
decreases as we go through the sequence from P
to Bi.

Comparing Tables IG and IV, we see that the
values of Rz are indeed consistent with the con-
cept of an effective radius of the impurity ion
core. Furthermore, the good quantitative agree-
ment substantiates the interpretation that Rz mea-
sures the effective core radius of the impurity ion,
beyond which the central-cell correction to the
impurity potential is unimportant.

The existence of R, for P indicates that although
both Si and P have the same core configuration, the
charge distribution in the two cores are quite differ-
ent. It also accounts for the large Rz for P while
it has the smallest ion core of the four impurities.

V. SOME POSSIBLE SOURCES OF DISCREPANCY

A. Effects of the Uncertainty in k;

In Sec. III, we assumed that the b,, conduction-
band minima are located at a distance of 0,
= 0. 85k,„from the center of the Brillouin zone.
Actually, experimental results by the ENDOR
method37 ~9 indicate that k,./k =0.85+0.08. This
uncertainty in k,/k, „does not affect the calculated
P-state energies because there the, intervalley terms
are all negligible. However, variations in k,/k
would change the calculated valley-orbit splitting
which in the multivalley approximation is a function
of the intervalley separation.

In Table V we give a comparison of the quantities
of interest as a function of k,/k, „for the case of Sb
in Si. It is seen that the effect of the uncertainty
in k,./k on these quantities is small.

B. Coupling between the ls and the 2s States

It can be shown by group-theoretical arguments
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(s. 1)

&e,.(1)IHIC„(1 }&

&C„(1")!C„(1)&

(s. 2)

This is equivalent to neglecting the coupling be-
tween a given symmetry state and other states of
the same symmetry. In this section we examine
the effect of such coupling on the energies calcu-
lated.

In the case of the one-valley EMA, Faulkner
considered the first 9 s-like and the first 18 p-
like energy levels and found that for silicon there
is negligible energy shift due to the interaction
among the levels.

In the multivalley approximation we shall assume
that the 18 state is coupled appreciably only to the
28 state. Coupling between the ls and Ss states
may be neglected because of the larger energy
separation. Thus, the ls and the 2s energy levels
are g ven by t e 8 lar equat

&C„(H~e„)
-E&e„ie„&

that the matrix element of the donor electron
Hamiltonian H between states 4,(I') and 4,(I'}of
the 8ame repre8entatlon does not in general vRQish.
Hence the Is(A, ) state could be coupled tothe 2s(A, ),
the 2Po(A, ), and the Sdo(A, ) states, etc. Similarly,
the Is(E) and the Is(T,) states could be coupled to
the higher-E Rnd higher- Ta states, respectively.

In Sec. III we assumed that the energy could be
calculated by the variation method fx'om expx'es-
sions like

I&h~ IHII, ~& I

&L, IHII, , &
—&S, IHls, &

' (s. s)

The matrix elements (a, IH lS, & and &L~ CHIL~)
are just the one-VRQey energies of the 6& valley
and the Lz valley, respectively. If we assume
that the effective masses for the two valleys are
not much different, then we may write~

&L~ ~ H~ L~) —(h, ~
H~ b,, & =energy separation between

6g valley and I g vRlley
=O. V eV. (s. 8}

points of higher energy at I.„E~, and U„etc. ,
points of the lowest conduction band besides the
six 6& minima. However, thus far, in the multi-
vRlley approximation we hRve included only the
six 4, valleys, and the contribution to both the
wave function and the energy from the higher sym-
metry points have been neglected. To introduce
wave-function components from all of these sub-
sidiary valleys into the variation calculations
would make the problem prohibitively complicated
and would require a more accurate picture of the
band structure than is presently available. Never-
theless, the contribution to the ground-state ener-
gy from a higher subsidiary valley, say at L,~, can
be compared with that from a 6& valley as follows.

Consider a b, ~ valley at (0. 85, 0, 0)k ~ and a
L,~ valley at (0. 5, 0. 5, 0;5)k . The total wave
function is

@=C,, i~, )+C,, iL, &„ (s.4}

where [ n, ~ & and [L,~) are the wave functions for the

6, valley and the L, valley in the one-valley approx-
imation. The mixing-in of the I.,-valley compo-
nent has the effect of lowering the d &-VRQey energy
by

&e„/ Hf e„& &e„/Hfe„&

(s. 8)
A8 a specific example, we consider phosphorus.
Using the same k,/k ~ and potential parameters
as in TaMe I, the individual terms can be evaluated
in terms of the variational parameter c. The en-
ergies are then determined by minimizing E»(I')
and E&,(I') with respect to a. The results are
given in Table VI, where we have also listed from
Table I the corresponding energies anth no cou-
pling. The 18(A,) level is shifted most, but it
amounts to only 1.8%.

%'e expect the effects of the 1s-2s coupling to be
even smaller for the deeper impurities because
of the larger energy separations.

C. Contribution to the Ground-State Energy from the Higher
Subsidiary Conduction-Band Minima

Band-structure calculations fox' silicon40' indi-
cate that there are subsidiary valleys or saddle

Potential
parameters~

(a.u. )
8

0.88 l.0409 9.320 l.068

D. 85 1.0118 8.648 1.104

laÃ)
ls(T'2)
is@&)

lsÃ)
lsd"g)
1SQ1)

Variation

paI'arne

ter
8

(a.u. )

36.6
35.1
24. 8

36.6
35.1
25. 0

31.761
32.820
42.680

31.753
32.818
42. 680

18$)
0.82 0.9817 7.995 1.144 ls{T2)

18@))

36.6
35.1
25. 2

31.748
32.818
42.680

~5 and B are determined by fitting the theoretical
ls Hi) 2P+ and ls(&2) 2p~ energies to the experimen-
tal values.

TABLE V. Comparison of the potential parameters
5 and 8, the variation parameter g, the energy levels,
and the peak position 8& of Se effective impurity charge
as a function of k]/$~1 for sb in 81
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TABLE VI. The effect of coupling bebveen the 1s and 2s
states on the energy levels of P in Si.

lOI4

State

2sl)
2s(T2)
2sg()
1sl)
1s(T2)
1sQ g)

No coupling

7.895
8.042
8.947

32.376
33.740
45.469

Energy (meV)
With coupling

7.895
8.042
8.926

32.390
33.780
46.298

shift

(0.001
& 0.001
—0.021

0.014
0.040
0.829

0 ~- f

x 5 (Ey + Ey —I(d ) q

where n is the optical index of refraction, & is the
optical dielectric constant, E,«/Eo is the effective
electric-field ratio at the trap center, o. = e /I'c is
the fine structure constant, I ls(A, ) ) is the ground
state of the donor electron, and I f) is the final
state in the continuum. Now, the appropriate unit
of distance in the impurity problem is the effec-
tive Bohr radius a of the ground state. Therefore,
most of the contribution to the dipole matrix ele-
ment (fir lls(A, )) comes from wave-function com-
ponents at distances larger than a from the donor

The matrix element (6, I Kl L, ) is then just an inter-
valley matrix element of B.

Assuming that the parameters in Table I hold
for both the 6, and the L, valleys, we have calcu-
lated the energy shifts for the group-V impurities.
They are given in Table VII. The energy shift is
small in all cases compared with the one-valley
energy of the 6& valley, which is about 34 meV,
indicating that the L& component is negligible.

Recently, Castner and Castner et al. 3 con-
sidered the mixing into the 6, components the L&,

Eg and U, components and obtained shifts which
are about 10 times our estimates. They assumed
the mixing interaction to be the impurity potential
and the shifts in energy were calculated from ex-
pressions of the form

l(b., I UIL, ) I'

(L~IKILi) —(hglKlhg)
'

By neglecting the kinetic energy term l(b, i I H IL|)I,
which we found to be of the same order of magni-
tude as the potential energy term l(b,, l Ul L&)ls, they
probably overestimated the contributions from the

Kf, and U& components .
VI. APPLICATIONS

A. Photo-Ionization Cross-Section

The photo-ionization cross section o, (S'&u) of a
donor electron from its ground state is given by

Z,'

0
I—
O

l O
l5

V)
(00
CL

0
I—

rv lO]6
Z0
0 5I-0
CL

lOl7
I 5 4

5o)/ EI

FIG. 6. Photo-ionization cross sections of As in Si.

nucleus. At such distances it is justified to use
the model impurity wave function for 11s(A,) ) and
plane waves for I f) With th. ese approximations,
we obtain

a, (h(u) = "' — a' S(h(u),

TABLE VII. Energy shifts due to the introduction of the
L& components into the 4& components.

P
As
Sb
Bi

Energy shift
(meV)

0.037
0.089
0.021
0.17

where S(I&o) is a dimensionless shape function given
by

2m*, [(2m*/I')(a~ —E,)]'"
I [1+a'(2m*/lP)(h(o —E )]'

(6. 3)
In Fig. 6, the photo-ionization cross section for

As is plotted and compared with the cross sections
given by the scaled hydrogenic model" and by
Lucovsky's 5-function potential model. 45 The spec-
tral dependence of the present model and the 5-
function potential model are similar. The cross
sections rise from zero at 8+ = E„reach a maxi-
mum, and then fall off. This is to be contrasted
with the hydrogenic model which has a maximum at
I~ = E,. Most of the experimental photo-ioniza-



T. H. NING AND C. T. BAH

tion cross sections of shallow impurities in silicon
reported are for acceptors. ~' 7 However, the
photoconductlve response observed by O ton" fo
silicon doped with antimony or phosphorus shows
spectral dependence similar to that predicted by
the present model or by the 5-function potential
model.

YxaLz vln.

Site Donor

Theory
cg/2

Present"

Experiments

Shell
iden

Shell tified

The Fexmi contact hyper6ne constants in
units of Mc/sec.

B. Fermi Contact Constants

The Fermi contact hyperfine constant a„which
measures the coupling between the spin of the donor
electron and the spins of the Si nuclei neighbor-
ing the donor, is given by3

(6. 4)

where Ig(r, ) I is the probability density of the
ground-state electron at the 1th silicon site, p,,
is the magnetic moment of the electron, p, s, and
I«are the magnetic moment and spin, respective-
ly, of the Si nucleus. Outside the impurity core
region, it is justified to approximate the true wave
function by the model wave function. Therefore,
in terms of the envelope functions, we have38 9

= 3 'IiI E(ri) I [cosk)xl +cosk~ pg +cos)2)gi] ~
(6. 5)

(6. 6)

(o, o, 4)

(o, o, s)

(3, 3„3)

{4,4, 4)

(7, 7, 7)

(s, s, 8)

As
p
Sb

As
p
Sb

4.032
3.316
3.399

0.611
0.560
0.485

0.667
0.444
0.308

0.356
0.379
0.492

0.643
0.644
0.746

1.746
l.458
l. 236

0.475
0.505
0.571

0.411
0.253
O. 173

0.524
0.487
Q. 433

5.201
4. 184
3.684

0.927
0.851
0.794

l.051
0.733
0.604

l.485
1.271
l. 149

0.917
0.839
0.780

1.089
l. 055
l. 004

0.557
0.595
0.590

6.035
3.827
3.230

0.898
0.714
0.645

0.750
0.418
0.340

2. 237
1.518

. l. 308

le 337
l.001
0.888

l. 770
1.462
1.335

0.823
0.827
0.801

0.028
0.032
0.031

0. 250
0.306
0.314

3.860
2. 981
3.101

0.758
0.663
N, F.
0.642
0.270
0, 293

O. 801
0.689
O. 703

2. 03V
1.649
1.397

0.739
0.598
0.670

0 ~ 694
0.739
N. F.
0.6QV

0.612
N. F.

av over unit cell

r/a/( $)1/8- (6. 7)
(2, 2, o)

l.165
O. 803
0.722

0.578
0.450
0.389

0.779
O. 462
0.383

l. 121
0. 840
0.504

and $~0 is the Bloch function of the conduction band.
In Sec. III we found that a(P) = 28. 1 a.u. , a(As)
= 18.4 a.u. , and a(Sb) = 25. 0 a.u. Using k,/k, „
as a parameter to match the experimental values
of the Fermi contact constants for the lattice sites
identified definitely or tentatively by Castner,
we obtained a mean value of k,/k ~= 0. 856. This
is in good agreement with the values k, /k =0. 87
+0. 01 reported by Castner, ' and k,/k =0. 85
+0.03 reported by Feher. It is also consistent
with the value of k, /k ~= 0. 85 used in the energy
calculation so

Using k,/k, „=0.856 in Eqs. (6.4) and (6. 5), the
calculated values of the Fermi contact constants
are given in Table VIII, where the arrangement of
the experimental values is due to Castner. Also
shown in Table VIII are the theoretical results by
Castner, who included the wave-function compo-
nents from the regions of the I.~, K„and Ul points
of the lowest conduction band into the ground-state
wave function, and the results by Hale and Mieher.
However, as discussed in Sec. V, we found that
Castner's analysis probably overestimated the con-
tribution from these higher-energy symmetry

{4,4, 0)

(1,1, 5)

(3, 3, 11)

{5,5, 9)
As
p
Sb

As
p
Sb

As
(10,10,0) P

Sb

2. 878
2. 213
l.841

0.V20

0.472
0.370

0.682
0.566
0.485

0.564
0, 474
0.433

0.332
0.374
0.480

0.593
0.502
0.417

l.608
l. 235
0.961

0.872
0.777
O. 706

0.719
0.665
0.656

2. 061
1.789
1.627

0.090
0.082
0.076

2. 773
1.932
l.677

0.084
0.068
0.062

0.270
0.304
0.304

0.841
O. 804
0.760

0.872
O. 809
0.756

1 ~ 394
l. 121
1.016

0.348
0.344
O. 331

1.517
l.150
l.023

0.807
0.781
0.747

l.037
0.942
0.885

0.680 1.156
0.587 0.784
0.533 0.675

3.000
2. 254
1.833

0.741
0.582
0.425

0.777
O. 612
O. 559

o. 566
0.524
0. '387

0.242
0.317
O. 437

0.696
0.662
0.629

l. 292
1,117
1.003

0.806
O. 764
0.761

0, 718
0.685
0.643
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TABLE VIII. (Cogtigued) ~

Theory
a, /2

Site Donor TGC HM' present a&/2

As 0.375 ' ' 0.309 0.428
(9, 9, 1) P 0.344 ' ' 0.323 0.379

Sb 0.318 ' ' ' 0.316 0.332

Experiment
Shell
lden-

Shell tified

points relative to the A~ valleys.
Both the theoretical results by Hale and Mieher

and those of the present calculations are based on
the assumption that the donor wave function has
components from only the six 6» valleys of the
conduction band. For all of the definitely identified
sites, both theories give about the same agreement
with experiment. However, it should be pointed out
that the wave functions used by Hale and Mieher49
are obtained by scaling the wave functions in the
Kohn-Luttinger one-valley EMA. '~ Although there
are no adjustable parameters in them, these wave
functions do not give the observed ground-state
energies. On the contrary, our calculated Fermi
contact constants are actually predicted results
from energy calculations. The wave functions are
completely determined by the energies and contain
no adjustable parameters.

~Experimental values are for sites identified definitely
(g) or tentatively (g?) or simply suggested (not identified)
in Bef. 42.

'Second set of theoretical results by Castner, Bef. 42.
Besults due to Hale and Mieher, as given in Bef. 42.
The following parameters are used: k~/k~=-0. 856;

q=l78; a(As) =18.4 a.u. ; g(p) =23.1a.u. ; and a(Sb)
=25.0 a.u.

N. F. =not found.

The contribution of the higher-energy subsidiary
conduction-band minima to the ground-state ener-
gy was shown to be much smaller than that of the
L, valleys.

Using the trial wave function of the ground state,
the photo-ionization cross section was calculated.
The spectral dependence of the photo-ionization
cross section compares well with that given by
Lucovsky's 5-function potential model and with
experiment. The trial wave functions were also
used to predict the Fermi contact hyperfine con-
stants. The results give about the same agree-
ment with ENDOR experiments as those previously
reported.
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APPENDIX

In this Appendix we shall show that the impurity
wave equation can be transformed into

[H'+ U, ]e=ZC,
where

C =ZZ„(1 )g,
nk

(Al)

(A2)

is the pseudo-wave-function, and g„, is t¹Bloch
function of the pure crystal satisfying

(AS)

and U~ is the pseudo-impurity-potential.
We begin with the Schrodinger equations of the

impure crystal, namely,

VII. SUMMARY
Hg= [H + U]/=ED (A4)

A phenomenological two-parameter model im-
purity potential was proposed for shallow-level
group-V donors in silicon. The multivalley ef-
fective-mass approximation was developed and
used to calculate variationally the energy levels.
The potential parameters were fitted to the ob-
served Is(Aq) - 2p, and Is(T2)- 2p, energies. It
was shown that the proposed potential describes
well the central-cell correction and the dielec-
tric screening

It was found that for the p states, the usual one-
valley effective-mass approximation is adequate.
Also, in the multivalley EMA, the valley-orbit in-
teraction shifts the Is(A, ) level downward and the
Is(Ts) and 1s(Z) levels upward relative to the one-
valley-EMA ls level.

The effects of the uncertainty in the position of
the 6, conduction-band valleys and of the coupling
between the 1s and 2s states of the same symmetry
on the ground-state energy and potential parameters
were examined. These effects are small.

HP ~ = [H'+ U]g~ = Z .g ~, (As)

(=c -~ (4. Io)4. . (A7)

Substituting (AV) into (A4), we find that C satisfies
the equation

[H'+ U+ V, ]C =ZC,

where

(As)

where U is the true impurity potential, E and g
are the energy and wave function of the valence
state, and Z~ and g ~ are the energy and wave
function of the core states. The core states are
orthogonal to the valence states, so that

(As)

To ensure that in solving the Schrodinger equation
(A4) the energy obtained is E instead of Z ., we
introduce the pseudo-wave-function 4 defined by
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V„e=Z., (E E-..)(y.. I e)y.. (A9) Iu&(r)

Since we are interested in impurity states of en-
ergy lying between the conduction and the valence
bands, we may expand 4 in terms of the valence-
state Bloch functions. Furthermore, since we con-
sider H as the unperturbed Hamiltonian and U

+ V& as the perturbation, we use the true Bloch
functions for expansion. That is, we write

C(r), k=k,

e =RE„(k)y„', .
nk

Putting (A10) into (A8), we obtain (Al), with

(A10)(All�) snit r iiI~h

u&'(r)
»» r

Some essential features of the pseudo-wave-
e»luations (Al) and (A2) may be brought out in the
Wannier-function representation. The Wannier
functions of the pure crystal are defined by

w„(r-R, )= (1/v N)Z-g' e»~'~» . (A12)

The inverse transform is

g„» = (1/v N)Z»w„(r —R, )e'" '
(A13)

The core states of the pure crystal are thus

g',»=(1/~N+»w'(r —R )e' '
(A14)

where, in the tight-binding approximation, w (r,
—R, ) looks just like the nth core orbital of a free
silicon atom centered at 8,." For simplicity,
we consider a crystal with only one substitutional
impurity. If we assume negligible overlap of the
core orbitals centered at different lattice sites, '
then the core states of the impure crystal, g .,
may be expanded as a linear combination of the
Wannier functions, wo(r —R»), of the core band of
the pure crystal plus a linear combination of the
core orbitals of the isolated impurity atom, »)» .(r).
With this assumption and the orthogonality condi-
tion

Cap =~f.(k) &.'» .
n'k

The pseudo-Bloch-function Q~» is given by

(A18)

g, =to» ~.(0'.l4.'»)0'. ,

[H + V»»]P„» ——E„»P»»,

(A19)

(A20)

V'.e.', =~.[E.'. E:](~'.Ie.'. )-~'. , (A21)

FIG. 7. Pseudo-impurity-wave-functions and po-
tentials. In (a) and (b) the pseudo-wave-function is ex-
panded in terms of the true Bloch functions. In (c) and

(d) the pseudo-wave-function is expanded in terms of the
pseudo-Bloch-functions.

(w'. (r -R,) I»)'„,) =0,
E»ls. (A7) and (A9) become

0 =4' -+a (»)'»n'I@) 4»e'

(A15)

(A16)

where P~ and Eo are the core-state wave function
and energy of the pure crystal. The unperturbed
Hamiltonian in this case is [H + V„], so that the
corresponding pseudo-impurity-potential is

V.C =~- (E E')(y»--
I
c) t»"

where the primed sums means only the core states
of the impurity atom are summed. Thus, by ex-
panding the pseudo-wave-function in terms of the
valence-state true Bloch functions, the differences
between the true and the pseudo-wave-functions
and between the true and the pseudo-impurity-
potentials vanish outside the impurity core region.

Hermanson and Phillips'3 chose to expand the
pseudo-impurity-wave-functions in the pseudo-
Bloch-functions of the pure crystal, i. e. ,

U», C =[U+ V»»
—V„]C' . (A22)

By using the fact that ($„1$„») & 0, it can readily
be seen that the differences [g —C „p] and [U» —U]

are not localized within the impurity core region;
instead, they oscillate in every core region of the
crystal.

Actually, the two formalisms are equivalent. By
expanding 4 in terms of the true Bloch functions,
one works with a pseudo-wave-function and a
pseudopotential which are the same as the true
wave function and potential outside the impurity
core region. There the difficulty lies in the eval-
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uation of the matrix elements of the pseudo-impu-
rity-potential between true Bloch states. On the
other hand, by expanding 4 in terms of the pseudo-
Bloch-functions, one is more justified using a
plane-wave approximation for Q„~. However, the
difficulty in this case is how to take into account
the oscillating pseudo-impurity-potential in each
of the core regions of the crystal, as illustrated

in Fig. 7(c). The differences in the pseudo-wave-
function and the pseudo-impurity-potential of the
two methods are illustrated schematically in Figs.
'7(a)-'7(d). The effective-mass approximation is
based on a smooth or slowly varying potential;
and it is evident that U~ in Fig. 7(a) is smooth
except in the central cell, while UHO~ in Fig. '7(c)
is not as smooth.

*Based in part on a doctoral thesis of T. H. Ning in
Physics at the University of Illinois, 1971, which can be
obtained from University Microfilms, Ann Arbor, Michi-
gan. Work supported in part by the Advanced Research
Projects Agency and the Air Force Office of Scientific
Research.
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