
Yep, J. Lumineseenee 3, 175 (1970}.
4%. Schairer and T. O. Yep, Solid State Commun. 9,

421 (1971}.
~For example, see P. J. Dean, Phys. Rev. 157, 655

(1967}.
D. Bimberg, thesis (Frankfurt, 1971) (unpublished);
D. Bimberg (unpublished). The earlier gap assign-

ment made by M. A. Gilleo, P. T. Bailey, and D. E.
Hill, Phys. Rev. 174, 898 (1968), on the basis of lumi-

nescence experiments is incorrect; see M. A. Gilleo,
P. T. Bailey, and D. E. Hill, Phys. Hev. B ~3 3581
(1971). But the nevr value of E» differs only slightly from
the earlier one.

M. B. Panish and H. C. Casey, Jr. , J. Appl. Phys.
40, 163 (1969).

9F. E. %illiams and H. J. Eyring, J. Chem. Phys.
15, 289 0,947).

PHYSICAL RE VIE% B VOLUME 4, NUMBER 10 15 NOVK MSER 1971

High-Frequency Damping in a Degenerate Electroa Gajs

Arnold J. Glick
Center for Theo+'etica/ Physics and &epmtment of Physics and Ash'onomy,

&nieexsity of Mazy/and, Co//ege Park, Mazy/and 20742

VAlliam F. Long
Indiana University, B/oomingt on, Indiana 47401

(Received 14 May 1971)

A closed form has been derived for the dissipative part of the complex frequency- and vvave-
number-dependent dielectric constant of a degenerate electron gas, q (k, ~), valid in the limit
~»EO, 4&40, where Eo is the Fermi energy and ko the Fermi @rave number. For ~&2EO this
expression gives values of Imp (k, (d) vrhich are in excellent agreement vrith the results of wore
detailed calculations in vrhich the difficult integrals over phase space were performed by a
Monte Carlo method. The formula also appears to give good numerical estimates of Imp(tt, cu)

for smaller values of u (but (d &PRO/m), though its accuracy is not assured in that regien. For
example, in aluminum at the plasmon frequency, the asymptotic form agrees with the calcula-
tions of DuBois alld Klvelson. The h1gh-fl'equeney formula derived may, therefore, be used to
circumvent difficult numerical vrork in estimating the importance of electron correlation effects
at high frequencies.

If the random-phase approximation (RPA) is used
to study the propex ties of a degenerate electron gas
at zero temperature, ' then one finds that the imag-
inary part of the frequency- and wave-number-de-
pendent dielectric constant vanishes for frequencies
above a certain cutoff:

~,"'"(I,~)=O for ~&ev, (I+a/2u, ).

Here eo and ko are the Fermi velocity and wave
number, respectively. The contributions to ca(k, &o)

at higher frequencies come from multiple-particle
excltRtlons ln which there Rx'e Rt leRst two pal ticles
simultaneously excited out of the Fermi sea Rnd

sharing energy Sv. Several investigations of such
multiple-particle terms have been reported,
culminating in Ref. 4 (referred to henceforth as
DK), in which DuBois and Kivelson include contribu-
tions froID dlRgx'RIQs ln which dlsslpatlon ls due to
the production of two particle-hole pairs. DK ac-
count for dynamic screening in the interaction be-
tween the electrons, and find that earlier calcula-
tions are incomplete in that they include dynamic

scx'eenlng but overlook cer't4Lhl h'iang& gr'cLphs

which enter to the same order. DK's results are
summarized in Eq. (3. 18) of Ref. 4 as a two-sli-
mensional integral over a comyBeated inhegrand.
The only numerical x'esults that they report are for
the damping at the pla, smon fxeqeency over a range
of elec tx'on density.

In the present paper we have ueedt a akmpler
model fox' the damping and have ~ived a closed
form for the imaginary part of the Nelectric con-
stant valid for frequencies much greater tham the
Fermi energy Eo. By comparieol. with de4uled
Monte Carlo calculations it is found that the asymp-
totic expression gives excellent agreement for
(d & 280 and provides an order-of-magnibade esti-
mate for smaller values of (d evea fairly close to
the RPA cutoff, E|I. (1).

II. FORMALISM

The calculation of the dielectric constant is car-
ried out using the notation an@ formalism of Ref.
5, which is briefly reviewed here for couple. teness.

The fundamental equation for calculation of the
longitudinal dielectric constant a(k, &o) is
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{a} (b) (c)

ation causes the excitation of one or more particle-
hole pairs which may interact via the Coulomb po-
tential and finally deexcite into another density
flue tuation.

III. HIGH-FREQUENCY CONTRIBUTIONS

(e)

FIG. 1. Contributions to e2@, ~) which vanish at high
frequencies.

lm —= — Re df(e'"' —e '"')1 v(k)
e(k, (u) n

x&~0
I

p (t) p(»
I

~0) (2)

Here co and k are the frequency and wave number,
respectively, v(k) is the Fourier transform of the
interparticle potential, 0 is the quantization vol-
ume, I CO) is the many-particle ground state (in the
Heisenberg representation), and p„-(f) is the Heisen-
berg fluctuation operator

p„-= jdr p(r) e'"'

p(f)esHt pe-IHt

where p(r) is the particle-density operator. The
matrix element &0'o I p,'(f) p„(0) 14'o) can be evaluated
using many-body perturbation theory with terms
represented by Feynman- type graphs. However,
it is more convenient to first break the complex di-
electric constant up into real and imaginary parts
&, and E&. Then

ca(k, ~) = Re dt (e'"' —e '"')

The lowest-order graph, Fig 1.(a), reproduces
the RPA to the dielectric constant, which was first
found by Lindhard. DuBois studied the first-order
terms shown in Figs. 1(b)-1(d). Glick and Osakas
independently studied higher-order terms including
those of the type shown in Figs. 1(e) and l(f), but
in all these cases the intermediate states (between
the successive applications of the two-body force,
denoted by dashed lines in the graphs) consist of
exactly one particle and one hole. Consequently,
phase-space limitations force e2(k, &u) to vanish for
high frequencies as in Eq. (1).

Geldart and Vosko showed that certain graphs
with multiple-particle-hole excitations, analogous
to Figs. 2(a) and 2(b), must be included to obtain
consistent low-frequency results, and in particular
to obtain a value for t,(k, 0') which is consistent
with the compressibility sum rule. ' Here and in
DK one is interested in high-frequency behavior,
in which case it is necessary to include a whole
class of multiple-particle-hole terms as shown in
Fig. 2. These terms all contribute to the same
order and are the lowest terms of perturbation theo-

ry which can give rise to damping in the high-fre-
quency region.

DK use the full RPA dynamically screened in-
teraction between electrons for their calculations.
Since dynamic effects arise from the successive
excitation and deexcitation of particle-hole pairs,
consistency requires that they also include certain
"triangle graphs" to account for the possibility that
one of the particle-hole pairs in the intermediate
state is associated with the dynamic interaction.

In the present paper we report calculations for

and the real part is related to the imaginary part
by the Kramers-Kronig relation

(4) (a) (b) {c)

In this paper interest will be focused one evaluation
of Eq. (3), the imaginary component of the dielec-
tric constant which may be directly related to en-
ergy dissipation.

The subscript B on the matrix element in (3)
means that only "bubble" graphs are to be included.
Bubble graphs are those which cannot be separated
into two parts by severing one dotted line. Typical
graphs which contribute to c~(k, ur) are shown in
Figs. 1 and 2. These diagrams may be thought of
as representing processes in which a density fluctu-

(i) (])
FIG. 2. Contributions to e2(k, co) which give nonzero

dissipation at high frequencies.
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an electron gas interacting via a static screened
Coulomb force. Consequently the triangle graphs
are not included. They would consistently enter as
a higher-order correction along with other terms.

Geldart and Vosko in their calculation of eo'2, 0)
have shown that using static forces for the inter-
mediate interactions can give results which differ
by as much as a factor of 2 from those obtained with
dynamic forces. When applied to e(k, 1o) for large
co, one might expect that the intermediate interac-
tions would also carry higher frequencies and hence
the static and dynamic calculations could differ by
an even greater amount. However, comparison of
our numerical results with those of DK shows that
at metallic densities and in the neighborhood of the
plasma frequency the two calculations differ by no
more than in the low-frequency case, while in the
limit of very high frequencies screening becomes
unimportant and the bvo calculations become equiv-
alent.

We first study the high-frequency limit. Through-
out this paper we consider k fixed and small com-
pared to the Fermi wave number ko. For very high
frequencies the two particles in the intermediate
state have energies approximately equal to —,'(d,
since the hole states are restricted to beneath the
Fermi surface and hence have relatively little en-
ergy. In this case the intermediate interactions
are of the form

v(q, —,'o1) = v(q)/e(q, —,'o1),

where q is the momentum transferred through the
interaction. The dynamically screened interaction
reduces to the unscreened case in the high-frequen-

I

cy limit because

lime (q, &o) = I as 1o -~.
The statically screened interaction that we use has
the form

p(q) = 411e2/(q'+ a),

where n is the screening constant given by

Q = 4k p /, 1I'6
p .

Conservation of energy and momentum relate q to
~, and in the limit one finds that + q are the ap-
proximate momenta of the particles and q- (mo1)'~2.

Thus this interaction also reduces to the unscreened
form in the high-frequency limit.

As we go to lower frequencies the screening be-
comes important. In the static treatment one omits
the possibility of a coherent plasmon excitation in
the intermediate state. As DK have pointed out, for
frequencies up to the plasmon frequency (d~ there
is insufficient energy to create intermediate plas-
mons. For very large co there also are no inter-
mediate plasmons because q is above the cutoff wave
number. However, there is a frequency range from
co~ up to six or seven times the Fermi energy, where
intermediate plasmons could augment the damping.
Nevertheless, their contribution is not expected to
be large. In any case the static calculation pro-
vides a lower limit to the damping.

The graphs considered are shown in Fig. 2.
Graphs 2(f)-2(j) can be obtained from 2(a)-2(e) by
the exchange of two particles entering one of the
interactions. By an astute labeling of graphs one
can combine these terms into the form'

33211 m v(k),(k, (o) = Z 1i2, f & 1I2, 2& 172,& 1i2 2 & 5(m1o —k,2 k2-k2 k+ —,'k )
Rg, 172,k3

&& o'1(k1, k2, k2, k, o1) o2(k1, k2, k2, ) ), (9)

where

(k2 k —k ) v(k2 —k)
g„k,)(k„.k, +k2 jt) (f12 %2-k12 %) $12 k2-f12 R+k2 R-P)) (Io)

Note that k, and k3 always enter the factor
o1[k1, k2, k2, k, 1o) in the combination k12—= k1 —k2.
The other factor o2(k„k2, k2, k, &o) accounts for both
direct and exchange graphs. It can be obtained
from o,(k„k2, k2, k, 1o) by writing

o2(k1i k2i k3i ~s 1o) o1(k2 k12)ls (II)
i.e. , o, with the vectors k~ and -k,3 interchanged.
Then

o'2(k„k2, k2, o1)-=o',(k„k2, k2, k, (o)

--,' o,(R„k„k„k,~). (I2)

Now we describe how Eq. (9) was explicitly eval-
uated.

IV. NUMERICAL EVALUATION

The sums over fs„k2, and k2 in Eq. (9) can be
converted to integrals in the usual manner. How-
ever, only the first few of the nine dimensions of
the integral can be carried out simply using analyt-
ic means. This difficulty was overcome by num-
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erically evaluating the integral using a Monte Carlo
technique. The theorem applied was"

2(k M) =
(2 )6 T(k ~) z(k ~)

where

v(k, (d) m-=j f J dk, dkadk,
2x 5(mv —k,s' ka- ks ~ k+ —,k )

X qfs 22& )as 2& 1f1& gf1 22& ( )

which may be recognized as the phase-space inte-
gral for a system of two particles and two holes,
and

Z(kt (()) —= ((o'1 (k, , ka, ks, k, (d) o'3(k1, ka, ks, k, (8)) ))2 ~

(15)
where (( ))-„denotes an average over the phase
space of a system of two particles and two holes of
total wave number k and frequency e. To evaluate
Z(k, (d) a computer program was written which
would generate random events in the appropriate
phase space. Errors in the average Z(k, (d) as mea-
sured by the standard deviation were generally held
to less than 10%, but as (d - kka/m, the magnitude
of the function in the double brackets varied too
much over phase space to permit meaningful calcu-

lations. The phase-space integral 7(k, ~) is itself
difficult to evaluate and numerical procedures must
be employed. The method chosen was a Monte
Carlo algorithm which was a variant on that devel-
oped by Cerulus and Hagedorn. ' The advantages
of evaluating by a Monte Carlo method rather than
making approximations which permit analytic eval-
uation of the quadratures are twofold: The exact
form of o1(k„ka, k, , k, &u) as given in E(I. (10) may
be retained, thus eliminating the necessity for ex-
pansions in powers of k, and errors in the calcula-
tion may be accurately estimated by means of the
Central Limit Theorem.

Typical results are shown by the dotted lines in
Fig. 3, where they are compared with the asymp-
totic formulas derived in the next section.

V. ASYMPTOTIC FORMULAS

The geometrical constraints in E(I. (9) are those
of two particle-hole pairs. One can exhibit this ex-
plicitly by introducing the variables

qq=k(-k2, q2=k3-k,

q3 k1t (14=%3 —ka 8

using these variables and converting E(I. (9) to an

integral,

4mv(k) f'1 1~2 1~2 1~2 1~2
~2(k ~)

(2 6 d(I1 dna d(ls d&I4 qc1& qua& qas& 4 & ~(~+ + 3 (I1 + 2 Ia 3 q3 2 (I4 )

~ ((11+'Za (Is &14+k) &~i((I1 Qa (Is &I4 k (8&) os((T1 &Ia (Is 'Z4» (8)) (16)

o1(tilt (Iat (Is) q4t t (8 ) a (~~+ &3)(~~)2Qp mcus +

x 1 —2i12 1+ —,(17)
mar+ a

where

Substituting into Eq. (9) gives
kp "1tp

ea(kt +) 9 6 3( )4( o)2 d Tl dqa
0 ~I

X dq3 d a4 ~(m~ —a(ls'- 3 i4')

2-2
xt'(k-3 —kt) ( —88 (( ~ (18)mcus+ &

where v', and 0', are the functions o, and o, ex-
pressed in terms of the new variables. In the high-
frequency limit ~ »Ep the magnitudes of the inte-
gration variables satisfy q„q4» kp&q„q2, k, and
also q, = q4= (m(d)' . In this limit

The integrations are now easy and yield the result

9 waasa (m(u)~~2 (m(u+ n)

'7 4 m& 4 mt'
X —y- —+f5 15 m&+ n 5 mes+ n (19)

or, without screening,

92 &o
2( t ) 135 2 3 (~ )11/2 ~

VI. CONCLUSION

The results of the calculations are summarized
by Figs. 3 and 4. Figure 3 shows 42(R, &u) plotted
as a function of frequency for a value of the Fermi
wave number appropriate to aluminum. Consider
the value of &2 at the plasma frequency. The re-
sults of DK were

aa(k, ~a) = (3.4x10 2)(k/ka) with dynamic screening

= (5. 6x 10 ')(k/k, ) without screening.

Our results using (9) and the Monte Carlo method
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FIG. 3. Imaginary part of the dielectric

constant is plotted as a function of /E~
for ko = 1.75& 10 cm (appropriate to
aluminum) and k = 0. 1k0. The dielectric
constant is in units of 2ko/@ok . The up-
per pair of curves are the results without
screening (&=0) and the lower pair are
the results including Thomas-Fermi
screening (in units of k2z). Dashed lines
represent the results of evaluating (9) by
means of a Monte Carlo technique, while
the solid lines are the asymptotic formu-
las (19) and (20) (the experimental point
comes from Ref. 3).

are

sa(ft, &u&) = (1.8x10 )(k/kc) with static screening

= (5. 6x 10 ')(k/ks) without screening,

while the results using the asymptotic forms (19)
and (20) are

sa(k, &u~) = (3.4x 10 )(k/ka) with screening

= (7.4x 10 ')(k/ko) without screening.

suit is bracketed by the screened and unscreened
calculation and it is possible that in real metals
the damping must be accounted for by mechanisms
other than electron correlations such as umklapp
processes, impurity scattering, or interband ef-
fects.

The smallest electron density for which compari-
son with DK is possible corresponds to potassium.
The results of DK were

cz(k, &u~) = (2. 5x10 )(k/ks) with dynamic screening
The experimental value calculated from the plasmon
width is

= 1.6(k/ko) unscreened.

& (k, e ) = [(2. 7 + 0. 9)x 10 '] (k/k )

As is to be expected, the screening is overesti-
mated by the assumption of static screening and our
result is smaller than that of DK, which retains
dynamic screening. However, the discrepancy is
still less than a factor of 2. The experimental re-

sa(k, &u~)=(2. 0x10 )(k/kc) with static screening

= 0. 93(k/ko) unscreened.

Our results using the Monte Carlo method and (9)
and the asymptotes (19) and (20) are shown in Fig.
4. At the plasmon frequency we find

10

IO

3
Al

~t
N IQ

IO—

kv

8 -I
ko = 0.75 x 10 cm

k= O. l ko

s, Q

I

0 = 3.32

FIG. 4. Imaginary part of the dielectric
constant is plotted as a function of +/Ez
for ko= 0.73x 10 cm {appropriate to po-
tassium) and k = 0. 1ko. The dielectric
constant is in units of 2k0/aok . The up-
per pair of curves are the results of
screening (0' = 0) and the lower pair are
the results including Thomas-Fermi
screening {in units of k2~). Dashed lines
represent the results of evaluating (9) by
means of a Monte Carlo technique, while
the solid lines are the asymptotic formu-
las (19) and (20).

IO



3460 A. J. GLICK AND W. F. LONG

The differences between the results using static and
dynamic screening appear to be even smaller at
low electron densities. Since our ansatz is identi-
cal to that of DK in absence of screening, the dif-
ferences between our results and those of DK in the
unscreened case are either due to the different
numerical procedures employed in evaluating the
integrals or to the difficulty in determining ca(k, &o~)

from the graph in DK.
As may be seen from Figs. 3 and 4 the asymp-

totic formulas agree quite well with the more de-
tailed calculation for frequencies greater than twice
the Fermi energy. The asymptote also fits well
even for relatively low frequencies, though there
is no a Priori reason to expect it to be very good
in that region. Consequently, Eqs. (19) and (20)

may be used as interpolation formulas or to give
order-of-magnitude estimates of the damping for
frequencies as low as the Fermi energy. Such an
approximation is desirable since the numerical
calculation is quite difficult even with static screen-
ing. For very high frequencies where screening
becomes unimportant the kinematic approximations
assumed in deriving the asymptotic forms become
exact and the closed form (19) gives the correct re-
sult for damping due to electron correlations.
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A five-level k p analysis is used to compute the principal effective-mass parameters at
k=0 in diamond- and zinc-blende-type semiconductors. A semiempirical model is developed
to describe the dependence of the momentum .matrix elements on lattice constant, ionicity, and
d-electron shells in the cores. - Satisfactory agreement with available experimental data is
achieved with six fitted parameters.

I. INTRODUCTION

A number of important semiconductor properties
require for their analysis quite detailed knowledge
of effective-mass values at the principal band ex-
trema, but even for some of the most well-known
materials it is at present rather difficult to make
the best choice from the wealth of experimental and
theoretical data existing in the literature. It should
also be emphasized that even though simple formal
expressions for the effective-mass parameters can
readily be obtained from second-order k ~ p per-
turbation theory, the input parameters, notably the
momentum matrix elements, have not been known

with an accuracy sufficient to render the existing
theoretical results reasonably reliable. The reason
for this is connected with the fact that most of the
theoretical work has stressed other aspects of the
band structure, and, as shown recently for Si by
Kane, ' current methods of band-structure calcu-
lation may fit the over-all band structure w'hile

giving rather unsatisfactory values for the band-
edge masses.

In the present work we propose a new procedure
for evaluating the interband momentum matrix ele-
ments at I'(0=0). Otherwise, our effective-mass
calculation is similar to that given by Cardona ex-
cept for a few details. Based on earlier observa-


