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The method given by Pekeris for the helium atom and generalized recently by Frost for
the three-particle system has been developed extensively to apply to complexes of excitons
bound to ionized impurities in semiconductors. Haken's exciton potential is generalized for
the complex, and the dielectric constant between the different particles is a function of the
interparticle distances. This potential is different from that given by Schroder and Birman,
where the ionic polarizability has been neglected. An elaborate general recursion relation
is obtained. The application of this relation to the case of ionized donors shows the im-
portance of the corrections introduced due to the polarizability of the potential between the
particles. The calculations also show that the critical mass ratio below which the system
is stable depends not only on the wave function, but also on the distances between the parti-
cles as well as on the fundamental constants: the optical and static dielectric constants, the
effective masses of the electron and the hole, and the longitudinal vibrational frequency of
the lattice. The results for exciton-ionized-donor complexes in CdS, CdTe, ZnSe, ZnTe,
and ZnO give better agreement with experiment than those reported by the previous authors
where the polarizabilility has been neglected. The calculations also confirm the existence
of such a complex for 6H SiC. The exciton binding energies calculated for T1Cl and TlBr
are in better agreement with experiment than those given previously.

I. INTRODUCTION

In semiconductors, experimental evidence
has shown the existence of excitons bound to ionized
donors and acceptors. Using the variational-prin-
ciple technique, different authors have calculated
the binding energies of these complexes. "
These binding energies are a function of the variable
o =m,*/mf, where m,* and m~~ are, respectively,

the effective masses of the electron and the hole.
A critical value o, is usually found below which the
system is stable. Unfortunately, the theoretical
results in Refs. 35-42 do not agree with each other,
and different values of o, have been reported. Thus,
it is of interest to carry out some exact calculations
for these complexes. The method given by
Pekeris for the helium atom and generalized re-
cently by Frost for the three-particle system
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with

ff, = (4ffm,*a)/If)' ', ff„ = (4ffm„ (d/If)' ',
where h is Planck's constant. If

g=g "e l2+g h"|2,

(2)

has been developed further. This method has the
advantage of avoiding all the elaborate integrals
that occur in the variational technique. The effect
of polarizability given by Haken's potential is used
to some extent in the present calculations. The
complexes bound to donors of single, double, and
triple degree of ionization are treated, and com-
parison is made with experiment for some real
systems.

II. FORM OF THE POTENTIAL

As described by Haken, 47 the dielectric constant
K(r») between the hole and the electron of a de-
localized exciton is a function of the distance ~&2

separating the two particles, of their effective
masses, of the optical (Ko) and the static (K,) di-
electric constants, and of the longitudinal frequency
&d of the lattice. This dielectric constant K(rf~)
is given by the following expression:

1 1 1 1 t
= —+ —— —

I t:1 —k(e "e"»+8 "&"»)],
K(rf2) Ko K, Ko )

The exciton lines in different semiconductors gen-
erally follow a Rydberg series with a certain di-
electric constant K. The binding energy E„of the
line n = 1 is given by the approximate hydrogenic
formula

E„=-Me /2K I
with h = h/2ff, M, the exciton reduced mass, and

K, simply equal to K(r„) given by Eq. (4). As
atomic units in terms of a certain effective dielec-
tric constant will be adopted in this article, Eq.
(4) is rewritten in the following form:

(6)

(I 1
)

eff
K(rf) K„, K,

1 1 1 K ff
K(r2) K„, K,

where

eff
z0

eif+2/ y

0

(7)

(8)

eel'f
q e eel'2 (9)

@12/ eff s 0

Consider the case of an exciton bound to an
ionized donor, where the donor is supposed to be
of infinite mass. For the interactions between the
electron and the hole with the fixed donor, the two
similar expressions of the dielectric constants
K(rf) and K(ra) are

then Eq. (1) can be written in the form

(4)

x& is the distance between the electron and the fixed
donor, and z2 is that between the donor and the
hole. From Eqs. (6)-(8) the potential energy of the
system is

2 3 .et' Ii l i 1 equi 1 3 eff I 1 w 1 jeff r(1 —~fl) + &f7 K + (1 —,f) + —,&—,(10)

where e is the electron charge, and Z&, Z2, and

Z, are, respectively, the absolute values of the
charge units on the electron, the fixed donor, and
the hole.

Recently Schroder and Birman have derived a
potential form similar to that given in Eq. (10).
In this potential, the electronic polarizability only
has been considered. This assumption is usually
valid for localized excitons. However these
authors did not apply their potential in further
computations.

The binding energy ED of the neutral donor, which
is usually slightly greater in absolute value than
that of E„, is generally given by

E,= m.*e'/2K'—n',

where K in this equation is that given by Eq. (7).
The atomic units K,«K /e m,* and m,*e'/K, « I
will be adopted for length and energy, respectively,
and the units m,*= )I= 1 and e /K, « = 1 will be used.
In this case, the energy En of Eq. (11) is simply
—,
' a.u. and K,« in the expressions (6)-(8) is equal
to K(r,). Consequently, the term between brackets
on the right-hand side of Eq. (7) is equal to unity. "
In these units the energy E of the complex can be
given in terms of ED.

In atomic units, the nonrelativistic Schrodinger
equation written for the system is

&X2
—,'v,'e+-,'av,'e+ z+ —'- —"s + " e=o, (12)

+2 +12

where V, is the Laplacian for the electron, V„ is
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) = e "~"1 = exp[-(ho)'~ar, ],
& "a = exp{- [(2/o')&d]' ra]. ,

g = e "4"» +e "3"» =exp[ —(2ur)' r13]

(is)

(iv)

+ exp {-[(2/o)(o]'~ar13] . (18)

In these calculations the values of Z1 and Z3 are
always taken as unity, while Z2= 1, 2, and 3 cor-
respond, respectively, to singly, doubly, and triply
ionized donors.

The solution of Eq. (12) using the general poten-
tial (10) is difficult. For simplification the mean
values of A.1, p. » and v» have been considered.
In this case one needs to know the wave function
and the self-consistent procedure has to be applied
throughout the different computations. The mean
values of X» p, » and v» are denoted by A. , p, , and
v, respectively. The values of X, p, , and v depend
on the fundamental constants m,*, m„*, K„K„and

For a particular semicorrductor there corre-
sponds a set of values of A, , p, , and v. To show the
effect of polarizability and the variation of the di-
electric constant between the different particles,
some interesting cases corresponding to specific
values of A., p. , and v are treated. The case A. = p.
= v = 1 corresponds to an effective dielectric con-
stant supposed to be the same for the three parti-
cles. This is usually the case considered by other
authors, with the exception that they have been
concerned with the static K, instead of an effective
dielectric constant K,«. The case A. = v=1 and
p= 0.95 corresponds to an effective dielectric con-

that for the hole, and A.» p, » and v» are, respec-
tively, the coefficients in atomic units of the terms
1/r1, 1/ra, and 1/r13 of the potential (10). These
coefficients, again in a.u. , are given by the fol-
lowing expressions:

X, = Z, Z, [(K„,/K, )(l —-'&) + —,'] (K„,/K, )], (13)

3 3 [ w«/, )(1 —3 l) + 3 l(KIff /, )], (14)

~13 21 ~3 [(K.«/K. )(1 —2~) + 2 w(K 11/Ko)] (is)

with

2 84' s 414 2 84a+ +v 3+ +1+a' zera ra era sr13

2 &4' 8 414

+ (1+&) s +s (r1 +r13 ra)
+12 &12 &1 &12

1 2 2 2X +0' (ra +r13 r1)

+2 E+ ———+ — @=0. (19)p v

+1 +2 +12

Introduce the perimetric coordinates ' ' "u, v,
and se given by

u= na(-r, +ra+r13), v= pa(r, -ra+r„),
w= y~(r, +r, -r„), (20)

where a, P, and y are variational parameters.
If the energy E is given in terms of c,

E= —(@+ox)e (21)

where g and X are determined from the approxima-
tion at infinity, then one obtains

K = ,'(n'+ 3p—'+y' —2ny),

X= 3(3n'+P +y' 2Py) . —

(22)

(23)

(1/2) (8+V+QP) g( (24)

Substituting Eels. (20), (21), and (24) into (19) one
gets

stant between the electron and the hole equal to
tha, t between the electron and the donor with a dif-
ferent dielectric constant between the hole and the
donor. For comparison with experiment, computa-
tions for real systems such as CdS, CdTe, ZnSe,
ZnTe, ZnO, SiC6H, T1Cl, and T1Br have been car-
ried out.

III. METHOD OF SOLUTION

Vfith the classical method of Hylleraas, ' Eq.
(12) can be written in the following form:

4'4v
v 4v%v 4vw' v 4v'v 4vv' Svvw 4v'w 4vw') t

( + —, +On 2 -+, + + + 2ny ny n p np npy ny ny

4u 2v 4uv 8uvm) 4v zo 4vzo 2 4v se 4vzo

ev 0. p np2 spy py py py py

saE a 4ubv 4uw a 4v w 4vw s F 2uaw 2uw
+ 2 y 2 + 2- + a'y +-

2 + -- —4
sw , n y ny p y py susw n y

~ E 2v 2vm2 eI' m u2 I' 4u 4uzo 2
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2gw 2vw w v2 4u2v 4uv 8uvw 4u ~ 4gw
+O' 4Q — + + + 2 + 2

—Q 2 + P + + y + 2
eP o.y Py y P n P nP nPy e~ ny

E u 2Mv 2uw 2vw w 4u v 4uv 8uvw 4v w 4vw
4P ~+ + + + —

2
—

JB -2- +
sv n np ny py y n p np npy py py

++ 4()(' 2 M)+())l ())( p + 2 )

sE q & tv 4uu) u w v w 2 4v w 4vw
+ (-x'+ay), + +4m, —

3
— + ~ 4w

—
a — s —4" ()&)-~ '+

Bw cv y Qy p y p"y py'

+Q 2 n-y- ~ —2 n-y+P ~-2I8 -+ +-Q Lv 2gw 2vw

Q y nP (yy Py

Qw gw2 g v Qv 2Qvw v w vw
2 2 2

+(n +y —2ny —2') ~ + 2 +(p —2z) 2 + E + + a + 2ny ~ p ~P &13y Py Py

w 2gv 2gw
+o 2(y-p-n) —2-2(y p+n-) ~ —2n + +

y p nP ny Py

4g v 4gv 8uvw 4Q w

n p np npy ny n'y

2 2 4v w 4vw g v gv2 2Mvw v w u w Qw vw
2 2 2 2 2 2 2

+ —.(S +~ —&()W)( g„' p
—2X s +

g
+ + ' +

py 0. p ~p2 ~A' P& +& ~y A'

g QV QW VW uv uw v vs uv uw vw+—+~+ — +V + + + 3 P=o ~ (25)
np ny py np ny p

Assume the expansion

&(l, m, n) 1., (u)I „(v)f,„(u)),
$, m, f1=0

(26) H+(P+op) & =0 . (29)

The recursion relation takes the form of the eigen-
value problem

(d = jt +Sl + Ã (28)

where L„I, and L„denote, respectively, the
normalized Laguerre polynomials of order /, m,
and n. Using the different relations between these
polynomials and its derivatives, one obtains a con-
siderably long 57-terms recursion relation between
the coefficients A(l, m, n). Owing to the length of
this recursion relation, it will not be given here. '
For a = 1 the recursion relation reduces to a rela-
tion of 33 terms, which corresponds to the case of
helium derived by Pekeris with A. =1, p = -1, and
v = —1. For the helium atom Pekeris considered
the case corresponding to a=P=1, and y= 2.

IV. COMPUTATIONS

Assign to each triplet of indices (l, m, n) an in-
dex k given by the relation

k(l, m, n) = ~(u((v+ 2)(2(v+ 5)+ f'(, [1 —(-1)"]+ ~(l +m)

+-.'[1-(-1)' ]+1+1+-,'(i+m), (27)

A special program in double precision has been
written for IBM 360 to evaluate the different co-
efficients of A(&, m, n) in the recursion relation for
different values of f, m, and n (Prog A). These
coefficients permit the evaluation of the matrices
P, Q, and II for different values of e, P, and y.
With the partitioning technique developed by
Lowdin, ' a program is written in double precision
for IBM 360 to calculate the largest positive value
of e in Eq. (29) for different values of o (Prog B).

To calculate the energy E of the system, Prog A

is used first to evaluate the values of v and X fol-
lowing E(ls. (22) and (23) as well as the matrices
P, Q, and H corresponding to specific values of

n, P, and y. These matrices are then used as
input data in Prog B to obtain the largest positive
value of E for a particular value of o. Equation
(21) is then applied to calculate the energy E of the
system that corresponds to these specific values
of a, P, y, and 0. This procedure is referred to
as Proc I. To get the minimum energy of the
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system for particular value of o, several runs are
carried out following Proc I for different values
of o., P, andy.

Another procedure followed by Frost to get the
minimum energy is to consider y = 0 and to vary
the values of n., g, y, and g simultaneously. In
this case the energy is given by the following form:

E= —v& (30)

This procedure needs many more computations
than Proc I. To save computer time, one can take
the specific values of n, P, and y corresponding to
the minimum energy in Proc I and vary g until
convergence is attained. This method is called
Proc II. In this case, Prog A has to be used first
to evaluate the matrices Q and I' that correspond,
respectively, to g = 0 and to the different values of
I(., for which convergence was attained. To study
the convergence, the values of & corresponding
to specific set of n, p, y, and o are calculated for
the different determinants (29) of order N= 10,
11, 12, ... , 50. The final results given in this
paper correspond to the determinants of order
50 that converge to four decimals.

The different calculations for the minimum en-
ergy were carried out following both Procs I and
II. Computations were performed for different

cases with the following values of X, p. , and v:

1 1 1 & 095
1 0.9 1 1 0.85 1

0.8 1 1 0.75 1
1 07 1 1 065 1
1.05 1 1 1.1 1 1
1.15 1 1 1 1 1.05
1 1 11 1 1 12
1.05 1 1.1 1.05 0.95 1.1
1 05 105 11 2 2 1
2 1 9 1 3 3 1

The last three cases correspond to doubly and

triply ionized donors. For these three cases the
sohltlolls of tile detel'Blillallts (29) of ordel' 50 coll-
verge to three decimals. Since A. = p. =v=1 is con-
sidered to be the standa, rd case, it is preferable
to assign for this case the symbols A. ', p, , and v

to A. , p, , and v, respectively.

V. RESUI.TS

Figures 1 and 2 represent the values of E/Eo as
a function of the mass ratio o = 1/m f in a.u. with
E the energy of the complex given by Eqs. (21)-
(23). The cases considered in these figures are
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FIG. 2. Plots of E/Zs ~s 1/~g
for the cases A, = 1.15, p = v = 1;
=1.1, @=v=1; and &=1.05, p=v=1
with K= 0. 8473625 and X=0.3072125.
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FIG. 3. Plots of E/E~ vs 1/mz
for the cases ~=p=v=l: A, =v=1,
@=0 95 X=v=1 @=0 9. A, =v=1,
p = 0. 85 ~ = v = 1, p = 0. 8 ~= v = 1,
p=0. 75; and ~=v=1, p=0. 7 with

~ = 0, 61, 0.58, 0.55, 0. 53, 0.5 1.,

0.48, and 0.46, respectively.
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0=1.05]
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K'-0.5424

1.2

FIG. 4. Plots of E/E~ vs 1/mg
for the cases ~=@=1, v=1. 05;
&=1.05, p=v=l; X=&=1, v=1. 1;
&=@=1.05, v=1. l; X=1.05, p=l,
v = 1.1; X = 1.05, p = 0. 95, v = 1.1;
and A, =@=1, v=1.2 with K

=0, 5424, 0. 66, 0.5, 0.5424, 0.52,
0.51, and 0.46, respectively.
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0 9 1 1
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1 075 1 11
1 1 1 2

105 1 1
115 1 1

0.95
D. 85 1
0.8 1
D. V 1
0.65 1
1

For these cases the calculations are carried out
following Proc I. Kith X = p.

' = v' = 1, the values
of e, p, and y that minimize the energy for all
values of 0 are O. V2, 1.5, and 0.55, respectively.
These values are obtained after carrying out a
tremendous number of computations. For this
reason, it would have been very difficult to de-
termine the corresponding values of n, P, and y
that minimize the energy for each set of X, p. , and
v. The values +=0.72, p=1.5, and y=0. 55 are
thus used for all cases. For all the curves in
Figs. 1 and 2, the values of z and X calculated
from Egs. (22) and (28) are 0.84V 3625 and
0.307 2125, respectively.

The results are strongly dependent on the values

of ~, p. , and v. This means that the variation in

the dielectric constant due to the polarizability
between the three particles makes an important
contribution. The intersections between the curves
E/ED=f(o) and E/Ev= 1 give critical values o, for
the mass ratios. The systems are stable for o ~ o,
and unstable otherwise. From Figs. 1 and 2 one

can notice that the values of 0, are also a function

of A. , p. , and v. In Fig. 1 the value o, =0.11 cor-
responds to the case A.

' = p. '=v'=1, while for A. =

v=1, p, =0.65 the value of o, is 0.9. From Figs.
1 and 2, knowing the value of o, that corresponds
to the case X' = p.

'= v'= 1, for instance, it is easy
to write a simple empirical formula that de-
termines the approximate value of a, for any set
of X, p, , andv:

o,(X, p, ,v) = cr, (X'= p,
'= v') + [3.67(X —X')

—2(p —p') + 3(v —v')], (31)

with

o', (X = p = v =1)=0. 11 .
Figures 8 and 4 represent the values of E/ED

as a function of o following Proc II. The energy
E of the complex is obtained using Eg. (30). The
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and X= 0. 3072125.
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cases considered in these figures are

1 Q 9 1
1 08 1
1 Q V 1
1.05 1
1.05 1.05 1.1
1.05 Q. 95 1.1

1 095 1
0.85 1

1 0V5 1
1.05

1 1 1 1
1.05 1 1.1
1 1 1 2

The values of x for which energy convergence is
attained and which correspond to the different
sets of A. , p. , and v are indicated in these figures.
Since the values of X, p. , and v are different, the
variations in o, are also strongly dependent on the
dielectric constants between the three particles.
Comparing these curves with those in Figs. 1 and
2 that correspond to the same values of A. , p. , and
v, one can notice that for small mass ratios
o = 1/mh the values of E/ED are higher in Figs.
3 and 4 than in Figs. 1 and 2. For greater mass
ratios the values of E/ED in Figs. 3 and 4 are

smaller than those in Figs. 1 and 2, and con-
sequently, smaller values of cr, are obtained.
In Fig. 3, the value of o, for the case A. = p, =v'
= 1 is 0. 1 which is slightly smaller than that in
Fig. 1. For the cases in Figs. 3 and 4, a simple
empirical formula can also be found to determine
the value of cr for any set of A. , p, , and v:

o,(y, p, , v) = o,(y' = p,
' = v' = 1) + [3.2(X —X')

—1.V(p, —p, ')+ 2. 4(v —v')1 . (32)

Figures 1-4 all correspond to the case of singly
ionized donor. The solutions of the determinants
(29) of order 50 used in these calculations are cor-
rect to the fourth decimal. In Fig. 5 the cases

p, v A. p v

2 2 1 2 19 1
3 3 1

that correspond to doubly and triply ionized donors
are calculated following Proc I. The values of e,
P, and y are also the same as those for X = p. = v

.=1, that is, O. V2, 1.5, and 0. 55, respectively.
The values of a and Z given from Eqs. (22) and (23)
are also 0. 84V 3625 and 0.30V 2125, respectively.
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(I) =8 R( Kl ))K2 RK12) j(Q V K) (38)

where a, b, and c are given by the following ex-
pressions:

a =-', (- o+P+y},
b =-,'(n —P+y),
C = 2(Q + P y}

Taking @=0.72, P=1.5, and y=0. 55, the corre-
sponding values of a, b, and c are 0.665, 0.115,
and 0.835, respectively, all positive numbers.
These values of a, b, and c show that the repulsion
between the hole and the donor has a smaller effect
than the attractions along the directions of r& and

r». Another important feature that did not appear
in the other variational calculations treated by the
previous authors is the positive sign of the r~ term
in the exponential of Eq. (33). This sign has a
significant physical meaning in that it explains the
repulsive forces between the hole of the exciton
and the donor. The two negative signs of rz and
r 2 in the exponential represent, of course, the
attractive forces between the electron and the
donor, as well as between the two exciton par-
ticles, respectively. The wave function (83) still
converges since the value of b is much smaller
than that of a or c. This has been demonstrated
by studying the integrals of Eqs. (35) used for
calculating the values of X, p, , and v which are
necessary for comparing experiment and theory.

VI. COMPARISON WITH EXPERIMENT

The values of X, p, and v depend on the funda-
mental constants m,*, m„*, K„K„and m. For a

The solutions of the determinants (29) of order 50
used in these calculations are correct to the third
decimal. For these complexes of excitons bound
to doubly and triply ionized donors, a simple re-
lation similar to that of Eq. (31) can also be found
for o, for any set of X, p, , and v.

In Eqs. (31) and (32), the coefficients of (X —x')
terms are greater than those for (v —v'), terms
which are in turn greater than the ones for (p —p, ')
terms. This means that the effect along the r&
direction is stronger than that along r» while the
repulsion between the hole and the donor has the
smallest effect. Also, the higher the values of X

and v and the smaller those of p. the more stability
of the system one can obtain. That is why one ex-
pects that the higher the degree of ionization of the
donor the greater the stability of the system. As
a matter of fact, if the effect of the repulsion along
the direction r2 were the strongest, the system would
be completely unstable.

Using Eq. (20), the exponential part of the wave
function (24) can be written in terms of x&, r 2, and
r&,; as follows:

particular semiconductor there corresponds one
set of values for A., p, , and v. To carry out the
comparison between theory and experiment for a
specific semiconductor, the corresponding mean
values X, p, and v given in Eqs. (35) have to be
calculated:

K «, 1 1 f4(@d7.
K, ' "' K, K, f44 dr (35a)

+ —,K,« —,(35b)KRfg y 1 1 f )I 7)4' d'r

S 0 S
4'4 df'

K,«, 1 1 f )I(f)I( dv'

K, 'f' K, K, f4'0 dv'
' (35c)

K„, , 1 1 (U+ V)E
K, "' K, K, R(e, +a)'(ee —a)')

where

K~ Kga =a+ — a =a+—1 . 2g t 2 2g
Ke

Cg =C+—

~K
C2 C+ ) Gl (C1 b) ) G2 (c2 b)

E=(c -a ), G=(a —b), J=(c —b)

R=c(c —3a +2ab)/G+a(3c -a —2cb)/j,
S = [c(c —3aq + 2bag)] /(ag —b)'

+ [ac'-aalu+ 2ca, (c —b)]/d,

r =c(c'-3a'+ 2ab, ) /(a, -b)'

+a(3c'-a' —2cb,)/(c, —b)', (35)

U = cz[c + (c)(, /2e) —3a + ()(,/2&) + 2a b] /G

+a[3c +3(cx,/2('. ) —a +3(K,/2a)

—2 b —b(~,/~)]/G, ,

V= [c +(c)(„/e) —3a +(x„/2e) +2ab]/G

+a[3c +3(CK))/&) -a'+8(~„/2&)

For these computations one needs to know the wave
functions 4. The calculations concerning the
wave functions (33) are quite elaborate. For sim-
plifications only the exponential parts of Eq. (83)
has been used to evaluate the integrals of Eqs.
(85) and consequently to calculate the values of
A,, p, , and v. Using elliptical coordinates for in-
tegration, the values of X, p, and v for a given
semiconductor are given by the following expres-
sions:

eii SI'

K, "' K, K, R(a+a)'(e —a, ) )
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—2cb —(bag/e) ] /G2,

1/m„' = —,
' [(2/m f„)+ (1/m„*„)(K~ /K„,)],

1/m,*= —.'[(2/m,*,) + (1/m,*„)(K„/K„,)],
K~= (K~K~„) ~

(37)

with K and Kg given by Eq. (2). The values of X,
and v depend not only on the fundamental constants
but are also a function of the energy e of the com-
plex. This energy has been calculated following
Proc I and using the determinant (29). In this
case the computations have to be self-consistent.
The two matrices P and Q of Eq. (29) which cor
respond to the minimum energy for the case A, = p,

'

= v = 1 are considered the same for the different
semiconductors. On the other hand the matrix H
of this equation varies from one semiconductor to
another for its explicit dependence on the values
of A., ILL, and v. Simple IBM 360 programs are used
to compute the values of x, p, and v of Eqs. (36)
for each specific semiconductor. The values a
= 0.665, b = 0. 115, and g = 0.835 considered in these
computations are invariant for the different semi-
conductors. These values correspond to the min-
imum energy for the case X' = p,

' = v'= 1.
The self-consistent calculations for a particular

semiconductor are carried out as follows: The
values of A. are computed as a function of the energy
E with b, e = 10.-4. For the different semiconductors
studied, the values of E lie between 0.7 and 0.84.
The value of K,« is chosen such that for an initial
value of &, say E„ the value of A. is 1. With this
value of K„„ the values of p, and v of Eqs. (36) are
calculated for the energy &, . Prog A is then used
to compute the matrix H that corresponds to these
values of A., p. and v. Prog B is used to calculate
the final value of e& of the energy for this specific
semiconductor. If E& computed using Prog B is the
same to four decimals as &, chosen at the beginning,
the computation process stops and the energy E
of the system is calculated using Eq. (21). On the
other hand, if &&4 e, another value of e, is chosen
and the whole process is repeated. The computa-
tions are carried out until the condition I E& —E, I

&10 4 is reached.
For a particular semiconductor, different values

of effective masses and dielectric constants are
available in the literature. The computations cor-
responding to a particular semiconductor are car-
ried out for these different effective masses and
dielectric constants. In Table I, the fundamental
constants and the computed values of (E -ED)/ED
for CdS, ZnO, ZnSe, ZnTe, CdTe, SiC 6H, TlCl,
and TlBr are given. The problem of anisotropy
for the effective masses and the dielectric constants
is eliminated by taking mean values for these con-
stants using the formulas of Hopfield and Thomas':

The stability of the exciton-ionized-donor complex
calculated in Table I for these materials agrees
with observations. &

' "&' ' Due to the com-
plexity of SiC6H, this material will be studied in
more detail in a subsequent article. For TlCl and
TlBr, the calculations predict the existence of such
complex. No experimental evidence is yet available
to confirm this prediction for such materials. The
computed values of (E -@)/ED for the materials
CdS and ZnO given in Table I are in better agree-
ment with experiment than any other values reported
by previous authors where the effect of the polar-
izability has been neglected T.he value (E —E~)/E~
=3.524 10 ~ computed for CdSIV in Table I and
which corresponds to K, = 9. 2 is in better agree-
ment with experiment'~ '0 (2.5 x 10 ) than the best
previous value (4.04&&10 2), calculated recently
by Suffczynski et al. ' using Rutenberg and
Stein's wave function. The value K,= 9.2 taken
for CdS IV gives better agreement with experiment
than the mean value 9.8278 that corresponds to
K J 9 35 and K „=10.33~ One can also notice that
the value m,* =0. 205 gives better agreement with
experiment than the values 0. 18 and 0.171 that
correspond to CdSII and CdS III, respectively. The
discrepancy between the value 3.767 && 10 calculated
for CdSI in Table I and the observed one, 2. 5
&& 10, may be due to the high measured m& value.
With m„*=0.854 the computed value of (E —E~)/En
for CdSV is 2.464&10, which is in excellent
agreement with experiment. With K, = 9.2, m,
=0.205, andmf =0.854, the value of (E ED)/ED-
would be slightly smaller than 2.464~ 10 and will
still be in excellent agreement with experiment.
For ZnO II and ZnO III the computed values 5.91
& 10 and 6.4&10 are again in better agreement
with experiment'0~'0 (9.61&10 ) than the previous
best value 5.085~ 10 ~ calculated recently by
Suffczynski et al. using Hutenberg and Stein's
wave function. It is the value 6.4&10 that has
to be compared with the value 5.085&&10 3 given in
Ref. 42 since they correspond to the same funda-
mental constants. For ZnOIV and ZnO V the values
9.328X10 and 9.68~10 ~ are in excellent agree-
ment with experiment. For these two, as well as
for ZnO VI and ZnO VII, the dielectric constant
K, =4 is used. From Table I one can see that the
calculated exciton binding energy E„for ZnOIV,
ZnO V, ZnO VI, and ZnO VII is greater in absolute
value than that of the neutral donor E&. Although
the case I E„l & I E& I is not very common in most of
semiconductors, it has been reported in some ex-
periments2» '6' 5~ concerning ZnO. One cannot
then say which of the two values K, = 4.59 or K, = 4
is the more reasonable for this material.

For the materials ZnSe, ZnTe, and CdTe, in
spite of the observation of such a complex and which

is confirmed by the calculations given in Table I



TABLE l. Fundamental constants and the computed values of (E—En)/Eg for exciton-ionized-donor complex in
CdS, ZnO, ZnSe, ZnTe, CdTe, SiC6H, TlCl, and T18r.

Q —g~) /Q~
~10

Cds I 0.2Q5 0 Vl,sb 9 85c 10.33 Q. 2Q7 306 3.767

0.7

X = 1, p = 1.0017, v = 1.067 53

10.33

X=1, p= 1.00128, p= l.0612

0. 182 4. 18

CdS III 0 171 0.7 9.35 10.33

ZnOI

ZnO II

0.38'

0.24'

0.7

X=1, p=1.00109, @=1.05882

A, = 1, p = l.0017, p = l. 065 68

10.33 5.24

A. =l, p=1.00215, v=1.06975

A=1, p=1.00229, v=1.0834

X=1, p=1.0007, p=1.05527

0.207

5.911

ZnO III 0 29" 1,8 5h ]1 4. 59 0.1611

ZnO IV

A. =l, p=1.0012, p=1.0697

8. 15C

X= 1, p = 1.0031, p = 1.11063

X=1, p=1. 00322, v=1. 1133

0.21

0.21

9.328

ZnO VII

X=1, p=1.00094, @=1.07447

8.15

A, =l, p=1.00091, v=1. 0733

8.413

ZnSe II

ZnsenI

ZnTeI

Zn Te II

0.1

0.1

0.096'

0.096

0.096"~

0.6

0.6

A, = 1, p=1, 00048, p=1.02733

A. =l, p=1.00057, p=l. 03242

A, =l, p=1.0005, v=1. 03

10.38' 6.Vo

A, =l, p=1.00044, p=1.02763

A. =l, p=1.00042, v=1.02673

10.6'

206

1.158

0.848

0.875

SiC 6H 0 25

O. 53t

1 5 3.5'

2.72t

~=1, p=1.00038, v=1.02792

9 66' 10.03' 6 7'

X=1, p=1. 00017, v=1. 021

37.6t lt
A, =l, p=1.00838, p=l, 21155

0, 1915 174t

8.007

25. 446



3422 S. G. E LKOMOSS

TABLE I (Continued).

TlBr 0.28' 0. 72t 35.1 5.4' 0.3889 116'

(& —En)/ED
x 102

6. 73

A, = 1, @=1.0051, p=l. 15727
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for these semiconductors, the corresponding ex-
perimental values of (E -En)/En are not well de-
termined. Taking v = 1.211 55 and v = 1.157 27

given, respectively, for T1CI and TlBr in Table I,
the corresponding exciton binding energies for
these materials are 6. 312 and 2.95 meV. These
energies are in very good agreement with the ex-
perimental values (11+ 2) and (6+ 1) meV given by
Bachrach and Brown' for T1C1 and TlBr, respec-
tively. One can also notice that the greater the
value of K, /K, the greater the probability of exis-
tence of such a complex.

VII. DISCUSSION

The modifications in the potential due to the varia-
tion of the dielectric constant with the distance be-
tween the particles of the exciton bound to an ionized
donor have been shown to make considerable contri-
butions to the binding energies of these complexes.
These corrections are expressed in terms of A. , p, ,
and v. Even slight variations in these quantities
lead to considerable changes in the curves for
E/En= f(o). The use of a single curve corresponding
to the special case A,

'=
p, = v =1 from which one

calculates the binding energies of this complex in
all semiconductors certainly leads to inaccurate
results. From my calculations it appears that

semiconductors are characterized not by a single
value of o, but by many, each of which corresponds
to a specific semiconductor and consequently to a
particular set of X, p. , and v.

Considering that the values of z, P, and y ob-
tained by the variational principle for the case X

= p.
'= v = 1 are the same as those that could have

been calculated for any set of ~, p. , and v may not
be quite correct. This assumption has been adopted
due to the tremendous number of computations in-
volved in the minimization of the energy. On the
other hand the integrals of Egs. (36) evaluated for
the mean values A., p, , and v are not strong func-
tions of n, P, and y. As a result the binding en-
ergies and consequently the values of 0, given in
these calculations may be slightly smaller than the
corresponding real minimum energies for the dif-
ferent sets of X, p, , and v. For the materials
studied in Table I, the values of p, are close to 1,
while those of v vary between 1 and 1.21. To car-
ry out more accurate computations, one could cal-
culate the values of a, b, and c that correspond
to the minimum energies for the cases 1=1, p, =1
and v=1.03, 1.05, 1.08, 1.1, 1.15, and1. 2. This
would probably give better agreement with experi-
ment for the semiconductors under consideration
but would need of course several more hours of



computer time.
To calculate the mean values X, p. , and v, only

the exponential part of Eq. (33) has been consid-
el'ed. This 18 of coul se not consistent with the
rest of the calculations. This approximation has
been adopted to simplify the calculations which
otherwise become much more tedious and require
several more hours of computer time. As a matter
of fact, eliminating this approximation together
with the one mentioned in the preceding paragraph
would be quite impractical unless one were to
possess his own high speed computer.

In spite of the complexity of the calculations
described in this paper, the consideration of the
bvo approximations mentioned above, and the
strong deyendence of the computations on the funda-
mental constants K, E„m, , m&, and &, satis-
factory agreement has been obtained with experi-
ment for the semiconductors studied in Table I.
This agreement is better than obtained by previous
authors where the effect of the polarizability has
been neglected. An interesting result that ap-
peared in using this method of the generalized
three-yarticle yroblem is the yositive and negative
signs of the coefficients in the exponential term of
the wave function (33) obtained by the variational
principle. These signs correspond, respectively,
to the attraction and repulsion between the three
pa1 tlcles.

In carrying out the comparison with experiment
for a certain semiconductor, the first thing one has
to look for is the experimental value of E„or
preferably that of ED. If E„ is the value that one is
obliged to consider, then K(xqz) is set equal to
K,«and the term between brackets on the right-
hand side of Eq. (4) is equal tounity. ln this case

the values of E/E„are obtained by multiplying those
of E calculated for the specific semiconductors, by
the factor 2(1+rr). Working with E„instead of E~
has the disadvantage that one may be dealing with
the case lE„I & I E I & I E~ I . In this case the sys-
tem is stable with respect to the exciton and un-
stable with respect to the neutral donor. To d4.'-
termine if )El is smaller than or greater than

t E&l for a given semiconductor, one has to com-
yare the value of o, obtained from the curve
E/En=f(o) in which E(r,) =E,«, that is A. =1, with
the mass ratio o of that semiconductor. For
g &o„ the system for which I E„t & HEI is certainly
stable. If o &o„ the system is unstable with re-
spect to the neutral donor. On the other hand, if
the value of EI, is available, then Z(x, ) is set equal
to K,«and the term between brackets on the right-
hand side of Eq. (6) is simply unity. The compari-
son with experiment can be carried out correctly
for semiconductors having available values of E~.
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