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This paper will review techniques useful in theoretical analyses of the electronic structure
of disordered substitutional alloys. The coherent-potential approximation (CPA) and the
average-t-matrix approximation (ATA), which have received a great deal of attention recently,
are compared for two model Hamiltonians. A reconsideration of the ATA shows that the un-
physical results usually attributed to it are in fact the consequence of unnecessary further ap-
proxixGatlone. The two HRBllltoniane ln question consist respectively of R single-bRnd model
and a two-band model relevant to the description of transition-metal alloys. In the first case
the ATA is found to provide a correct description of the qualitative features of the density of
stRtes for R wide variety of scattering strengths Rnd concentrations. In the two-band model,
which hRs been previously applied in connection with the optical properties of Ag-Au alloys
the results of the ATA and the CPA are essentially identical over a wide range of energies.
This agreement can be shown to persist as long ae the constituent g subbande lie within the
broad s band of the alloy. This ie precisely the situation that obtains in many of the traneition-
and noble-metal alloys. This result is of particular importance since the ATA is far easier
to implement numerically than the CPA. In fact, the ATA may be regarded as 8 good first ap-
proximation in an iteration scheme leading to the self-consistent CPA solution.

I. INTRODUCTION

This pRpex' 18 concelned with the 81Dgle-pRrtlcle
theory of the electronic structure of disordered
binary alloys. This px'oblem has generally been
discussed within the framework of multiple-scatter-
ing theory. ' 9 Such R procedure is appropriate if
the disordered potential of the alloy can be decom-
posed into a sum of contributions due to the indi-
vidual atomic scatterers. The propagation of an
electron through the system may then be viewed as
a succession of elementary scatterings from these
random atomic potentlRls.

Recentlyy sevex'Rl Ruthol 8 hRve emphasized
the importance of treating these multiple-scatter-
ing events self-consistently. In this approach the
scatterers are viewed as being embedded in an
effective medium whose choice is open. The choice
is made self-consistently by requix'ing that the
average scattering from a single ion be set equal
to zero. The effective medium corresponding to
this choice is usually x'eferred to as the coherent-
potentlRl medium.

In practice, the implementation of the coherent-
potent1al approxxnlation (CPA) requires 'tile calcu-
lation of the full Green's function G(s) for the
periodic effective medium. In a realistic solid this
is a formidable task involving the evaluation of
complicated integrals over the Brillouin zone.
Consequently the application of the CPA has been
limited to model Hamiltonians with a relatively
small Dumber of 1nput parameters.

It is the purpose of the present paper to recon--
sider an alternative approach to the calculation of
the electronic den8lty of stRtes ln disordered alloys.
This method, the average-t-matrix approximation
(ATA), which predates the CPA, does not require
a self-consistent procedure. Its name derives from
the fact that the effective medium is detex'mined by
simply requiring that it reproduce the average
scattering at each site. The utility of the ATA has
not been fully explored because in the past, several
authors~ 6 have argued that it leads to unphysical
results for the density of states. In particular,
the existence of spurious gaps in p(E) has often
been associated with the ATA. It wiG be seen that
these difficulties are not really inherent in the ATA
but are instead the consequence of several unjusti-
fied further appx'oximations. A similar situation
exists in the theory of systems with structural
rather than compositional disorder. ' In liquid
metals, for example, the quasicrystalline
approximation, which is the direct analog of the
ATA, 18 known to be R useful fix'st approximation.

To demonstrate that the ATA is a viable method
in the alloy problem, numerical calculations are
presented for two of the model Hamiltonians for
which the results of the CPA are readily available.
The simplest of these, the single-band model of
Velicky, Kirkpatrick, and Ehrenreich' (VKE) and
Soven, is discussed in Sec. II. It is shown that
the ATA does in fact provide a reasonable descrip-
tion of the density of states over the entire range
of scattering strengths and that for moderate
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strengths the results of the CPA and ATA are
essentially identical. In Sec. III we consider a
two-band Hamiltonian capable of describing the
basic features of the transition- and noble-metal
alloys. The model is a slightly generalized ver-
sion of the one used by Levin and Ehrenreich' to
discuss the concentration dependence of the optical
absorption edge in Au-Ag. Adopting their param-
eters, we are able to compare the ATA and CPA
for the Au-Ag system. The agreement between
the two methods is remarkably good. Indeed, in
the dilute limit (concentration- 10%) the results
are essentially identical.

On the basis of these preliminary findings, we
conclude that the importance of non-self-consis-
tent methods in the alloy problem has been seri-
ously underestimated. While it remains true that
the CPA is the best of all single-site approxima-
tions, its formal complexity may well limit its
application to simple model Hamiltonians. By
contrast, the relative simplicity of the ATA may
make it a more useful technique for the descrip-
tions of realistic systems.

and se is one-half the band-width. It is convenient
to express e" and & in terms of u to define the
zero of energy such that

G (z )= (z —H) (4)

In particular, the ensemble average of G(z), to be
denoted by (G(z)), determines all the macroscopic
properties of interest in the one-electron approxi-
mation. (G ) may be used to define a self-energy
Z (z),

This equation defines the dimensionless impurity
strength 5. The energy so simply scales the entire
Hamiltonian and will be set equal to unity. For a
given choice of W, the alloy is completely speci-
fied by the two parameters x and 5 characterizing,
respectively, the concentration and separation of
the energy bands.

The equilibrium properties of the alloy are dis-
cussed most simply in terms of the Green's func-
tion

II. SINGLE-SITE APPROXIMATIONS AND

SINGLE-BAND MODEL

This section begins with a review of the formal-
ism underlying the single-site description of bi-
nary alloys. The coherent-potential and average-
t- matrix approximations are then introduced as
alternative versions of the single-site approxima-
tion. For convenience this discussion is limited
to the single-band model. '

Consider the alloy to be described in a tight-
binding representation. A single orbital (n& is
associated with each site n. The one-electron
Hamiltonian is

H=Z In&.„""&&nl+Z In&k„. &~
I

The second line defines the separation of H into a
diagonal part D and an off-diagonal part W. The
diagonal elements may be regarded as random
atomic levels which assume one of two possible
values e" or e depending on whether an atom of

type A. or B occupies the site n. The respective
concentrations of A and B atoms are x and y

—= 1 —x,
both varying between Q and 1. The hopping inte-
grals h „are assumed to be independent of the
alloy configuration. The operator R' may there-
fore be interpreted as the Hamiltonian of the pure
crystal for which e

The matrix elements of W in the Bloch repre-
sentation are given by

&k
I
w

I

k')= ~„,.~ s(k).

s(k) describes the k dependence of the band energy

&(z) has the symmetry of the lattice but will in
general be complex and non- Hermitian. Because
the average alloy is characterized by the effective
medium described by Z, it is often convenient to
rewrite H in the form

II = w+ ~ In & o (z) &n
I

+ ~ In & [e.""'—o(z) ]&n
I

(6)

-=II+~ In&~. &nl

(6)

G(z) = (z —ff) ' = G"' (z —o(z) ) (9)

is the reference propagator and G ~0' (z) =(z —W)
'

is the Green's function for the perfect crystal with
Hamiltonian W. Equations (4), (6), and (8) may be
used to express T in terms of t„, the scattering
matrix for the nth ion,

1 —v„F (z)
(10)

v„ then describes scattering relative to a reference
Hamiltonian II which may be chosen at will. It will
be seen that better choices for o (z) lead to success-
ively better approximations to (G(z)).

The calculation of (G ) is carried out most easily
within the framework of multiple- scattering theory.
For a given configuration of the alloy, the relation
between G and the total scattering operator T is
simply

G=G+GTG .
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where F(z) -=(n

~
G(z) ~n). The result is simplys'9

T=P T„,

T„=t„1+6 7
tftP n

Equations (8)-(18) are exact. They lead to the ex-
act averaged relations

(7'„)=(t )()+G„Z (T' ))

+ t„- t„G T — T . 15

The first term in (15) may be thought of as describ-
ing the average effective wave seen by the eth ion,
while the second term describes fluctuations in the

. effective wRve. Oux' bRslc approximation to be
referred to as the single-site approximation, is
the neglect of this difficult term. The electronic
properties of the alloy are then determined from
the closed set of equations

(16)

Using the fact that g„,„T„=T —T„, Eq. (16) is easily
rewritten as

&T.&=[I.F «.&]' «.&[1 G(T&l.

Combining this result with (8) and (5), we obtain

Z(z) = o(z)+- t

1+ (t &F(z)
(17)

This equation can be used in two ways. Either
(t) and F corresponding to a given choice of o (z)
can be inserted into (1V) or the equati'on

(t)=0 (18)
may be used to determine o(z). In the second case
Eq. (17) guarantees that (G& = G since Z (z)= o (z).
These two possibilities define two different classes
of approximate calculations of Z(z) within the
single-site approximation. In the first case, the
second term in (1V) describes an effective potential
corx'esponding to the average scattering matrix at
the site n. Accordingly, this method is known as
the average- t matrix approximat-ion (ATA).
The second appxoach, usually referred to as the
coherent-potential approximation (CPA) requires

Iteration of (12) leads to the usual multiple-scatter-
ing expRnsloQ '

T„=t„+t„G Z t„+t„G Z t„G Z tI, + ~ ~ ~ .
tm4n tnt n P4 %

a self-collslstell't sollltlon of (18) slid is much more
difficult to implement numerically than the ATA.

Substituting from (7) and (10) into (18), we see
that within the single-band model, the coherent-
potential equation may be written as

x (z"—Z) y(~'- Z)0= +
1 —(z"- Z)F(z) 1 —(z —Z) F(z)

ox', mox'e simply,

xy5 F (z)

1+ [ e+ Z(z) ] F (z)

where z=xz" +ye = z(x-y) 5. Equation (19) must
be solved self-consistently for Z(z) and F(z)
=F' '(z —Z(z) ). The details of such a procedure
have been discussed by Soven and VKE. These
authors have shown that the CPA provides a reason-
able description of the alloy over a wide range of
the parameters x and 5.

Consider now the ATA for the single-band model.
BecRuse this RppxoRch 18 Ilot self-consistent, the
results will in general depend on the choice of 8.
Suppose, for example, that we take & to be the
virtual-crystal Hamiltonian, i.e. , o(z)=e. Equa-
tions (V), (10), and (1V) then give

1+uF«) (z —z) (20)

The density of stRtes 1Q the ATA ls obtRlned by 8ub-
8'titlltlllg fl'Gill (20) lllto the usual fol'Illllla

P(&)= —7r
' ImF"'(z —Z(z)) ~,

It will be seen shortly that Eqs. (20) and (21) are
capable of describing Inany of the qualitative fea-
tures of the electronic structure in the alloy. The
form of (20) is quite similar to that of the CPA
equation. The ATA may in fact be viewed as the
first iteration [i.e. , Z( )z- z]of Eq. (19) toward
self-consistency. It is interesting to note that in
the virtual-crystal regime, i.e. , 5«1, the CPA
and ATA agree to 0(5 ):

Z(z)= ~+xy5'F«)(z

The denominators in (19) and (20) have been negiec
ted because 2&= (x —y)5 is 0(6).

Several authorss'6 have argued that the non-self-
consistent ATA does not yield correctly even the
simplest features of the electronic structure of
binary alloys. In particular, the existence of spuri-
ous gaps in the density of states has generally been
associated with this method. It is the purpose of
this paper to show that these difficulties are not
inherent in the ATA but are rather a consequence
of the improper implementation of that method.
Equations (20) and (21) allow us to understand bow



3386 SCHWARTZ, BROUERS, VEDYAYEV, AND EHRENREICH

spurious gaps in p(E) may appear if the ATA is
treated incorrectly. If the replacement F' '(z)- 1/z (appropriate only in "atomic limit" 5 -~ as
(()-0)' is made, we obtain

Z(z)= e+xy6 /(z+ e) . (22)

This expression for Z(z) is singular at z = —e, and
consequently leads to a gap in p(E) at this energy.
Such behavior is reasonable in the atomic limit
where the spectrum consists of two well-separated
atomic levels centered at c"and e, but is entirely
spurious if (22) is applied to the regime 6 & 1.

Previous authors ' have discussed the ATA from
an alternative point of view. Rather than introduc-
ing a self-energy operator, they view (16) as a
prescription for the calculation of (T„). Most
often this equation is written in the form

(T.)=(f.)+(f.)G + (f )
mtn

would have been exact. As with any non-self-con-
sistent perturbation procedure, the ATA may be
improved if a careful starting point is. employed.

Equations (19) and (20) show that the implemen-
tation of the ATA and CPA requires only the cal-
culation of E(B)(z). Using the relation

(24)

E'B)(z) is then simply

/E/ &(().

we see that x, 6, and p' '(E) completely define the
alloy problem within the single-site approximation.

Following VKE, we assume that p(B)(E) has the
form suggested by Hubbard,

P(0)(E) (2/ z) (
z EB) 1iz

+(t„)G ) (f )G 2 (f, )+ . . . . (23)
F' '(z)= (2/w ) [z —(z —(() )

i ] .

If (23) is combined with (14) and (8), an expression
for (G(z)) is obtained directly. It can be shown
that the density of states implied by this procedure
is indeed equivalent to that of Eqs. (20) and (21).
The algebra required to make this connection is
somewhat tedious and will be discussed in the
Appendix. When this approach to the ATA is em-
ployed, the unphysical gaps in p(E) may be traced
to the assumption'

fA(B ) (E eA( ))-B1

Equation (10) shows that this approximation is valid
only if E is well outside the unperturbed band so
that F(0)(z)= 1/z. Once again, the spurious fea-
tures in p(E) are associated with the improper use
of the atomic limit.

Within the single-band model, it is useful to com-
pare the results of a given approximate method
(for example, the ATA and CPA) with exact re-
sults concerning the sum rules and moments of
various physical quantities. The simplest such
quantity is the density of states p(E) whose mo-
ments are defined by

().~= J E~ p(E) dE.

If P is small, a procedure developed by VKE may
be used to calculate the moments p. ~ exactly. It
can then be shown that the ATA and CPA lead to
densities of states that give correct values for the
first four and seven moments, respectively. In
this context it is quite clear that the results of the
ATA depend on the choice of N. If, instead of
o= z, we had made the simpler choice v= 0 (i. e. ,
H= W), then only the first three of the ATA moments

The results for the density of states in three
cases is shown in Fig. 1. We see that both the
ATA and CPA exhibit the development for increas-
ing 6, of the band shape from the virtual-crystal
regime through a stage where the band is distort-
ed at its upper edge until it finally splits into in-
dependent subbands. These figures provide a
corrected version of VKE's Fig. 3(c). The ATA
calculation described in Ref. 8 was actually based
on Eq. (22) [their (4. 21) ] and consequently ex-
hibited a gap in p(E) for all values of 6. The ATA
and CPA are now seen to be qualitatively similar
over the entire range of 5.

A more detailed comparison shows that, while
the location and weights of the subbands are given
correctly by both methods, the CPA describes
their shape more correctly. In particular, the
height and width of the CPA minority band both
vary as )/x, while in the ATA they vary as 1 and

x, respectively. This difference is a reflection
of the fact that four subband moments are given
exactly in the CPA, while only two are exact in
the ATA. The self-consistency of the CPA im-
proves not only the general shape of p(E) as indi-
cated by the moments, but also various finer
structural details. In Fig. 1(a) the sharp cusp in
the upper edge of the ATA density of states is a
spurious effect due to the fact that non-self-consis-
tent theories allow quasiparticles to decay into
bare-particle states. This point has been discussed
by VKE in connection with their Fig. 2. We
see also that the ATA majority bands in Fig. 1(b)
and 1(c) exhibit a residual "tail" at their upper
edges. This tail is associated with the fact that
Z(z) in (20) is calculated in terms of E' '(z —z).
Consequently ImZ(E') and therefore p(E) must be
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-2.

x =. l5
8 =.40

x =.15
8 =1.0

mp(E)

(a)

ATA
———CPA

vp(E)

ATA———CPA

l.
ENERGY/HALF BANDWI DTH

0 l.
ENERGY/HALF BANOWI OTH

CPA and ATA are expected to agree.
The pure metals A. and 8 are assumed to have a

broad s band and a narrow d band centered at the
energy e~' '. The d band is supposed to consist
of five degenerate but independent subbands. In the
model discussed by LE the d band was replaced by
a single level of zero width. This assumption tends
to overemphasize the effects of s-d hybridization
and leads to the appearance of unphysical hybridiza-
tion gaps in the density of states for the pure
metals. The introduction of a width in the d band
eliminates this difficulty.

In the alloy AQ& „the d energy level at a given
site may be c& or &&. The disorder associated
with these random d levels will be treated in the
ATA and the CPA. By contrast, the s-band and
hybridization parameters are assumed to exhibit
virtual-crystal behavior. For a given configura-
tion of the alloy, the Hamiltonian is

x = .15
Q =2.0

ATA
~p(E) ———CpA (c) keBZ ke BZ

H=Q E,(k)
I

k ) (k, I++ e(k)
I k~&&k~

I

keBZ

I

-2.

/

0 l.
ENERGY/HALF BANDWIDTH

PIG. 1. Comparison of the density of states calculated
in the coherent-potential and average-t-matrix approxima-
tions. In each case x =0.15; the values of 5 are 0.4, 1.0,
and 2. 0.

+ Ik. &&k. I].
The first two terms represent the kinetic energy
of the s and d electrons. The third term contains
the random d levels and the last terms describe
the s-d hybridization. The intersection of the
E,(k) curve with the (spherical) Brillouin-zone
boundary determines the width 2, of the unhybrid-

ized s band:

finite in the energy range I z —& l
~ I.

These apparent drawbacks of the ATA are actual-
ly overemphasized by the single-band model. In
the following section it will be seen that for another
type of model Hamiltonian appropriate to the tran-
sition metals, the agreement between the ATA and
CPA is greatly improved.

III. TWO-BAND MODEL: Au-Ag ALLOYS

In this section we discuss a two-band model for
the noble- and transition-metal alloys. The model
is a generalized version of the one used by Levin
and Ehrenreich s (LE) to describe the optical absorp.
tion edge in Au-Ag alloys. Adopting parameters
appropriate to silver and gold, the model is used
to compare the ATA and CPA. It will be seen that
the densities of states predicted by the two methods
are in good agreement over the entire range of
energies considered. In Sec. II it was shown that
the difference between the ATA and CPA is negli-
gible if the single-band parameter 5 is small. We
conclude this section by discussing the range of
parameters for the two-band model over which the

E,(k) = Eo ' '+ so, s (k). (26)

E E gE +yEA B (2'la)

(2Vb)

In addition, it is convenient to suppose that in a
given metal the unhybridized s and d bands have the
same shape but differ in location and width. If
the energy origin is chosen midway between the
constituent. d levels, we have

E,(k) = E+ so, s (k),
e~(k) = aw, s(k) .

The parameter e, which specifies the relative

(28a)

(28b)

For a given metal, the parameters Eo' ', zv„
and y(e~) may be chosen to fit existing band calcu-
lations approximately. The relevant procedure has
been discussed in detail by LE and need not be
repeated here. As indicated above, the s-band
and hybridization parameters in the alloy are as-
sumed to satisfy
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(G(z)&=
z —E,(k)

(20)

width of the s and d bands, is a new feature of the
present model. In practice, we choose a value of
e that is large enough to eliminate the hybridiza-
tion gap ( o.'- 31' ) but otherwise leaves the density
of states unchanged.

The third term of (25) is the only part of the
Hamiltonian to be treated on the basis of the CPA
or ATA. It is in fact identical to the correspond-
ing term of the single-band Hamiltonian. Because
of this similarity, ATA and CPA calculations for
the two-band model are essentially no more diffi-
cult than those discussed in Sec. II.

In the present case, the propagator (G(z) & is a
2&&2 matrix, which may be written in the {Ik,&,

I kd) }representation as

single-band model. The fact that E,(k) and ed(k)
are defined in terms of the same s(k) allows Eq.
(34) to be rewritten as

~)Fd" (El)

-(»-E-E2)F."'(E2)], (35)

where Ej and E2 are the roots of the equation

S'- [z-Z- ( »-Z, )/n]Z-y'/n=O

F' in (35 ) is related to the unhybridized s-band
density of states by an equation like (24). As in
Sec. II, we adopt the Hubbard model for p,' '.

Once Eqs. (32) and (33) have been used to evalu-
ate Z, (z), the density of states for the ten d elec-
trons is obtained from the formula

z —ed(k)- Zd(z)

The self-energy Zd(z) is seen to enter only the d A-
part of (G). As in Sec. II, the calculation of (G&

is carried out most simply in terms of the total
scattering operator T. In the {ln,&, hand&} repre-
sentation the equations are

pd(E)= —(10/&) lmFdd(E', 4) .
Similarly, the s-band contribution is given by

p, (E)= —z ImF„(E', Zd)

=-~'1m&a,
~

&G(z)& ~s, &,

where the relation between F„and F,' ' is

(37)

0 0

0 P r„
(30) F,(z, Zd) =(E.-E~) '{I(.—Zd)/~-E, ]F."' (E,)

[(z Z )/n E ]F(0& (E )}
and

T„=t~ 1+|" P~ T (31)

where once again G is the reference propagator.
Averaging Eq. (31) and decoupling as in (16), the
CPA and ATA equations are found to be

ZcPAi i — zy + Fdd (z~ Zd )zj=ez +
I + (Ed+ Zd )Fdd (z, Zd )

(32)

ATA( )
Xy+ Fdd (Z) f d )

respectively. Here ~= E„—e~, e~ =xe„+ye~,A B — A B

and Fdd is the d-d matrix element of (G(z)):

Fdd(z, Z, )= &" I
(G (z)&

(k, i (G(z)& ik, &

Z„-z,(k) —y'[» —E, (k)] '} '.
08BZ

(34)

Equations (32) and (33) are seen to be structurally
identical to (19) and (20), their counterparts in the

To compare the ATA and CPA we have calculated
the density of states for Au-Ag alloys of various con-
centrations. We use the same physical parameters
quoted by LE, the only new feature of the present
calculation being the intrinsic d bandwidth azv, .
Figure 2 shows the s and d density of states for the
pure metals silver and gold. It is seen that the
spurious d-band structure, evident in Fig. 2 of
Ref. 12, is no longer present.

The d-band density of states obtained from the
ATA and CPA is shown in Fig. 3. The first and
last of these figures demonstrate that for dilute al-
loys the bvo methods yield essentially the same
results. In both instances values of o; appropriate
to the host metal have been used. In the equicon-
centration case [ Fig. 3(b) ] the ATA and CPA re-
sults differ in the energy region between the two
subbands. The structure in the ATA density of state~
near E= 0 is spurious and may be traced to the un-
physical hybridization gap that exists when ~ = 0. It
can be shown that this structure becomes less pro-
nounced if e is increased slightly. In any event,
within the present model Hamiltonian, the ATA is
certainly capable of describing the essential fea-
tures of the electronic density of states in Au-Ag
alloys over the entire range of concentrations and

energies. In addition, it should be emphasized that
any experimental quantity that is independent of the
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»~(ev) '

M"-
(a)

25—

Au

y =1.26ev
a =.06

10—

ev) 1

»&(eV)
'

60—

-2 1

EAUd

.6
4
.2

3
E(eV)

FIG. 2. Density of states for sand
g bands for {a)Au and {b) Ag. Here,
as in Fig. 3, the energy origin and
the physical parameters are the same
as in Figs. 2 and 3 of Ref. 12. The
scaling factor e characterizing the
width of the d band is equal to 0.06
for Au and 0.03 for Ag.

50—
Ag

y =,848eV
a =.05

10—

Z, (eV)

-2 184g
d

3
E. (eV)

—0.6
—0.4
—0.2

detailed shape of the d bands —for example, the shift
of the optical absorption edge with concentration-
could just as well be calculated from the ATA as
the CPA.

These results for Au-Ag alloys suggest that it is
possible to determine a range of parameters for the
two-band model within which the ATA and CPA will
agree. Because it is the first iteration of the CPA
towards self-consistency, the ATA will be a good

approximation if the right-hand side of (32) is rela-
tively insensitive to small variations of Z& away
from the value Z„= &&. We are essentially viewing
(33) as the first of a Taylor expansion of ZcP".
The corrections are then given by

D(Z) —
( ZCPA ZATA)/( ZCPA 6 )

d xy& Eg~(z, Zg)
dZ, 1+(e,+ZA)Eua(z, Z,)
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48—

44—

7fp

12

ATA—-- CPA

x=.l

a =.03
y =,89eV

(a)
1f

pd

20—

16—

12—

—ATA——CPA

x=0.5
a =0.05
y = 1,05eV

(b)

l4

-2

A

-I
E(eV)

I

-3
I
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trations. However, as pointed out by LE, the
range of interest for transition- and noble-metal al-
loys is A-10. For large values of A, , Eq. (39) shows
that ID(z) I is small only if x «1. In that case

E~~(z, e g) -=[dFgg(z, Zg)/dZg]

[1+(x -y) & ]'+ (x -y)4'
(39)

where y=(bttI, )/y s is a dimensionless parameter in-
troduced by LE. If 4 is less than the intrinsic d
bandwidth ya/u„we are in the "virtual-crystal"
regime A. ~ 1, and the ATA is valid for all concen-

The ATA and CPA will agree when it can be shown
that ID(z)l «1. Suppose, for example, that z lies
wl ln e'th' th d band of the host metal. In this region

odelE ( ) behaves like F(z) for a single-band mo ene ~~ &a
dWl K QKs P s ''th use -y s/w . Approximating the real an

2 Iimaginary parts of E«and E«by & me„—,y,~,
the magnitude of D(z) is

~
D(z) =xyX'[(I -z)'+ X']-'=xy «1.

If, on the other hand, (x-y) - x ' [as in Fig. 3(b) ],
we see that ID(z)l =xyA. »1 and the ATA fails.

Consider now the behavior of D(z) for energies
in the minority d band. This is the case of great-
est interest because it is within this range of ener-
gies that the results for the present model show
the greatest improvement over those for the single-
band model. Physically, the essential point is that
the coupling of the two d subbands to the s band im-
plies that the alloys described in Fig. 3 are not
really in a split-band limit. Despite the fact that
the ATA curves in Figs. 1(b) and 1(c) are qualita-
tively reasonable, it is nevertheless true that in
the single-band model Z" " is a very poor approx-

t to Z "for energies in the minority sub-
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band. In this region (i.e. , E = —«), E' '(z —c) may
be approximated by (z —e) ' and Eq. (20) takes
the form

long as the constituent d bands lie within the broad
s band of the alloy, and are therefore appropriate
to a wide range of transition- and noble-metal al-
loys.

(z) —E+xy6 (z+ f ) (4o)
APPENDIX

The incorrect shape of p(E) is in fact due to the
singularity in Z" "near z = —e. In the present mod-
el, the broad s band couples the two d subbands and
this singularity is avoided. For z - b (and there-
fore z» yz/w, ) the general equations (36) and (36)
simplify to

F„(z,Z„)= (z -Z,)-'

Substitution into (38) yields

In this appendix we demonstate the equivalence of
Egs. (23) and (17). The calculation is done most
simply in a Bloch representation. If we define

le&=x-'Z„e'"'" ls&,

Eq. (23) may be rewritten as

&~l &T&lI& =&f&+«&' 2 8"'" "-'-&~l Gl m&
~n

&f&8 Q it (Rz a~)&&l Gl ~&

x P «~ &"~ "'~&&
l Gl P&+ ~ ~ ~

As indicated above, p,'"(E)= —v 'ImF,' ' is finite
throughout the minority band and the denominator
in (41) never vanishes. For dilute alloys, z —e~
= —2«=& and (41) reduces to

where

, , &f&c'(S)&f&

1-&f)c'(a) ' (Al)

l D(z)
l
=xy ([&(z+~,)/n]'+ I} ' (42)

G'(I ) = ~ e'"'""&ol GIN& = [z -s(~) -o(z)] '-F(z)
n&0

after approximating p,"'-w,'. If z+e, &&/A. , the
denominator in (42) is large and ID(z) I «1. Even
at the resonance energy z = —«, ID(z) I

=x « I and
the ATA is a good approximation. In the equal con-
centration case, Eq. (41) can be used to estimate
the range of validity of the ATA. If x =y, &„=0 and

we have

l D(z)
l

= xy b '
y '/z'w, '

[providing, of course, that'z &y (w,}]. ID(z)I is
then small so long as I zl &y(xy) (n/w, )' . For
Au-Ag alloys, this condition reduces to I z I &0.3 eV,
which is roughly the size of the region in Fig. 3(b)
within which the ATA exhibits spurious behavior.

To summarize, we have shown that in dilute alloys
the ATA is a good approximation over the entire
range of energies. For high concentrations, the
ATA fails only in a small region of energies between
the two d subbands. These conclusions are valid so

=G(n) -F(z) . (A2)

G(I )&f)c(e)
1-&f&[c(n) -F ]

G(I~)[1+&&f&]

, I -«&[G(~) -~]

E- s(k) —o(z)—
k 1+&t&P

-=F"'[z —Z(z}] .

Substituting (A2) into (A1) and combining with the
equation

&G) = 6+G&T&G,

we obtain the desired result

F(z}=Z &I~ l &G(z}&l~ &
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