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The momentum distributions and Compton profiles of the conduction electrons in Li and Na

are calculated considering effects of orthogonalization of the.core electrons, periodic potential,
and correlation. Using the orthogonalized-plane-wave method with parameters from Callaway
and electron-gas data from an earlier calculation by Lundqvist, we find that the anisotropy of
the Compton profile should be measurable for single crystalline Li but not for Na, and that
the results compare well with recent experimental data for polycrystalline Li and Na. There
is a slight indication of correlation effects beyond those considered here, but more accurate
experimental data are needed for a more decisive conclusion.

I. INTRODUCTION

Electron states in metals are objects for widely
ramified studies. Usually the distribution of elec-
trons with respect to energy is pursued, as for in-
stance in photoemission and soft-x-ray emission
measurements. However, there are also some ex-
periments related to the distribution of electrons
with respect to momentum, as measurements of
Compton scattering of x rays' and of angular cor-
relation in positron annihilation.

The interpretation of the positron-annihilation
experiment is impeded by the need of knowing the
positron wave function and the perturbation of the
electron states due to the presence of the positron.
On the other hand, the Compton scattering experi-
ment performed under proper conditions is to a good
approximation directly related to the momentum
distribution of occupied states.

In recent years some reasonably accurate mea-
surements of Compton profiles, i.e. , distribution
of the scattered x rays with respect to the Doppler
shift in their wave numbers, have been performed
on solids, 6 and more accurate measurements are
in progress. ' Thus we feel it well motivated to
aim at a detailed comparison between experiment
and theory. The purpose of this paper is to present
calculations of momentum distributions and Comp-
ton profiles for conduction electrons in lithium and
sodium to provide a theoretical basis for such a
comparison. Effects of electron-electron interac-
tions as well as of the band structure have been
considered.

In a model with free and independent electrons
the Compton profile is an inverted parabola. ' De-

viations from this simple shape are found experi-
mentally and caused by three different effects,
which all act to broaden the distribution: (a) The
interaction between the electrons ("correlation" )

pushes a part of the occupied states below the Fermi
momentum k~ to momentum values above k~;
(b) in a real metal the conduction electrons have
to be excluded from the ionic core region, i. e. ,
the conduction-electron wave function has to be
orthogonal to the inner core states, ' and the rapid
spatial variation of the latter requires high mo-
mentum components; (c) finally the periodic poten-
tial in the pure metal couples electron states in
different bands, particularly states close to the
Brillouin-zone boundaries. These are all well-
known effects, but we illustrate their influence on
the shape of the Compton profile by explicit calcu-
lations. Lithium and sodium have been chosen for
these calculations, because the potential effect
(c) is very different in these two metals.

In sodium the lattice potential has a very weak
effect on the conduction electrons. Qle show that
the distortion of the Compton profile because of
(c) is hardly measurable in sodium. The core-
orthogonalization effect (b) is easily accounted for,
and so the magnitude of the correlation effect (a)
is shown to be detectable from accurate measure-
ments on sodium.

In lithium, on the other hand, the potential effect
(c) is the leading one. Because of the strong effec-
tive potential, states in the lowest bands are strong-
ly coupled, in particular near the Brillouin-zone
boundaries. This means that the electron wave
function contains strong high momentum compo-
nents and that the momentum distribution for
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lithium will be very anisotropic. The Compton
profiles from measurements in different directions
on a single crystal should thus have different
shapes. We show that a comparison of these pro-
files will give important information about both the
crystal potential and the electron correlations.

The calculations are performed using recent
electron-gas data' for the correlation effects and
an orthogonalized-plane-wave (OPW) scheme for
the band structures. " While there are similar
studies performed for the angular correlation in
positron annihilation in metals, ' where obviously
the correlation effects enter quite differently, ' to
our knowledge only separate estimates of band
structure '3 and correlation effects' on the Comp-
ton profiles for conduction electrons have been
published earlier.

In Sec. II the relation between the Compton pro-
file and the momentum distribution is established,
and the conditions for the experiment briefly dis-
cussed. This treatment is a direct generalization
of the Platzman-Tzoar electron-gas treatment"
to inhomogeneous electron systems. Further, an
expression for the momentum distribution for con-
duction electrons in metals is derived, and it is
concluded that correlation effects can be considered
by using mean occupation numbers calculated for
the electron gas. In Sec. GI the calculations of
correlation and band-structure effects together
with the further steps leading to the Compton pro-
files are described. The results are presented in
Sec. III. The paper is concluded with a discussion
in Sec. IV.

describes the density fluctuations of all the elec-
trons. Expressed in electron field operators
q( r f) 17-19

S(k, (d)=Z —e' ' — d'x, "d'x, e-" (*1-"&)

x()1)'(x„t) g(x„ t)lN, m) (N, m
l p'(x„0)g(xp, 0)),

(4)

where the bracket ( ~ ~ ) denotes the thermal aver-
age for the system of N electrons and V is the
volume of the crystal. It is obvious from Eq. (I)
that inelastic scatter ing of x rays in principle can be
used to probe the full density-fluctuation spectrum
of an electron system. The Compton scattering
experiment, however, gives information about a
particular limiting form of S(k, (d), in the ideal case
being performed at x-ray energy transfers co much
higher than the characteristic energies E~ of the
system. When this condition is fullfilled the scat-
tering process is too quick to allow more than one
electron to be affected by the x-ray photon, and
the potential that the electron is moving in may be
thought of as a constant. Then the "impulse ap-
proximation" is applicable, which means that the
intermediate states IN, m) may be assumed to
factorize into a state with one energetic free elec-
tron and a state with the rest of the system un-
changed,

IN, ~) = Ik+ p) IN- I, m) . (6)

Just as for the electron gas" we then get

II. COMPTON SCATTERING AND MOMENTUM
DISTRIBUTION

Scattering of x rays by electrons is in the non-
relativistic region properly treated in the Born ap-
proximation, ' where the differential scattering
cross section per unit solid angle and unit interval
of outgoing energy of the scattered photon is given
by17

d 0'
=AS(k, (u) .

(6)

where N(p) now is the momentum distribution of a
nonhomogeneous system,

ee(p) )I de«, f t(e««e'«='+—' ""(Oe(xeo)O(x„o)) .

In this equation the prefactor A depends on the in-
dividual properties of the scattering electrons,
i.e. , their classical electron radius ro=e~/m, and
on the frequencies ~, and ~2 and the polarization
directions e, and e2 of the incoming and outgoing
photons, respectively,

From Eq. (6) we see that the scattered photon is
shifted in frequency both by the recoil energy E„
= k~/(2m) and the Doppler shift p ~ k/m = —qk/m.
Beside the energy factor &u2/&u„ the differential
cross section is thus proportional to the Compton
profile,

A = r 0((u(/(0,}(e, ~ e,)' .
We use units in which 8= c = 1. The dynamical
structure factor S(k, u&), which should be evaluated
for the energy and momentum transfers

1 2 y
k k1 k2 y

e.(e) '„"ffN(o)", = —
where the integration is performed over a plane
perpendicular to the direction of the momentum
transfer k.

(6)
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(x~ k) elk ~ x/y1/3

we get the momentum distribution as

&(p) =~~ ~,*(p)~,(p)~„(p —G),

(12)

where p —6 is restricted to the first Brillouin
zone, and where we have introduced a mean occu-
pation number for Bloch states,

n, (k) = (ag, (0)a„- (0) ) .
For noninteracting electrons the diagonal occupa-
tion numbers n«(k) are different from zero only
for a part of the lowest band (monovalent metals)
where they take the value of 1, and all the non-

If the energy transfer co were not much larger
than the characteristic energies of the system, the
brompton-scattered electron would end up in a state
closely above the Fermi level, being able to ex-
change and interact strongly with the other elec-
trons and the hole left behind. These processes
are not described in the impulse approximation.

Due to the polarization of the remaining conduc-
tion electrons the energetic electron acquires two
extra contributions to its energy besides the free-
electron value p "/(2m): an imaginary part, which
for large p' goes asymptotically like 3

1m E,, - —((u~/2aoP ') In(a, v'/&u~),

where su~ is the plasma frequency, k, is the cut-off
momentum for plasma oscillations, and v' =P'/m;
and a real shift~4

a(Rez, , ) ——v(u, /4ay'

In addition to the condition for the impulse approxi-
mation (Z„»E~, Ref. 22), Eq. (6) requires that
these two contributions (for p'=p+k) are negligible
compared with p ~ k/m. This is certainly the case,
when the momentum transfer k is much larger than
the Fermi momentum k~.

The common energy-band picture is successful
in at least qualitative descriptions of different ex-
perimental results and is theoretically meaningful
as a first approximation for the description of
quasiparticle states. " The natural way to calculate
the momentum distribution is to first derive an ex-
pression for N(p) by expanding the field operators
in Bloch waves,

p(x, &) =Z af ( (f) yf, (x) . (11)
k, i

The amplitude ak-; can be interpreted as annihilating
an electron with wave vector k in the band denoted
by the reciprocal-lattice vector G, . We use here
the reduced zone scheme, so that k belongs to the
first Brillouin zone. Expanding the Bloch waves
in plane waves,

~
y-„, )=+ o., (k+G)

~
k+6),

diagonal numbers are O. In the interacting case
the diagonal noninteger number n„(k) gives the
mean occupation number of the Bloch state with
wave vector k in the band 6, . The nondiagonal
numbers are due to mixing between different bands
caused by the electron-electron interaction. As
shown in the Appendix these numbers give negli-
gible contributions to the momentum distribution,
when the nearly-free-electron approximation is
applicable. Then we have

&(p) = &
I u;(p) I '~;;(p -G),

5i, 6

where p —6 is in the first Brillouin zone. This is
a very accurate expression for sodium. %e show
in the Appendix that if deviations from it were
present for lithium, they should first show up close
to the zone boundaries.

In Eq. (15) the effects of the electron-electron
interaction enter primarily through the occupation
numbers, and the core-orthogonalization and peri-
odicity effects enter primarily through the square
of the plane-wave coefficients. In principle both
quantities should be calculated for the fully inter-
acting system. Accurate values for the momentum
distribution can, however, be obtained by using
mean occupation numbers n(k) calculated for the
electron gas and calculating the wave functions for
a good effective one-electron potential. The pres-
ence of the ions does not change the electron-gas
values of n«(k) very much. In an accurate effec-
tive crystal potential, on the other hand, there have
to be some effects of the electron-electron interac-
tion included, ~s either calculated from many-body
theory or deduced empirically.

III. CALCULATIONS AND RESULTS

A. Momentum Distributions

The calculations of the momentum distributions
Ã(p) require according to Eq. (15) information
about the occupation numbers n;, (p) and the plane-
wave coefficients I (op) I' of the Bloch states. As
discussed in the Appendix the occupation numbers
for Bloch states in a free-electron-like metal, ex-
cept for the anisotropy, are close to the momentum
distribution of the electron gas,

n( p) = Z~e (k~ —p) + n, (p),
where Z~ is the magnitude of the step at the Fermi
surface, 6(x) the unit step function, and n, (p) the
continuous part. We may thus write

n;, (p —G') =n(p —G'+ G;)

= Z,e[Z, —Z(p-G'+G, .)]

+n, (~p-G'+G,-~) . (16)

Here the condition E(k) = EF defines the Fermi sur-
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face, E(k) being the band energy.
The momentum distribution of the electron gas

has earlier been calculated by one of the authors'
in an approximation, which goes beyond the well-
known treatment by Daniel and Vosko (DV). The
same formal approximation for the electron self-
energy has been applied in the two calculations.
However, while the DV treatment concerns only
the first two terms in an expansion of the electron
Green's function, the calculation of Ref. 10 con-
tains an infinite summation. At high metallic den-
sities the deviations between the results are small,
typically 0. 02-0. 03 electron states per spin and
momentum volume unit at r, = 2. [The electron-
gas parameter is defined by 3/(4vr, ) = electron
density. ] At lower densities the deviations become
significant, and the DV method breaks gradually
down. "

The self-energy considered in Refs. 8 and 10 is
the dynamically screened exchange term, i. e. , the
lowest-order term in an expansion in the dynamic
effective interaction in the conduction-electron
medium. " An estimate of the next term in such an
expansion given by Geldart et al. ' indicates a fur-
ther decrease in the. renormalization constant Z~.

The approximation of Ref. 10 emphasizes the
coupling of electrons to plasmons. The occupied
states with k outside the Fermi surface can be in-
terpreted as majorly incoherent hole-plasmon
states, which require a rather high energy to get
excited. In the same way the unoccupied states
with k below k~ consist of incoherent electron-
plasmon pairs.

Applying Eq. (16), we can explicitly write the
different kinds of contributions to the momentum
distribution as

N(p) =
i no(p)

i
n(p) + Q i no(p) i

'
n(p -G)

515

+ ~ In« » I'~(p)+
5~ = 5&p

&& n(p —G+ 6;), (1&)

where p —G is in the first Brillouin zone and i=0
denotes the lowest band. In the one-electron ap-
proximation only the first two terms of this expres-
sion contribute, n(p) being the step function
e(E~ -E(p)). For a free-electron metal, on the
other hand, only the first and third term contribute,
as in this case the only nonzero amplitudes are

I n, (p) I
= 1, when p —6; belongs to the first Bril-

louin zone. Going over to the extended zone scheme
we obtain the familiar electron-gas result. We
understand from this that the contribution from the
first and third term is almost isotropic, while the
second and to a less extent the fourth term repre-
sent the major anisotropy in the momentum distri-
bution.

In Fig. 1 we compare the linear momentum dis-
tributions for Na and Li, calculated for an electron
gas of appropriate density, with those derived by
Phillips and Weiss from their measured Compton
profiles for polycrystalline samples. For sodium
the electron-gas curve falls essentially within the
assigned error limits, while there are significant
deviations for lithium. To appreciate the difference
between these two metals it is convenient to apply
the OPW method.

The Bloch functions canalternativelybe expressed
in OPW's, 3'

~p„-, ) =Znn, (k+6) ~apW, k+C&. (18)

The transformation into the plane-wave represen-
tation is given by

n((k+ G) = n((k+6) —Qo. (k+G~ 6'~k+G') nq(k+6'),
(19)

where 5' is the projection operator onto the core
states.

The strong periodic potential for the conduction
electrons in lithium makes the momentum distri-
bution N(p) of this metal anisotropic, and one has
to perform a full band calculation to obtain iV(p).
We have used an OPW method with the input param-
eters for lattice potential and core wave function
taken from Callaway, i. e. , using the Seitz poten-
tial."

In the calculations of n and n' [Eqs. (12), (18),
and (19)] we have included 19 reciprocal-lattice
vectors in the summations. The OPW coefficients
n', (p) have been computed in 25 points along each
of 18 rays within one irreducible zone. Interpola-
tion between the calculated values for the square
of the plane-wave coefficient n~(p) has been per-
formed, using an expansion with six cubic har-
monics.

The plane-wave coefficient n, (p) is shown in Fig.
2 for p in the main crystallographic directions.
At the zone boundary no(p) changes sign. This is
a direct consequence of the fact that our OPW cal-
culation with the Seitz potential gives a rather
large and positive value for the effective pseudopo-
tential &pyp at the reciprocal-lattice vectors G of
length (2vja)v 2. In Fig. 3 contours of I no(p) I are
shown for a plane perpendicular to the (001) direc-
tion.

The Fermi momenta are calculated for different
directions by solving the equation Er= E(k). We
have used the expression for E(k) given in Ref. 12
but a different value for the Fermi energy, E~
= —0.416 Ry. This value is the result with 19
OPVf's, the number used here and in Ref. 12,
while the value E~ = —0. 427 Ry is calculated with
43 OPW's

As the mean occupation numbers n;, (k) fall off
very fast for k outside the Fermi surface (Fig. 4),
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FIG. 1. Momentum densities for conduction electrons in (a) sodium and (b) lithium. The cross-hatched areas are
deduced from measured Compton profiles considering the experimental errors (Ref. 4). The curves are the results
calculated in the free-electron approximation (3p /k~ for p smaller than kz, 0 elsewhere) and from electron-gas data
(Ref. 10). In (a) the result in the one-OPW approximation (see text) is drawn too.

the momentum distribution N(p) can be obtained
with sufficient accuracy including only a few terms
in Eq. (17). In the summations over bands we have
only considered the reciprocal-lattice vectors hav-
ing lengths 0 or (2v/a) v 2 and further made the suf-
ficiently accurate replacements n, (p) = o.'0(p —G, )
for p —G, in the first Brillouin zone and a, (p)
= —o.'0(p+ G, ) for p —G, outside the first zone.

The first term in Eq. (17) gives the main contri-
bution. The second term has a maximum of about
0. 2 for momenta around 0. 74x(1/v 2, I/W2, 0)
a. u. , while the third and fourth terms contribute

less than 0. 02 at any momentum, the fourth being
of interest only close to the zone boundaries p 6
= 6, where 6 is any of the twelve reciprocal-lattice
vectors of length (2v/a)W2.

The momentum distribution N(p) for Li calculated
from Eqs. (16), (17), and (19) is shown for the
three main crystallographic directions in Fig. 5.
The anisotropy is significant. For example, the
reduction from the free-electron values just below
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FIG. 2. Plane-wave coefficient ~OPp) for the lowest-
energy band in lithium in the main crystallographic direc-
tions.

FIG. 3. Contours of the squared plane-wave coefficient
l &0(p)l for the lowest band and for momenta in a plane
perpendicular to the (001) direction in lithium.
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Using Herman-Skillman atomic wave functions in
the evaluation of this expression we estimate
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FIG. 5. Calculated momentum distribution N(p) for
Li along three directions in a single crystal. Effects
of both electron-electron interaction and of band struc-
ture are included.
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the Fermi surface is equal to 0. 2V, 0. 40, and
0. 29 in the (100), (110), and (ill) directions,
respectively, as compared to the calculated elec-
tron-gas value 0. 19 at the Li conduction-electron
density (r, = 3.2). The Fermi momenta are 0. 574,
0. 605, and 0. 580 a.u. for the same directions.
The bump at higher p values in the (110) direction
originates from the second term in Eq. (1V), G«0
-k„being 0.74 a.u.

In sodium the effective lattice potential is much
weaker than in lithium. The pseudopotential Vygp

is about 0.03 Ry, for Na ~ as compared with about
0. 12 Ry for Li." Such a weak interband coupling
makes the pseudo-wave-function plane-wave-like
for states away from the zone boundary. If we
neglect the interband coupling completely, which
amounts to putting only the OPW coefficients o.'I(p)
for p —6, in the first Brillouin zone different from
zero, we get from Eq. (19)

FIG. 6. Calculated Compton profiles J~(q) for free
noninteracting electrons and for interacting conduction
electrons in lithium for three orientations of a single
crystal. The profile for an electron gas with the lithium
conduction-electron density {~e=3.2) is also shown.

I n, (p) I to be 0. 93, constant inside the first Bril-
louin zone. The second term of Eq. (1V) is accord-
ing to Eq. (19) smaller than 0.006 and is negligible,
as is the fourth term. In the one-QPW approxima-
tion we thus get an isotropic momentum distribution
N(p), 7% lower than the electron-gas values at mo-
menta within the first Brillouin zone. The result
is shown as the lower Na curve in Fig. 1. The
slight enhancement for higher momenta required
by the normalization of N(p) will raise the latter
curve above the correlation curve for momenta
larger than about 0. 6 a.u.

The anisotropy of N(p) comes about in two ways:
The shape of the Fermi surface determines the lo-
cation of the discontinuities in the momentum dis-
tribution, and the coupling to higher bands deter-
mines the redistribution to higher momentum com-
ponents. The Fermi surface is known to be spheri-
cal within 1/0. We estimate the contribution from
the second and fourth terms of Eq. (17) using degen-
erate perturbation theory in the pseudopotential
V»0 on a two-band model. Compared with the one-
OPW result we get a slight reduction in N(p) for p
below k~, amounting to at most 3/q just below kz
in the (110)direction. The step at P = G+0 —k~
is 0. 03, as compared to 0. 16 for Li in the same
kind of approximate treatment. 37 From this we con-
clude that the anisotropy is substantially smaller
in Na than in Li, and that it is doubtful, whether it
is measurable.

B. Compton Profiles

The Compton profiles calculated from Eq. (6) for
the conduction electrons in lithium are shown in Fig.
6 for the three crystal directions, together with the
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profiles for free noninteracting electrons [N(p)
= e(ks —P)] and for the interacting electron gas.
The two-dimensional integral in Etl. (8) has been
computed numerically with interpolations for

I n, (p) I and n(p) in Eq. (17).
The major anisotropy of the Compton profile,

caused by the second term in Eq. (17), depends on

how many Fermi "spheres" the plane p, = q pene-
trates in the repeated zone scheme. The effect of
the periodicity on the shape of the Compton profile
is most pronounced in the center and for momenta
outside the Fermi surface. The difference in
height at q= 0, the (111)curve being about 10/c
higher than the (110) curve and 5/g higher than the
(100) curve, is mainly due to the fact that in the
integration planes perpendicular to the (111),
(100), and (110)directions there are six, four,
and two nearest-neighboring zones, respectively.
When the integration plane P, = q moves in the z
direction, other sets of nearest neighbors give
contributions, and such contributions become
dominant for q outside the Fermi surface. For in-
stance, in the (111)direction and for q at about
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FIG. 8. Same curves as in Fig. 6 with the high mo-
mentum contributions [second and fourth terms in Eq.
(17)] subtracted. The contribution from the high mo-
mentum plane-wave coefficients is shown in the lower
part of the figure. Further, the electron-gas curve
(E.G. ) multiplied with l&p(0) ( =0. 9 is shown.
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FIG. 7. Calculated Compton profiles for lithium in

Fig. 6 are added to the cross section for the core elec-
trons (Ref. 41). The experimental Compton profile
(EXP) for polycrystalline Li with background subtracted
and with the experimental uncertainty indicated (Refs. 4

and 42) is shown for comparison.

0. 8 a.u. a pronounced peak appears due to contri-
butions from the zones around the reciprocal-lattice
vectors Ga/(2v) = (1, 1, 0), (1, 0, 1), and (0, 1, 1).

The calculated Compton profiles shown in Fig. 6
saturate the sum rule

J J,(q) dq=1 per electron (21)

within 0. 5/c. We estimate the numerical errors in
the curves to be considerably less than 1/c of the
value at q=0.

In Fig. 7 our calculated profiles are compared
with the experimental results measured on poly-
crystalline Li by Weiss and Phillips. An estimate
of the cross section for the core electrons, calcu-
lated in the impulse approximation from atomic
Hartree-Fock wave functions, ' has been added to
our curves for the conduction electrons. The area
under the core-electron curve is 1.98 times the
area under the free-electron curve, as the inte-
grated Compton intensity is 1 -f (sin8, /At) per
electron, where f is the x-ray scattering factor,
20, the Co'mpton scattering angle, and &, the incident
wavelength. The experimental curve is multiplied
with!c, /!c, to compensate for the factor !ds/!c, in

(6). Further it is folded around q= 0 and averaged.
The error bars allow for the asymmetry in the
core-electron contribution due to departure from
the result of the impulse approximation. We
normalize the experimental curve by equalizing
the area under it, with the background subtracted,
to the area under the core+ free-electron curve.

As the momentum distribution of sodium is iso-



CALCULATED MOMENTUM DISTRIBUTIONS. . .
tropic to a high degree, the common analysis for
isotropie systems ' is applicable. Then to a good
approximation, the linear momentum distribution
I(p) according to Eqs. (8) and (1V) satisfies

I(p) 2 2w N dJ', (q)
(4~~p) ~

0(p)~ "'p v qdq

This relation has been used by Weiss and Phil-
lips in deducing the curves in Fig. 1 from the ex-
perimental Comyton profiles.

IV. DISCUSSION AND CONCLUSIONS

We have shown that effects due to correlation,
core orthogonalization, Rnd periodic potential in-
troduce significant deviations from the free-elec-
tron results for the momentum distributions Rnd

the Compton profiles of conduction electrons in
metals. Accordingly, accurate measurements of
the Compton scattering should give valuable infor-
rQRtloD on 616ctl"oD-electr'on interactionq wRve func-
tions, and band structure of these electrons. Here
we first discuss the agreement between our results
Rnd existing experimental data, then we analyze
the possibility of isolating the three effects, Rnd

finally we draw some tentative conclusions about
calculations of effects of electron-electron inter-
RCtlOD,

For sodium, the linear momentum distribution,
calculated with correlation and core-orthogonaliza-
tion effects included, is within the range of the ex-
perimental uncertainty, as shown in Fig. 1. The
improvement compared with the free-electron re-
sult is obviously significant and predominantly due
to the electron-electron interaction.

For lithium the calculated anisotropic profiles,
Fig. 7, fall close to the measured result for poly-
c1ystRlllne material considering the uncertRlnty
a,ssigned to the data by Phillips and Weiss4 and
Weiss. Our calculations Rl'6 thus able to RccoUnt
for the major part of the deviations from the free-
electron behavior in both Na and Li.

Figure 7 also shows that our calcu]ation predicts
the anisotropy to be measurable. This result does
not contradict the findings in Ref. 4 that the Comp-
ton profile from a Li single crystal within the ex-
perimental uncertainty has no deviation from spher-
ical symmetry. As can be seen from Fig. 7, the
shaded region indicating this uncertainty is broad
enough to contain the spread between the three ex-
tremal directions. Use of nonstandard x-ray
equipment should increase the accuracy consider-
ably& thus IQRklng variations Such Rs the one8 ln
the calculated curves detectable.

For lithium there are several evidences of a
large value V&&0 of the effective periodic potential.
Angular correlation measurements in positron an-
nihilation indicate R highly anisotropic Fermi sur-
face. Band calculations, Using different construc-

tions of the lattice potential, all give a large and
positive V&~0,

"' ' the Seitz potential giving
VIIO' roughly 10 to 15%%uo higher than potentials based
on the Gaspar-Kohn-Sham or Slater expressions for
exchange ' or on the quantum defect method. 4' As-
suming the core wave function end the potential to be
kDown, lt should be po881ble to lnvestlgate effects
from the electron-electron interaction also in
lithium. The main anisotropic contributions to the
momentum distribution come from the second and
foul'til tel'nls 111 EIl. (1V). This ls illustrated 111

Fig. 8, where the calculated Compton profiles for
Li are separated into two contributions, one from
the first and third terms in Eq. (17) and one from the
second and fourth terms. In Fig. 8 we further
show a Compton profile derived from an isotropic
momentum distribution 1V(p) =

I no(0) l n(p), i. e. ,
the same expression as that used for sodium. The
contributions to the Compton profiles from the first
and third terms in Eq. (1V) are seen to fall very
close to this curve. From this we ean see a pos-
slM8 way to allRlyze expel'11118IItRl dRtR: (1) MeR-
sure the Compton profiles for the main directions
of a single crystal, (ii) adjust the crystal potential
to make the contributions from the second and
fourth terms of Eq. (1V) conform with the measured
anisotropies, (iii) subtract this contribution, and
(iv) apply the analysis used for Na earlier to the
remaining essentially isotropic profile.

The Compton-profile measurement is a very
promising technique to investigate the effects of
the electron-electron interaction in a variety of
electron systems. Recent experiments on liquid
and gaseous helium have to a high accuracy shown
that the wave function of He is known very well,
indirectly verifying the validity of the impulse ap-
proximation in the limit E~ «E( Rfe. 22). Ex-
perlrnentRl results for llquld Rnd gRseous Hp show
not only the effects of binding very clearly but
Rlso deviations frorQ the ealculRted pl oflies, which
have been attributed to non-Hartree-Fock elec-
tron-electron interaction. With deviations for
such a simple system as H2 one might of course
wonder whether effects ean be treated at all in
metals. However, there exist treatments of the
electron-electron interaction, which go beyond the
Hartree-Fock approximation, as for instance the
one used in our calculation. The question is, how
well the present approximation w orks?

In sodium the potential and core effects are
fairly well known. Band ealeulations show a very
weak effective periodic potential, ' 3 and several
experimen. ts support the view of an almost spheri-
cal Fermi surface. The one OPW curve in Fig.
1, which includes effects of correlation, is within
the experimental range. Gn the other hand, out
of the experimental data we can extract a value
of the electron-gas Fermi discontinuity Zz in the
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range 0.5-0.V5, large enough to include the re-
sults of both Refs. 10 and 2V. Furthermore, using
a Fermi-momentum value kz calculated from x-
ray data for the lattice parameter rather than the
value found by Weiss and Phillips, the one-OPW
curve in Fig. 1 is pushed outside the experimental
range for some regions of p values.

The experimental Compton profiles for lithium 4

are slightly broader than the calculated ones, Fig.
V. As the primary source for such a broadening
we suggest some higher-order electron-electron
interaction effects, since me believe the core-ortho-
gonalization and potential effects to be rather ac-
curately considered.

Thus from the present comparison of oux result
with the available experimental data we recognize
a slight indication that effects of the electron-elec-
tron interaction, beyond those considered here,
might be present. To make such a conclusion def-
inite, however, more accurate measurements have
to be done together with an analysis along the lines
suggested above.
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APPENDIX MEAN OCCUPATION NUMBER

In this appendix we will estimate the effects of
the presence of the ions on the mean oc.cupation
number n„. [Eq. (14)]. We will do so in the approx-
imation, where the interactions between the elec-
trons are considered to the lowest order in the dy-
namically screened interaction. This approxima-
tion is discussed at length by Hedin and Lundqvist
(HL) in Ref. 25, and frequent references to this
article will be made. We will estimate the effect
of the Bloeh wave coupling in the nearly-free-elec-
tron (NFE) approximation.

The mean occupation number can be expressed
as an energy integral of the electron Green's func-
tion C„,

n;, (k) =(I/v) j„d«lmG;, (k, «), (Al)

r;„(k, «) = [«- E(k) - Z(k, «)]-„', (A2)

and where k is in the first Bri.llouin zone. For
noninteracting electrons, G,z and n, &

are diagonal.
Nondiagonal elements can arise from self-energy
effects, expressed by Z, z, that is from the inter-
action of the electron with the medium of electrons,
which in turn reacts back on the electron.

The coupling between an individual electron and'

the density fluctuations of the medium, p(r)
= X',p,e'~', is expressed by matrix elements of
the type

(e, (k) fe"'[V, %')) .
In a homogeneous electron gas y& and y& are plane-
wave states, and the matrix element gives the se-
lection rule R-k'=q, which leads to a diagonal
Green's function. In a crystalline solid y; and q,
are Bloch wave states, and due to the periodic po-
tential there are nonzero matrix elements also for

/k-k'=q+K, where K is a reciprocal-lattice vec-
tor. A quantity suitable to measure the deviations
from homogeneity in a periodic system is [Eq.
(34. 14) of Ref. 25]

n(k~ q~K)= Jvd &0'k. «d )re pi(r) —5R, o ~

{A3)
where now the Bloch states are characterized by
their wave vectors in the extended zone scheme.
It appears in umklapp and nondiagonal terms of
the dielectric function [Eq. (34. 13) of Ref. 25] and
of the electron self-energy [Eq. (35.4) of Ref. 25].
This formulation of the problem is useful, when the
Bloch wave couplmg LL ls a small quantity.

The major effect of the nonhomogeneity on the
diagonal elements of the self-energy is accounted
for by replacing the Coulomb potential e(q) in the
expression for Zgg(k, «) by $(q) I 1+ n;(k~ q' 0) i [Eq.
(35.3) of Ref. 25]. The nondiagonal elements of
the self-energy are to the lowest order in h [Eq.
(35.4) of Ref. 25]

w(q, ~)~(k, q; k, )
(2v) g &u+ « —E(k+ q+ K&)

W(q, ~)2*(k+K„q; —K,.)+
'(d + « —Z (k + q)

where W(q, &u) is the dynamically screened elec-
tron interaction with local field effects neglected,
and i = 0 indicates the lowest-energy band.

There is no explicit evaluation of the coupling
function &(k, q; K) available in the literature. Dif-
ferent crude estimates of the function in different
limits indicate that its effects are usually small
(HL, Sec. 34), 'obothin the umklapp contributions
to the diagonal part of the dielectric constant in
the weak-binding limit, ' and in the umklapp contri-
butions to the diagonal part of the self-energy in
aluminum. 5O

We will briefly discuss the effects of the periodic
potential on the mean occupation number n,&(k) in
the NFE approximation. When expressed in the
supposedly small parameter

p„-(k) = vR/[E(k+k) —z(k}],
where Vg is a Fourier component of the effective
periodic potential, the coupbng h(k, q; 0) is small
to order p, and according to perturbation theory

~(k q k) = p-(k) —p;,(k) (A5)
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G o=o &~ oGoo ~ (A6)

The imaginary part of this expression contains
only one term of importance for energies e(& p, ) of
interest in Eq. (Al),

B~p(k) (I/p) f dE ImGpp(k& &) HeZlp(4 E') HeG&;(k, &)

(A7)

and in this integral the major contribution comes
from the quasiparticle energy branch e = E(%), where
ImG« is sharply peaked. Gn the other hand,

ImG«(k, &) is very small for «p, as it is describ-
ing the unlikely event of a combined creation of a
hole with wave vector k -K, and electron-hole (or
plasmon) excitations. This together with the small-
ness of the nondiagonal elements Z«and the fact
that the structure of ReGpp(k, ~) does not contribute
to an integral like (Al) are the reasons why only
the term in Eq. (A7) needs to be considered.

Using expressions for noninteracting electrons
in this estimate, Eq. (A7) becomes

& p(k) =HeZ~p[k~ &(k)]/[E(k) —&(k-Kg)] (A3)

The largest value of n;o is obtained at the Fermi
surface in the direction of K;. The diagonal part
of the self-energy, ReZpp[k, E(R)], has a weak k
dependence, and in the alkali metals its magnitude
is about twice the magnitude of the vertical energy
gay E(k~) —E(k~ —K;). ' We conclude from this
that n;p(k)/npp(k) is small, once

when K is different from zero. This interband
coupling function is thus small except close to the
zone boundaries, i.e. , where P„-(K) or P„-,z(K) are
large, in which case degenerate perturbation theory
has to be used. For k off the zone boundary the
region where ~ is appreciable is just a small frac-
tion of the whole q space, which is integrated over
in Eq. (A4). This implies that the nondiagonal
matrix element in Eq. (A4) is much smaller than

Zpp(k, &) and Z;;(k, g).
We will now estimate the nondiagonal element

of the mean occupation number n, o for the case,
when the nondiagonal elements of Z are much
smaller than the diagonal ones. We limit ourselves
to the practically interesting case, when K, is one
of the reciprocal-lattice vectors having length
(2p/a)W2. To lowest order in the interband coupling

HeZ)p[k, E(k)]/ReZpp[k, E(k)]

is so. Thus the nondiagonal elements n;p(k) of the
mean occupation number are much smaller than the
diagonal ones npp(k) for NFE metals, where the ef-
fective potential VR is much smaller than the verti-
cal energy difference, i. e. , P„-(K) is small.

In the same way we see that the diagonal ele-
ments Z„(k, q) of the self-energy in the NFE metals
are close to the self-energy for the electron gas.
As we use a representation in the Bloch states of
the lattice, any anisotropy in the electron energies
E,(k) will also be reflected in n«(k), as indicated
in Eq. (16).

Sodium is certainly free-electron-like, as
P„-(K;) is smaller than about 0. 1 everywhere in the
occupied part of the band. Further, the core-
orthogonalization effects on 6 are small in Na. '
For lithium the NFE treatment is valid in the bot-
tom of the conduction band, Pp(K;) being about
0. 06, but as k approaches the zone boundary,
Pf(K, ) grows larger, and the conclusion on the
smallness of n, p(k) is then less well founded. In
principle h(k, q; K) could be calculated with, e. g. ,
the OPW method applied earlier in this paper, but
due to its strong dependence on k, q, and K, the
explicit computation of the self-energy matrix would
be an extensive task, beyond the scope of the pres-
ent paper. We content ourselves to notice that, if
present, the effects of the nondiagonal parts of the
mean occupation number should be most pronounced
in the neighborhood of the zone boundaries defined
by 2k K, -K, =O, i. e. , in the same region, where
the distortion of the energy bands is largest.

In the NFE approximation, the plane-wave coef-
ficients n, (k+6) are proportional to Pf, r, .(G -6,)
for G~ 0&. In the expression for the momentum
distribution hl(p) [Eq. (13)] the nondiagonal terms
then are small to at least order P and thus com-
pletely negligible for NFE metals.

The problem with the nondiagonal occupation
numbers can in principle be eliminated by choosing
a better Bloch wave representation in Eq. (13). A

completely diagonal representation of the momen-
tum distribution should be given by the eigenfunc-
tions of the first-order density matrix, the Lowdin
natural spin orbitals. ' ' However, in practice
it is very difficult to find these orbitals without
previous knowledge of the wave function. "
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