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The single-site coherent-potential approximation for substitutional disordered alloys is ex-
tended to include the effects of random off-diagonal elements and of the formation of clusters.
Our results are in good agreement with the exact numerical computations performed on a one-
dimensional system over most of the energy region.

I. INTRODUCTION

Recently, the one-electron theory of disordered
binary alloys has been studied most intensively.
Because of the lack of crystal symmetry in disor-
dered alloys, their properties evaluated by statis-
tical averages over all configurations are difficult
to calculate. Therefore various approximations
have emerged. The virtual crystal~ and the t-ma-
trix approximations are the conventional approach-
es. More recently the coherent-potential approx-
imation (CPA)3 ' has been shown to be the most
powerful method to treat the disordered alloys.
It is a self-consistent method which serves as an

interpolating scheme for the entire range of con-
centrations and scattering strengths in disordered
alloys.

The CPA is developed within the framework of
multiple scattering theory introduced by Lax.
Soven and Taylor first used the CPA to calculate
the electronic density of states (EDS) and the pho-
non spectrum in disordered substitutional binary
alloys. They introduced the concept of a coherent
potential which, when placed on every site of the

alloy lattice, will simulate the EBS or the phonon

spectrum of the actual a11oy, respectively. To de-
termine the coherent potential, one generally re-
quires that a single scatterer imbedded in this ef-
fective medium should produce no further scatter-
ing on the average. A detailed discussion of the
CPA can be found in Velicky et gl. 5 This theory,

based on a single-site approximation (SCPA), suf-
fers from three major drawbacks: (i) its failure
to produce a tail in the edge of the density of states,
(ii) its restriction to alloys with composition in-
dependent off-diagonal elements, and (iii) its
neglect of the effects due to the formation of clus-
ters. The first point has been discussedby Eggarter
et &l. using a percolation theory~ and by Schwartz
using an extended CPA, ' which includes the effects
due to pairs at all distances, but excludes effects
of random off -diagonal elements. The second point
has been treated by Soven in the CPA for a system
of muffin tin potentials, in which the pure con-
stituents have different bandwidths, and by Black-
man et al. using the CPA in a locator expansion
in which the effects of clustering have not been con-
sidered. The third point has been discussed by
Freed et ul. in a cluster theory, in which there11 .
is an infinite hierarchy of equations of motions
[in which the s-atom Green's functions are coupled
to the (n+1)-atom Green's function] and which pro-
vides an improvement over the SCPA and becomes
more and more accurate by inclusion of larger and

larger clusters. Qne problem is to know the opti-
mum size of clusters convenient for machine com-
putation and for reproducing the features of the
true spectra at the same time. The SCPA corre-
sponds to truncation in the equation of motion of a

. 1-atom Green's function. Berk'~ has considered
the last two points in the weak-coupling limit.
Montgomery et gE. have treated amorphous



COHERENT-POTENTIAL APPROXIMATION FOR. . .
Heisenberg ferromagnets using a similar perturba-
tion approach. On the other hand, a truncation of
the hierarchy to a rather low n can be justified
providing the mean free path of the electron is
short, as in the case of a highly disordered sys-
tem. '4 The authors have proposed a two-site CPA
(TCPA)" in which the last two points have been
taken into account on the same footing.

Tanaka et a/. have proposed a similar theory
as ours. Their one-dimensional results seem in
disagreement with our predictions and Dean's exact
solutions. ~~ They treat the total Hamiltonian as a
collection of uncorrelated pair potentials. Their
assumption implies that, for example, in the one-
dimensional case a single site may be occupied by
& A and 2 8 atoms simultaneously, which is un-
realistic. Furthermore, one can easily show that
both their diagonal and off-diagonal coherent po-
tentials do not agree with the perturbation theory in
the weak scattering limit [Eq. (2V)].

In Sec. II, a modified CPA including the effects
of off-diagonal randomness (TCPA) is derived.
Some deficiencies of our theory (mainly due to the
truncation process) are discussed in Sec. III by
comparison with the perturbation theory. In this
section, we have extended Montgomery's theory to
substitutional alloys and derived it in detail. In
Sec. IV, we discuss the TCPA and compare its
numerical results with Dean's exact spectra for a
finite one-dimensional alloy model (N atoms).

II. MODIFIED COHERENT-POTENTIAL APPROXIMATION

We consider a disordered binary alloy Aq „8„,
where x is the concentration of 8 atom. Let us con-
sider a tight-binding model Hamiltonian

where the diagonal element &„ is the atomic level
associated with a Wannier wave function In) at site
n, and the off-diagonal element h„represents the
hopping integral between sites n and m. Here we
consider that both E„.and jg„are composition de-
pendent. The energy level e„ is equal to &„ or &~,
if the n site is occupied by an atom of type A or 8,
and the hopping integral h„ is equal to k~, h»,
or h„s (=hs„), if the n and m sites are occupied by
two A atoms, two 8 atoms, or one A and one 8
atom, respectively.

The essence of the coherent-potential approxima-
tion is as follows: The alloy is considered as con-
sisting of a random array of scatterers (type A or
B) placed in an effective medium. This effective
medium is described by the coherent Hamiltonian,
which is to be determined self-consistently. In the
single-site approximation, the criterion for the
choice of the coherent potential is that a scatterer
in this effective medium will produce on the average

no further scattering. The single-site approxima-
tion is we11 justified, provided that all scatterers
are point scatterers or, in other words, all ele-
ments have the same bandwidth. A direct corn-
parison between the SCPA and Dean's exact nu-
merical calculation shows that while there is rea-
sonable agreement over most of the energy region,
there is serious disagreement in the impurity band
region. ' The exact solution shows a great deal of
structure in the impurity band which may be at-
tributed to isolated clusters of impurity atoms.
When one considers the cluster effect, the simplest
and lowest-order contributions come from pairs of
defects. In our case we have to consider not only
the scattering due to the diagonal elements but also
the scattering from the off-diagonal elements as
well. To include the effect of the off-diagonal
scattering, the dominant contributions come from
pairs of nearest-neighbor defects. Therefore one
must modify the criterion used to determine the
coherent potential, and require that a pair of scat-
terers imbedded in the effective medium produces
no further scattering on the average.

We introduce a Hamiltonian H,« to describe the
effective medium, the matrix elements of which
are generally complex and energy dependent';
II,«retains the full symmetry of the crystal. The
Fourier coefficients of H,«can be written in terms
of a coherent self-energy Z'(k, E)

&klH.„(E)lk')=5-„.[s(k)+Z'(k, E)], (2)

where s(k) is the k-dependent band energy. The
associated Green's function can be expressed as

C(k, E) =(kl [E Z.«(E)] ' lk-)

= [E —Z(k, E)] (2)
where

Z(l, E)=s(k)+Z'(k, E) .
Here we assume that Z (k, E) has the same function-
al form as the tight-binding expression for s(k).
In the one-dimensional case, it would read

Z(k, E) =Z, (E)+Z,(E) cosha .

The first term ZD is the usual coherent potential
(diagonal element) and Z, is by definition the co-
herent hopping integral (off-diagonal element). The
scatterers within this effective medium have the
"scattering strengths" (&~ —Zo) or (es —Zo) for the
diagonal part, depending on whether the site is
occupied by an atom of type A or type 8, and

(h~~ -Zq), (hss —Zg), or (h„s —Zg) for the off-
diagona, l part, depending on whether the pair of
sites are occupied by two atoms of type A, type 8,
or one atom of type A and one of type B.

In the spirit of the SCPA, we consider a single
pair of scatterers (nearest neighbors) placed in the
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where Gis the coherent Green's function (corre-
sponding to the coherent potential), and we obtain

(V11 (1 V22 G22 V21 G12)

The t matrix for this pair of sites can be obtained
by solving

+ V21 (Vll G12 + V12 G 22) ]/D

FIG. 1. Diagrammatic equations.

effective medium, and we determine the coherent
potentials Zp and Z& by requiring no further scat-
tering from this single pair of scatterers. The
scattering potentials of this pair include the con-
tributions from the diagonal elements of each atom
and the off -diagonal elements connecting the pair
of atoms. By this criterion, we neglect the scat-
tering from atoms next to this pair, or in other
words, we truncate the three-atom cluster effect.

Let us consider a pair of scatterers of type n
and type P at sites 1 and 2, respectively. Their
scattering potentials are given by

V = V11
~
1) (1

~

+ V22
~
2) (2~ + V12

~
1)

where

Vgg =&e —Zp, V22 = &g
—Zp,

e8 eB

Ve,'= V„"=Ie, -Z, .

~21 =
I.V21 (1 —V11 G11 —V12 G21)

+ V11 (V21 G11 + V22G21)] /D, (9)

where

D = ( —V11 Gll V12 G21)(1 —V21'G12- V22 G22)

(Vll 12+ V12G22)(V21 G11 + V22G21)

Here G1, (= G22) and G12(= G22) are the matrix ele-
ments of 6 corresponding to sites 1 and 2. In the
two-site CPA, the criterion to determine Zp and

Z& becomes

(Z',1)=-Q P(n, P) T',
q =0, (11)

eg

whereij=11 and 21, o.P=AA, BB, AB, and BA.
The quantity P(n, P) represents the probability of
finding an n atom at site 1 and a P atom at site 2.
For a completely random disordered alloy, +e have
P(A, A) =(1-x), P(B, B)=x, and P(A, B) =x(1-x).
The effect of the short-range order can be taken
into account in a straightforward manner but will
not be discussed in this paper. Thus the density of
states can be determined from

48~
—3

I~a= 3

FIG. 2. Electronic density of states
mp(E) calculated via (1) Dean's method
(histogram), (2) the SCPA (dashed
line), and (3) the TCPA (solid line).
I AA ~AB ~BB 2 ~A ~B
and N = 5000.
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III. PER

'll extend the perturbationIn this section, we wx ex
for thetheory introduced by gMont ornery et al. or e

ll s. Fort to the disordered a oys.amorphous magne s o

(i.2)p(E) = — m
' = —( ) -zIrna» (E zq+),

where g iis a positive i in& e'nf' 't simally small number.
in computation, we(For the sake of convergence in

take g to be o.o5. )

ING LIMITTURBATION THEORY: %PEAK SCATTERING

write the alloy Hami. ltonian asconvenience, we wri e e

H=H +4,

1 cr stalwhere H is e amth H iltonian in the virtua y
approximation, x.e. , re lacing E, by

e = (1 —x)e„+x&~,

and k&; by

-2.9 PIG. 4. Real part (upper curves)
aIl lII1d '

aginary part (lower curves)
in theof the coherent hopping Z& in e
TCPASCPA (dashed line) and the

(solid line). hAA=hAB = BB==h
&A=-&B=1, and x=o. l.
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h=(1-x) h~g+2x(1 —x)h~~+x h~g, (14b) which is the diagonal element, and

and 4 1s the devlRtlon from the mean HamiltoniaIl
H. The exact Green's function can be expanded in
power series of 4 as

6=6+6~6+6&646+ ~ ~ ~ . (i5)

The alloy properties ax'6 assuIned to depend oDly
oQ the composlt1on avel"Rge of the Green s function)

(6)=6+6(~6~)C+ ~ ", (16)

wllere the linear terIQ lQ + vanishes as a conseqUence
of averaging. In the perturbation theory, we will
neglect all higher-order terms and replace them by
a geometr1c sel'les ln (+6n). Hel'8 we will lllake
a further approximation by neglecting the correla-
tions involving three sites. Under these conditions,
the Fourier transformation of (6) becomes

G(k)
(1V)

where

G(k) = [E -ff(k)]-'

Z'(k) =Zo+Zl cosha,

for a one-dimensional model, and

Zo=(~6 &li

z,'= (~6~),.„,,

which is the off-diagonal element. By substituting
(18) into (1V), we obtain

(G(k)) =[a-FI(k) -Z'(k)]-'. (22

(21)

Therefore we can define a self-energy

Z(k) =17(k) +Z (k)

—Zo+ Zg cosk'6-

Zo= &+Zo, (24)

(25)

In the following, we will use a diagrammatic method
to discuss Z. The notation ~ is used to represent
the diagonal Scattering potential 4;&, the wavy line
to repxesent the off-diagonal scattering potential
4&;,&, and the solid line to represent a propagator
(or a 6reen's function). The time order is from
top to bottom. The lnltlal position of the electx'on
1S at the 4 site and the flQal position cRD 58 at
either the j site or the j+ 1 site corresponding to
the diagonal or the off-diagonal part, respectively.
The diagrammatic equations are shown in Fig, I
and can be summed up as follows:

Zo=((bv)') Go+4(&v 5h) Gl+2((5h)') G(& (26)

~IG 5. Electronic density of
Htates mp(E) calculated via (I)
Dean'8 method and (2) the TCPA.
~AX 3» @AB 2» @88 ~ » ~A &13
=1, g =0.1, and %=5000.

2.
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AA

hes = 2.

h~s
—2.g.

)L
FIG 6 Electron je dens jty

of states calculated via {1)
Dean's method and {2) the
TCPA. Pg~ = 3, Pg~ = 2. 5, h~~
= 2, 6'g= —6'g= 1~ g =0.1, and
N = 5000.

~/=(»») Gg+2(» &h) Go+((5h)') Gg, (27)

where ( ) represents the composition average Go.
and G& denote, respectively, the matrix elements
(ii) and (i, i a 1) of the Green's function and

((») ) =((~ -6'),
((W )') = ((h, —h)') ,

(»Ov)= ((e; —~)(e, —e)) =0, (29)

g, =h+(»») Gg 2(5v 5h} Go+((5h) ) Gx ~ (30)

Since in the single-site approximation, the corre-
lation between two sites has been also neglected
and only alloys with composition-independent hopping

(» &h) =((~, -~)(h„-h)) .
Since we have neglected correlations involving three
sites,

(5h5h) = ((hing-h)(hq~-h)) =(6h)(tih) =0 . (29)

In the weak-coupling limit, the coherent potential
Zo and the coherent hopping Z& can be expanded in
terms of the scattering potentials by using Eqs.
(9)-(ll). To second order in the scattering poten-
tials, they read

Z, = ~+((»)') G, +((Vh)') G, +2(» M) G,

integrals are considered, we have

(» 5h) =0, ((5h) ) =0

because

6h=0 .
Then

Zo= a+((») ) Go, Zs=h . (32)

IV. ONE-DIMENSIONAL ALLOY MODEL

In this section, we consider a one-dimensional

By comparison with equations (27) and (30), we
find that Zz agrees with Z&, but Zo is underestimated
and slightly different from Zo. This can be at-
tributed to the way we truncate the t-matrix equa-
tions in which only one nearest neighbor of site i
has been considered. This difficulty is expected in
any kind of self-consistent calculation in which
truncation is required. Since Zo describes the
location of the center of the energy band and Zq
describes the bandwidth, the TCPA may provide a
reasonable prediction of the density of states over
most of the energy region. However, the location
of the impurity cluster band deviates somewhat from
the exact results.

In order to prove the effectiveness of such trun-
cation and the validity of our assumption concern-
ing the "minimum" cluster, a comparison with
exact numerical computations will be presented
for a one-dimensional model in Sec. IV.
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FIG. 7. Electronic
density of states calcu-
lated via (1) Dean' s
method and (2) the TCPA.

&as
=4, q&=-c&=l, ~=0.1,
and N=5000.

u u I'

I

-2
I

0
E

alloy model with Hamiltonian given by (1). The
corresponding coherent Green's function between
sites l and l is

e fk(l-f' )

G~(. (E) = N E —Zo —Zg costa ' (33)

where 1V is the total number of sites, and the sum-
mation is over the first Brillouin zone. The
Green's functions G«and G, o entering (9) are
readily found to be

G. -=G« = HE- Zo)'-Zi 1 '",
G&=Gio=Z, ' [(E —Zo)Go I] . (34)

It remains to solve (11) to obtain Zo and Zq self-
consistently.

It is convenient to express && and e~ in dimen-
sionless units such that

Eg=l and Eg= —1 (35)

For convenience we will use the same energy units
for the hopping integrals.

Since there is a serious disagreement between
the SCPA and the exact numerical calculation in
the impurity band region, we will put emphasis on
this region in order to indicate whether any mod-
ification or improvement on the SCPA results
from our TCPA. Vfe consider first a dilute alloy
of x = 0. 1, with composition-independent hopping

integrals, for example, h» =h»=h»=3. The
EDS calculated via the exact numerical method ~

(histogram), the SCPA (dash line), and our TCPA
(solid line) are shown in Fig. 2. One sees that
there is an excellerit agreement in the host energy
band, throughout the interval between E = —2 and
—4. The interval between —4 and —2 is called the
impurity band because the presence of these states
is due to impurity effects. In the impurity band
region, the histogram shows two dominant peaks,
one at E = —2. 65 and the other E= —3.15. The
TCPA curve also shows two peaks which roughly
coincide with those in the histogram, both in posi-
tions and strengths. The peak at E = —2. 65 can be
identified as the local resonant mode associated
to AB pairs, while the other peak, much weaker,
is due to the rarer impurity pair BB. However,
one cannot identify these two peaks in the SCPA.
The tails, appearing at the band edges, are due to
the finite value of g. It is noticeable that although
h»=h„e=h» for this case, the fact that Zq in (5)
is energy (composition) dependent modifies the
general "impurity band spectrum. " No such struc-
ture has been found in the perturbation theory
treatment. o Only a shift in band edges (due to
the Saxon-Hutner theorem) and some vague line-
shape modification were observed. Hence at low
concentration and equal bandwidths, our formalism
offers already a promising improvement over the
SCPA. The corresponding coherent potentials Zo
and Z& are plotted in Figs. 3 and 4, respectively.
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gIQ. 8. Electronic density of states calculated via (1) Dean's method and (2) the TCPA. 5~=3, @~=4, hz&=5, ~z
=-eg=1, x=o. l, and@=5000.

The deviations in the coherent potentials bebveeg
the TCPA (solid line) and the SCPA (dashed line) also
occQr at the lmpUrity banC region» i~ e. ~

—4.0 & E

& -2.0.
%e then set the hopping integral of the crystal

bebveen host atoms at hzz = 3, while varying h~z

FIG. 9. Electmnic density
of states calculated via (1)
Dean's method and (2) the TCPA.
8~=3, &~=kg~=4, eg=-&g=1,
@=0.1, and N=lMO.
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FIG. 10. Electronic density
of states calculated via (1)
Dean's method and (2) the TCPA.

3, k~=lg&3=2, ~&=- &~=1,
x=0.1, and N=1000.

I

0 F 3

from 1 to 5, and let h»= 2 (h~+h»). The EDS in
the TCPA is compared with the exact solution in

Figs. 5-11. For h» & h», we notice that the im-

purity band moves closer to and partially merges
with the host band. For h» &h», the two peaks in

the impurity band region move away from the host

~AA

ha~
— 2

AS

—).0

g5

FIG. 11. Electronic density
of states calculated via (1)
Dean's method and (2) the
TCPA. h~=3, h~=k~~ —-2,
c~--a~=1, @=0.2, and n =1000.

1'



band. The TCPA results are generally in good
agreement with the exact solutions, especially for
the larger peak corresponding to the AB pairs.
The smaller peak in solid line which corresponds
to the BBpails does not coincide however with
that in the histogram. The disagreement may be
attributed to our underestimating the correction
due to all nearest neighbors. This disagreement
becomes less obvious when the randomness in hop-
ping integrals becomes smaller, or when the im-
purity band is not well defined. In Fig. 9, me con-
sider the ease of &~=3, h»=h»=4, and x=0.1.
One sees that the impurity states are reasonably
reproduced. In Figs. 10 and 11, me consider cases
of &~~=3, h~z =kzz =2, with x=0. 1 and 0.2, re-
spectively. For x= 0.1, there are three mell-de-
fined peaks in the lower-energy region. For x = 0.2,
one of the peaks in the lower-energy region has
merged into the host band and the band edge in the
higher-energy side becomes damped.

The tmo-site coherent-potential theory proposed
in this paper is similar in some ways to the tmo-
atom Green's-function truncation of the cluster

theory. " Clearly this approach suffers (like all
similar approximations) from some deficiencies.
In particular, because only one neighbor is taken
into account in the truncation process the effects
of clustering and disorder on Zo may be underes-
timated while the effects on Z& are probably more
accurate, thus suggesting that mhen the "scattering
strengths" are large, the calculated location of the
impurity cluster band is less reliable. On the other
hand this theory has the advantage of taking into ac-
count both clustering and the off -diagonal elements
and treating these two effects self-consistently and
on the same footing. This method ean be applied
to a three-dimensional model as mell. Such calcu-
lation is nom in progress.
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