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The energy band structure of gold is calculated by the relativistic augmented-plane-wave
(RAPW) method. A nonrelativistic calculation is also presented, and a comparison between
this and the RAPW results demonstrates that the shifts and splittings due to relativistic effects
are of the same order of magnitude as the gaps {approximately 1 eV). Various integrated
functions, density of states, joint density of states, and energy distributions of joint density
of states are derived from the RAPW calculation. These functions are used in an interpreta-
tion of photoemission and static reflectance measurements. It is shown that the photoemission
results are extremely well described in terms of a model assuming all transitions to be direct
whereas a nondirect model fails. The e2 profile calculated in a crude model assuming constant
matrix elements matches well the corresponding experimental results. The calculated inter-
band edge {Sco;= 2.38 eV) agrees with experimental values, and the absorption tail below the
interband edge which is found in experimental traces is also contained in the theoretical curve.
By means of a calculation of the Fermi surface and the constant-energy-difference surfaces it
has been possible to trace out the regions in % space where the edge and tail transitions occur.
It is demonstrated that structure in the static reflection curves are not related to critical
points in the band structure. The arguments are supported by calculations of temperature
shifts of the critical-point energies and comparison to the observed temperature shifts of the
elements of structure in the experimental e2 function. Such structure may originate in ex-
tended rather than localized regions of k space. In contrast, critical-point transitions show
up clearly in modulated reflectance spectra, and all elements of structure are fully accounted
for by our band model. The temperature and strain responses in the band structure are de-
termined by performing the RAPW calculation with two lattice constants and estimating the
effects of the lattice vibrations by means of an OP%-LCAO (linear combination of atomic orbit-
als) scheme with pseudopotential Fourier constants reduced by the appropriate Debye-Wailer
factors. The phonon spectrum has been calculated for the latter purpose.

I. INTRODUCTION

The physical properties of the transition and
noble metals are determined largely by the outer-
most d electrons in the atoms. As this d shell is
progressively filled through a group of transition
metals, the physical properties vary drastically.
The noble metals follow right after the transition
metals and have the d shell filled. Although cover-
ing only energies below the Fermi level, the d
bands in the noble metals are still located in the
region of band energies, and they strongly influence
the band structure and the related physical proper-
ties. This implies that the band structure of the
noble metals cannot be described in terms of a
weak-pseudopotential model, as for many simple
metals such as sodium, potassium, aluminum,
lead, etc. The d states are so local. ized that they
sense the strong core potential, and their hybridiza-
tion with the free-electron-like sP bands must be
properly taken into account.

In a band calculation the two key parameters,
width and position of the d bands, respond sensi-

tively to the particular choice of the crystal po-
tential. The d states can be considered as quasi-
bound states in an effective potential consisting of
the crystal potential plus the centrifugal term
l(l+ 1)/rs appearing in the radiai Schrodinger equa-
tion. This effective potential exhibits a barrier,
the size of which determines the lifetime of the
virtually bound states, and through this ba,rrier
the width of the d bands. The size of the barrier
and therefore the width of the d bands depends
strongly on the particular choice of the potential. '
Similar considerations apply to the position of the
d bands as described by their center of gravity,
the location of which can differ appreciably from
the d level of the isolated atom and is closer to the
d level corresponding to an atomic potential re-
normalized according to crystal-potential param-
eters. ~

The strong sensitivity of width and position of the
d bands to small variations of the crystal potential
has repercussions for the resulting band structure
in general. The hybridization between the d states
and the sP states manifests itself not only at the
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intersection of the d bands and the sP bands but
also above the Fermi level, where it shifts the en-
ergy gaps at the zone faces with respect to the val-
ues obtained from a pseudopotential model for the
conduction bands alone. In the case of the noble
metals, the energy bands directly at the Fermi
level are not very sensitive to the choice of poten-
tial. A potential yielding incorrect d bands may
still lead to a Fermi surface that explains most of
the experimenta1. data satisfactorily. True, the
derivatives of the bands at the Fermi level as ex-
pressed in effective masses and group velocities
depend on the width of the d bands and their distance,
from the Fermi level. However, because insuf-
ficient information on the actual electron-electron
and electron-phonon enhancement introduces a
rather wide margin in the expected degree of agree-
ment between theory and experiment, these quanti-
ties will not be very discriminative for the potential.
As a consequence, a sensitive check on the theoret-
ical model results only from a comparison with
experiments that monitor large energy ranges of
the band structure, such as optical experiments.

It follows that, for the noble metals, more than
usual attention must be paid to the proper choice
of the potential. An empirical aspect enters here,
and this reduces the ab initio character of a first-
principles calculation such as the augmented-plane-
wave (APW) method, for instance. After all, the
best ad hoc potential is the one that generates the
closest agreement with properly chosen and inter-
preted experimental data. Following this guideline,
a previous study of silver had examined a wide
spectrum of various potentials. Optimal agreement
with respect to width and position of the d bands
as derived from experiment was obtained from a
model based on Dirac-Slater atomic wave functions
and with full Slater exchange included in the atomic
as well as in the crystal potential. The potential
in this work was constructed in the same way as
the best silver potential.

Since we place much emphasis on the choice of
a potential that brings the resulting band structure
in line with properly interpreted experimental data,
we must define our terms in this respect. In con-
trast to Fermi-surface experiments, optical ex-
periments involving excitations from states far be-
low the Fermi level are easily misinterpreted.
In correlating the calculated band separations and

the calculated spectral functions to the experimental
results, we must consider the following aspects:

(i) Because the d bands are narrow, we must
investigate possible effects of a localization of the

d states. It must be discussed whether an excitation
from these bands can be treated as being extended
and therefore on the same level as excitations from
the sP bands. Aspects enter here that are related
to the question of validity of Koopmans's theorem.

(ii) In the same context, the problem of direct-
vs-nondirect' transitions must be taken up. If
there is experimental evidence for nondirect transi-
tions, caution must be exercised in comparing the
calculated bands to such data. Occurrence of non-
direct transitions indicates the presence of localiza-
tion effects that restrict the interpretation on the
basis of extended excitations.

(iii) Special attention must be paid to an inter-
pretation of static and modulated reflectance spectra
in terms of the energy band structure. The dichot-
omy of localized-vs-extended excitations applies
here with respect to critical points and the Bril-
louin zone. It must be recalled that the c, spectrum
derived from static reflectance samples the sum of
all interband transitions possible at a given photon
energy. ' Structure in this spectrum relates to
the spectral profile of excitations summed over
extended regions of k space. ' In a rough picture
assuming direct transitions with constant matrix
elements we therefore must compare the experi-
mental result to a theoretical quantity containing
this sum of all contributions —the joint density-of-
states function. Only the 4&~ spectrum derived
from modulated reflectance experiments can be
expected to clearly display contributions from lo-
calized regions in the Brillouin zone, such as crit-
ical points in the band structure.

Thus, the purpose of the present paper is not
only to present a calculation of the energy bands of
gold and to justify our belief in its accuracy by
comparison to some measured excitation energies.
We also examine the rules according to which the
optical experiments are to be interpreted. For
instance, a comparison to photoemission experi-
ments involves two questions: (i) Does our cal-
culated band structure predict the right values of
d band width and position'P (ii) Is it possible to
decide whether nondirect transitions give essential
contributions or not? The actual answers to these
questions are essential not only in a discussion of
the reliability of the calculation treating the d bands
and the conduction band similarly, but they will also
have consequences for the interpretation of the re-
flection experiments. The article then naturally
contains three main sections, numerical band cal-
culation, interpretation rules for optical experi-
ments, and application of these rules to the case
of gold and conclusions about the nature of the op-
tical transitions in gold.

The crystal potentia1. and justification of the actual
choice are discussed in Sec. II. At the time a pre-
liminary accounte of the present work was submit-
ted, no other relativistic results were available for
gold. To compare our potential model to those by
other authors, and also to demonstrate the large
relativistic effects in the gold bands, a prel. iminary
nonrelativistic band structure is presented (Sec.
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IIIA). Section III is divided into five subsections
and contains most of the results of the calculation
of eigenvalues and derived spectral functions (den-
sity of states, joint density of states, and Fermi
level). In order to make a full comparison to ex-
periments, it was necessary to calculate the re-
sponses in the band structure due to changes in
strain and temperature. The strain responses were
determined by performing the RAPW calculation
for two lattice constants, one corresponding to nor-
mal volume and another corresponding to an ex-
panded lattice. The lattice expansion alone is not
sufficient to simulate temperature shifts. Also
the thermal lattice vibrations may introduce shifts,
at least through a smearout of the potential. The
effects of this smearout were estimated for the sp
bands by multiplying the pseudopotential Fourier
constants in a combined interpolation scheme by
the proper Debye-Wall. er factors. To evaluate the
Debye-%aller factors it was necessary to calculate
the phonon frequencies and phonon spectrum.

In Sec. IV, we discuss the rules for interpreting
the results of photoemission, static reflectance,
and modulated reflectance experiments. The inter-
pretation of the three types of experiments is dealt
with in Sec. V. We consider two simple models
for photoemission. One is based exclusively on
nondirect transitions, and the other assumes all.
transitions to be direct. Recently published' po-
larimetric static reflectance work covers a large
temperature range and is therefore well suited for
comparison with our calculated temperature re-
sponses. Further, the calculation of the strain
responses provides a strong support of our assign-
ment of some structure elements in the thermore-
flectance spec'tium, for it shows that this assign-
ment is consistent with piezoreflectance spectra.

II. CRYSTAL POTENTIAL

The crystal potential was approximated by the
usual muffin-tin model. The Coulomb and exchange
parts were treated separately, the former being a
superposition of atomic Coulomb potentials and the
latter chosen to be proportional to the cubic root
of the density. The atomic Coulomb potentials were
obtained by solving Poisson' s equation with the
atomic charge densities calculated by Liberman
et al. " Contributions from neighboring sites were,
by application of Lowdin's n-expansion technique,
summed to give the spherically symmetric part of
the Coulomb potential within the muffin-tin spheres.
The constant Coulomb potential between the muffin-
tin spheres was calculated by taking the Coulomb
discontinuity at R, to be half the value given by
Ewald's method. This leads to a somewhat larger
discontinuity at the sphere than does the simple
Wigner-Seitz sphere averaging. The exchange
term in the same region was calculated by the usual
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FIG. 1. Ag. Width of the d band and the band separa-
tions Ez-Xz, Ez-I.2 calculated with different potentials
generated by varying the amount c of Slater exchange.
Full curves: Dirac-Slater atomic potential {c= 1). Broken
lines: Hartree-Fock-Slater with c varying according to
c in the crystal potential. Arrows {a)-{c)indicate experi-
mental results.

p'+ approximation, inserting p, = (Z —N,)/(&, —&,)
for the average density in the interspherical region,
where Z is the atomic number, N, the number of
electrons contained in a muffin-tin sphere, ~, the
cell volume, and 0, the volume of the muffin-tin
sphere.

As mentioned in the Introduction, a variety of
potential functions can be generated by varying the
exchange weight factor, i. e. , by choosing different
values of c in V„=-6c[(3/Sv) p(r)]"' (Ry).

The procedure of varying the amount of Slater
exchange in an ad hoc muffin-tin potential does not
represent numerical investigation of the theoretical
problem whether to use full Slater exchange or the
reduced Gaspar-Kohn-Sham exchange, which is 3

of the Slater term. The density functional formal-
ism leading to the Kohn-Sham local approximations
for exchange and correlation potentials refers to
the ground state of the electron system and cannot
be expected to hold in cases where in fact excitation
spectra are considered. We consider the variation
of the exchange weight factor merely as a simple
way of generating different potentials.

In the case of silver, the responses in the band
structure due to such variations were examined. '~

An increase in c will produce more tightly bound
states, i. e. , a narrowing of the d bands, and move
the d bands toward lower energies. Figure 1 shows
how the position and width of the d bands vary c.
The full lines correspond to potentials derived from
relativistic Dirac-Slater atomic-charge densities
calculated with c= 1 in the atomic potential. The
broken lines give the results of variation of the ex-
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change factor in the crystal potential as wel, l as in
the atomic potential. (Further, the atomic calcu-
lation is here nonrelativistic. ) The changes in the
band structure are more pronounced when e is
varied in the crystal potential alone than in the
case where the atomic and crystal exchange terms
are altered simultaneously.

In the case of silver, the potential based on rel-
ativistic Dirac-Slater densities and having c= 1 led
to a band structure in agreement with experiments
in the following sense. The position and width of
the d bands agree with the photoemission results
obtained by Berglund and Spicer. 3 Agreement in
position and width of the d band is obtained if the
hump in the density of states derived from the pho-
toemission spectrums is assumed to give the thresh-
old energy of emission from the d bands. We do
not have to make any assumptions about the partic-
ular type of transition, i.e. , whether the transi-
tions are "direct" or "nondirect. " Using the silver
potential selected in this way, the Fermi surface
and related physical properties were calculated
and found to agree well with a large variety of ex-
periments. ' *' Thus, it was possible, even by
using the same potential for the wide sp bands and
the narrow d bands, to obtain a general agreement
between theory and experiment. This could not be
expected a priori because there might be consider-
able effects from the localization of the d states.

If it is true that the d states of silver are so non-
localized that they can be treated in the same way
as the conduction bands, then it is not less true in
the case of gold, because the Au d bands are con-
siderably broader than those of silver. Therefore,
it seems reasonable to try to apply to gold the meth-
od of potential construction that led to the best Ag
band structure.

The RAPW calculation for gold was performed
with two lattice constants, 7.6813 and 7.7820 a. u. ,
the former corresponding to T equal to absolute
zero and the latter to a, volume increased by b, V/V
= 3.9/o. The muffin-tin radius was 2. 5857 a. u. ;
i. e. , the spheres do not touch each other. In the
normal-volume case the constant potential between
the spheres was Vo= —1.1513 Byrelativeto vacuum.
The major contribution to this comes from the ex-
change term V,„„„,=-Q. 8255 Hy. The discontin-
uity dVO of the potential at the muffin-tin radius is
Q. 1179 Ry. For the expanded lattice, Vo= —l. 0317
Hy, 4V =0.1179 Ry, and V,„,„,= —0.8094 Hy.
Because the generation of the potential functions
is trivial, we have not included tables of the po-
tentials. They can be obtained on request.

III. RESULTS OF BAND CALCULATIONS

A. Nonrelativistic APW

Eigenvalues at symmetry lines in the Brillouin
zone (see Fig. 2) were obtained by application of

FIG. 2. Symmetry points in the fee Brillouin zone and
the irreducible

&g
zone.

symmetrized APW's. The advantages of symmetri-
zation are obvious in this case. The computing
time is xeduced, and the irreducible representations
can be identified.

Figure 3 shows the nonrelativistic bands. The
qualitative features are as in the other noble metals,
but gold has by far the widest d bands. The d band
width is approximately 0.420 By for gold, whereas
for silver it is approximately Q. 260 Ry. Table I
gives some band separations and compares them to
previous calculations. Energy differences involving
the Fermi level may be in error at the second dec-
imal place owing to the rough method of estimating
E~ as described in the footnote to Table I. Further,
it should be noted that different lattice parameters
were used in the five calculations compared in
Table I. The present calculation seems to agree
rather well with the Korringa Kohn -Rostok-ew (KKR)
results obtained by Ballinger and Marshall. They
used a Gasper potential with reduced exchange.
Kupratakuln and Fletcher" based their APW cal-
culation on Herman and Skillman's' atomic wave
functions. This was also done in the work by.
0 Sullivan, Swltendleky and Sehlrber. Jacobs
constructed a nonlocal potential.

B. Relativistic Au Band: Normal Volume

The necessity of including relativistic effects
when determining the electronic states of a solid
becomes pronounced when the probability amplitudes
for the electrons are large in regions of space where
their velocity v is a non-negligible fraction of the
velocity of light c. This region where v/c is not
«1 increases in extension with increasing nuclear
charge Ze. From atomic calculations (e. g. , Her-
man and Skillman") it is well known that the nuclear
charge of gold is so large (Z= 79) that the relativis-
tic effects are quite important. Shifts of the same
order of magnitude must therefore be expected also
in the solid. It is, however, of great importance
to the practical calculation to notice that the rel-



RELATIVISTIC BAND CALCULATION

12'
12

X Z W Q L A

FIG. 3. APW energy bands (nonrelativistic) of goM (normal volume).
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X4'-X,
X5-X)
L g

—L2'

X,-X,
Ws —Wf
E~—L,'
Ep-X5
Z~-L,'
Es - I'i
L2I -L,
Lattice

0.19
0.31
0.41
0.44
0.42
0.69
0.22
0.20
0.06
0.61

0.191
0.348
0.278
0.368
0.355

0.232
0.210
0.029

0.06
0.46
0.30
0.37
0.24
0.82
0.33
0.31
0.02
0.57
0.306

0.086

0.315
~ ~ ~

0.274

0.322
0.301
0.054
0.575

0.222
0.273
0.430
0.501
0.461
0.657
0.22
0.19
0.11
0.63
0.226

parame- 7.707 7.6799 7.706 7.72056 7.6813
ter (a.u. )

TABLE I. Band separations in gold. Nonrelativis tic
AP%. Energies are in Ry, and column a is from Ballinger
and Marshall (Ref. 14); b, Jacobs (Ref. 18); c, Kuprata-
kuln and Fletcher (Ref. 15); and d, O'Sullivan, Switendick,
and Schirber (Ref. 17). In the calculation b, Ez was
chosen to give Ez —.L2 in agreement with experiments. All
numbers in column c, except L2 -L3, were read from
Fig. 1 in Ref. 15. In the present work (last column), the
Fermi level was chosen to provide the Fermi-surface
dimensions kg00 and

kyoto

approximately as determined
from the RAP% Fermi-surface calculations (Ref. 29).

This
work

ativistic corrections are not equally important in

all regions of the unit cell. Even when Z is as
large as in gold, v/c is much less than one in the
region between the muff in-tin spheres (r &R,)."
This means that we can neglect the small compo-
nents of the Dirac wave function for x &R, and retain
in this region simple plane-wave representation
of the expansion functions (RAPW's), one for each
spin.

The fact that relativistic effects need be included
only for r &R, has important consequences: (i) It
becomes possible to make the (r & R,) and the
(r & R,) parts of each HAPW join up at the muffin-
tin sphere. (ii) The APW matrix has the same
form whether the Schrodinger, Pauli, or Dirac
Hamjltonjan are employed

4',
kf»»=(k». k»-E) U(lk»-k»l){m»lm»&+ g

'

xQ P»(k, ~ k») j»(k»R~)j»(k»Rs) . n»{E) {m»l rl
l =0

4 R2»»o
+ g ~ P»(k»' k»)j»{k»Rs)j»(k»Rs) P»(E)

c l ~1

x {m»lio". (k, x$») I m, ) . (I)
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The vectors k, are sums of the considered k and
reciproca1, lattice vectors K;, k; =k+ K&, and m;
is the spin associated with the plane-wave part of
the RAPW. U(q) is the Fourier transform of a
step function that has the value 1 for x &A, and 0
for ~&8,. P, and j, are the Legendre polynomials
and spherical Bessel functions, respectively. The
Pauli spin matrix is denoted by o. Only the quan-
tities n, (E) and P, (E} depend on which Hamiltonian
is used:

Schrodinger equation:

8
ng(E)=(2l+1) ~, P((E}=0;

Pauli:

c.,(E) = ((+1) —" + f —"B„ 8„
K K «/ 1 K K=I

P, (E) = —"
K~K-~l ~1 ~K K&l

Dirac:

n, (E)=(&+1) ~~ +1
gk K=~I 1 RK K= l

P, (E)= f"
g'K, K= I, 1

The functions R, (E, r), R„(E,z), f„(E,~), and

g„(E,&) are the solutions of the radial Schrodinger,
Pauli, and Dirac equations. ~ The quantum number
x is the eigenvalue~~ of —(o 1+1). As mentioned
by Andersen, ~0 the Dirac equations for o., and P,
for large x (the functions n, and P, are evaluated
for v=R,) become equivalent to the Pauli expres-
sions. It is then reasonable to discuss the relativ-
istic effects in the language of the Pauli theory, i.e. ,
in terms of mass-velocity, Darwin, and spin-orbit
corrections. These three correction terms can
be identified after a Foldy-%'outhuysen transforma-
tion of the Dirac equation neglecting terms smaller
than those of second order in 1/c. ~0'~~ The mass-
velocity term describes the change in energy re-
lated to the difference between the rest mass and the
mass moving electron. In the atom, '6 this term lowers
the 5d level by approximately 0. 15 Ry and the 68
level by approximately Q. 34 Ry. The Darwin term
originates in the oscillatory component of the elec-
tron motion. In a Coulomb potential it is only non-
zero for the states having nonvanishing wave func-
tions at r= 0, i. e. , for the s states. It is therefore
not surprising that the Darwin shift of the atomic
d level is considerably smaller than that of the s
level: For 5d it is approximately 0. 002 Hy (lower-

ing), whereas the 6s level is raised by approximate-
ly 0. 190 By. We would then expect the bottom of

the band structure (16) in the RAPW calculation to
lie approximately at AE= (0. 34 —0. 19)= 0. 15 Ry
below the I', level found in the APW scheme.

The spin-orbit term is particularly interesting
in connection with the band structure because this
is the only term among the three corrections that
splits the levels. For a central field these split-
tings are related to the spin-orbit parameter —,

' t„,.
Using the values for this parameter obtained in the
atomic calculation, we can estimate the expected
order of magnitude of the spin-orbit splittings
4E„at I' and X: From the calculation by Herman
and Skillman'6 the spin-orbit parameter for the 5d
level is

g )M-0. 026 By.

A rough estimate of AE„ then yields

I'as - I'8'+ I'7

X~ X~'+ Xv',

&E„-2kgg=0. 08 Hy,

&E,=t'M=0. 05 Ry.

~ ~ I ~ $ ~ I ~ I $ I y g

HAPW' Av

0.5
Lj

s a I s . a . I a a a ~ I ~

10 ZO ao ca
nvm$er of reciprocol totfice vectore

FIG. 4. Examples from the convergence test of the
HAP%' expansion. Energies at U and X must be identical
since these points coincide when the zones are stacked.

This calculation is of course very rough since
the spin-orbit parameter in the solid may differ
appreciably from that of the atom. It exhibits ap-
preciable variations with energy within the d band.
However, the discussion above serves to charac-
terize the relativistic effects, and the estimates
show that these shifts are of the same order of mag-
nitude as the band gaps, and they are therefore very
important in a band calculation that is compared to
optical experiments.

The energy band structure for gold was calculated
by determining nine RAPW energy values at each
of 89 points k uniformly distributed but confined to
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TABLE H. Relativistic AP% eigenvalues. Normal volume. The energies are measured in Hy from the constant potential

energy Vp between the muffin-tin spheres. Vp = —l.1513 Hy, Zp. =0.530 Hy.

000
010
020
030
040
050
060
070
080
110
120
130
140
150
160
170
180
220
230
240
250
260
270
280
330
340
350
360
370
380
440
450
460
470
480
550
560
570
660
111
121
131
141
151
161
171
181
221
231
241
251
261
271
281
331
341
351

—O. 1641
—0.1507
—0.1122
—0.0550
—0.0010

O. 0149
0.0043

—0.0085
—0.0134
—0.1378
—O. 1003
—0.0447

0.0082
0.0238
0.0126

—O. 0005

—0.0056
—0.0663
—0.0162

0.0324
0.0473
0.0350
0.0211

0.0157
0.0229
0.0587
0.0739
0.0619
0.0470

0.0413
0.0717
0.0744
O. 0689
0.0584
0.0538
0.0584
0.0478
0.0427

—0.1254
—0.0895
—0.0368

0.0128
0.0276
0.0177
0.0055

O. 0006
—O. 0589
—0.0156

0. 0239
0.0383
0.0324
0.0224
0.0181
0.0115
0.0364
0.0524

O. 1150
0.1111
0.1042
0.0898
0.0697
0.0487
0.0309
0.0191
0.0151
0.1110
0.1052
0.0917
0.0731
0.0533
0.0363
0.0252

0.0213
0.1051
0.0971
0.0837
0.0680
0.0536
0.0442

0.0410
0.0991
0.0948
0.0862
O. 0792
0.0743

0.0726
0.0976
0.0964
0.0951
0.0980
0.0996
0.1017
O. 0911
0.0778

0.0705
0.1127
0.1081
0.0965
0.0804
0.0617
0.0442
0.0327

0.0288
0.1114
0.1073
0.0990
0.0830
0.0648
0.0534
0.0498
0.1102
0.1062
0.0967

0.1150
0.1158
0.1248
0.1375
0.1633
0.2268
0.2904
0.3221
0.3266
0.1168
0.1239
0.1341
0.1525
0.2013
0.2566
0.2942

0.3090
0.1248
0.1296
0.1352
0.1608
0.2019
0.2379

0.2543
0.1322
0.1346
0.1370
0.1567
0.1809

0.1927
0.1557
0.1574
0.1527
0.1534
0.1549
0.1804
0.1886
0.1922

0.2270
0.1165
0.1227
0.1317
0.1460
0.1876
0.2401
0.2793

0.2954
O. 1238
O. 1309
0.1376
0.1611
0.1988
0.2329
0.2483
0.1456
0.1558
0.1549

O. 2110
0.2125
0.2202
0.2371
0.2618
O. 2878
0.3090
0.3267
0.3392
0.2147
0.2231
0.239$
0.2635
0.2904
0.3127
O. 3253

0.3282
0.2315
0.2453
O. 2602
0.2882
0.3071
0.3120

0.3101
0-. 2359
O. 2403
O. 2682
0.2875
0. 2S89

0.2858
0.2275
0.2464
0.2677
0.2733
0.2730
0.2465
0.2668
0.2815

0.2822
0.2173
0.2254
0.2377
0.2512
0.2736
0.2983
0.3141

0.3177
0.2307
0.2330
0. 2403
O. 2609
0.2850
0.2992
0.3014
0.2257
0.2291
0.2506

0.2880
0.2810
O. 2693
0.2628
0.2763
0.3206
0.3826
0.4074
0.4175
0.2777
0.2668
0.2606
0.2755
0.3153
0.3611
0.3915

0.4027
O. 2574
0.2506
0.2698
0.3022
0.3425
0.3735

0.3853
0.2568
0.2750
0.3009
0.3346
0.3647

0.3768
0.2880
0.3085
0.3357
0.3628
0.3747
0.3229
0.3433
0.3661

O. 3576
0.2756
0.2664
0.2659
O. 2929
0.3322
0 362'
O. 3833

0.3914
0.2628
0.2696
0.2981
O. 3313
0.3545
O. 3692
0.3754
0.2745
O. 2942
0.3215

0.2880
0.2S95
0.2961
0.3087
0.3279
0.3532
0.4163
0.5523
0.6384
0.2898
0.2977
0.3138
0.3391
0.3811
0.4662
0.5937

0.6815
0.3103
0.3364
0.3766
0.4402
0.5405
0.6726

0.7749
0.3758
0.4303
0.5074
0.6156
0.7506

0.8793
0.4959
0.5793
0.6870
0.8110
0.8957
0.6613
0.7582
0.8532

0.8283
0.2903
0.2986
0.3162
0.3442
0.3966
0.4952
0.6263

0.7184
0.3091
0.3339
0.3750
0.4469
0.5584
0.6961
0.8033
0.3716
0.4300
0.5122

l.6755
1.6900
1.7304
1.6828
l.5488
l.4180
1.2300
1.0596
0.9562
1.6993
1.6676
1.5790
1.4767
1.3544
1.2131
l.0495

0.9472
1.5547
1.4516
1.3526
1.2527
l.1490
1.0271

0.9265
1.3393
1.2423
1.1680
1.0876
1.0111

0.9104
1.1558
1.0926
1.0463
1.0006
0.9629
l.0476
0.9815
0.9187

0.8912
l.6738
1.5833
1.4868
1.3854
l. 2759
1.1605
1.0298

0.9350
l.4697
1.3614
1.2571
l.1564
1.0636
0.9788
0.9042
l. 2456
l.1416
1.0497

1.8555
1.8286
1.7654
1.7381
1.6972
1.5550
1.3970
1.2889
1.2571
1.7646
1.7231
l.6945
1.6051
1.4964
1.3681
1.2711

l.2395
1.6811
l.6069
l.5102
l.4061
1.3074
l.2278

1.1969
1.5097
1.4062
1.3100
l.2145
1.1513

1.1276
l.2986
1.1957
1.1116
1.0685
1.0619
1.0968
1.0579
1.0757

1.0700
1.7331
l.7448
1.7550
l.6501
1.5136
1.3546
l. 2286

1.1868
l.7288
l.6823
l.6022
1.4935
1.3488
l.1929
1 ~ 1221
1.5985
1.5099
1.4203

l. 8555
1.8500
1.8234
1.7880
1.7038
1.5880
1.4700
l.3875
l.3612
1.8916
1.8557
1.8400
1.7454
l.5749
1.4339
1.3581

1.3323
1.8834
l. 8875
1.7482
1.5899
1.4139
1.3054

1.2724
l. 8510
l. 7589
1.5950
1.4311
l. 2836

l. 2263
l. 7716
l.6591
l.4733
1.3009
l.2130
l. 6841
1.5185
l. 3416

1.4957
l. 9267
l. 8877
1.9562
l.7384
l. 5970
l.4683
l. 3945

1.3600
1.8984
l.8374
l.7350
l.5933
1.4671
l.3998
1.3781
1.8093
l.7380
1.6072
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TA.BLE D (Continled).

Band
3

BRIld
7

Band
9

471
551
561
222
232
24 2
252
262
272

O', K 282
332
342
352
362
372
442
452

0.0543
0.0466
0.0425
0.0478
0.0588
0.0669

0.0622
0.0533
0.0483

—0.0390
—0.0121

0.0139
0.0307
0.0347
0.0310

0.0285
—0.0032

0.0113
0.0289
0. 0434
0.0481
0.0171
0.0308

0.0850
0.0794
0.0781
0.1028
0.0955
0.0876

0.0930
0.0975
0.0904
0.1168
0.1140
0.1101
0.0996
0.0843
0.0738

0.0706
0.1111
0.1076
0.1013
0.0932
0.0906
0.1043
0.0989

0.1648
0.1823
0.1917
0.1820
0.1767
0.1650

0.. 1567
0.1877
0.1858
0.1349
0.1564
0.1632
0.1684
0.1890
0.2142

0.2263
0.1950
0.1963
0.1862
0.1824
0.1854
0.1995
0.1953

0.2722
0.2813
0.2816
0.2219
0.2399
0.2604

0.2710
0.2426
0.2620
0.2285
0.2243
0.2274
0.2416
0.2607
0.2766

0.2823
0.2208
0.2319
0.2400
0.2507
0.2621
0.2507
0.2483

0.3430
0.3588
0.3660
0.3014
0.3199
0.3392

0.3555
0.3311
0.3460
0.2736
0.2914
0.3255
0.3492
0.3583
0.3587

0.3576
0.3034
0.3262
0.3453
0.3499
0.3461
0.3373
0.3394

0.6310
0.7681
0.8535
0.4958
0.5956
0.7027

0.8074
0.6742
0.7749
0.3134
0.3346
0.3813
0.4752
0.6051
0.7512

0.8283
0.3609
0.4299
0.5278
0.6673
0.7749
0.4941
0.6000

0.9737
0.9232
0.9184
l.0435
0.9618
0.8983

0.8917
0.8889
0.8358
1.3477
l.2318
l.1238
1.0220
0.9399
0.9000

0.8912
l.1114
1.0038
0.9096
0.8329
0.8357
0.9018
0.8280

l.3238
l.1832
l.0758
l.4174
1.3500
1.2672

l.1836
l.2652
l.2165
l.7247
1.6971
1.6625
1.5480
1.3790
l.1896

1.0700
1.6577
l.6211
1.5560
1.4056
l.2164
1.5634
1.5062

1.4524
1.3641
1.3416
l.7445
1.6549
1.4827

l.3423
l.6892
1.5294
l.9518
l.8563
1.7363
1.6546
1.5672
1.5133

l.4957
1.8177
l.7256
1.6300
l.5633
1.5293
1.7062
l.6482

0.0503
0.0355

0.0905
0.0977

0.1842
0.1947

0.2489
0.2455

0.3436
0.3457

0.7250
0.6796

0.7612
0.7577

1.4286 l.5288
l.4505 l.6962

—0.0083
—0.0023

0.0136
0.0355

-0.0032

0.1078
0.1051
0.1022
0.0977
0.1032

0.2050
0.1996
0.1958
0.1947
0.1968

0.2686
0.2806
0.2626
0.2454
0.3031

0.3376
0.3515
0.3540
0.3458
0.3553

0.3544
0.4296
0.5536
0.6795
0.4865

0.9893
0.8780
0.8010
0.7577
0.7948

l.6323
1.6155
l.5870
l.4504
l.6008

1.8441
1.7720
1.6993
1.6962
1.7485

453
444

0. 0085
—0. 0100

0.1019
0.1025

0.1956
0.1963

0.2813
0.3235

0.3521
0.3760

0.5709
0.4773

0.7528
0.7512

l.5946 l.6885
1.5923 1.7775

the irreducible ~«Briiiouin zone (Table II). The
maximum value of a included [Eq. (I)] was chosen
to be 9 in the & terms and 5 in the more rapidly
converging P series. After examining the conver-
gence with respect to the number of HAPW-expan-
sion functions (Fig. 4), we decided to Include 88
HAP%'s, i. e. , 44 reciprocal lattice vectors. This
ensured convergence to less than Q. 001 Hy even
for the excited states. The basic vectors mere
pointing into the solid angle defined by inverting
the $, zone to which k was restricted.

Figure 5 shows the calculated energy bands at
selected lines of high symmetry in the Brillouin
zone (see Fig. 8). At points at 6 and Z some extra
k values were included in the calculation. At 4
these extra points (not marked on the figure) were
concentrated at the crossings between bands 3 and

4 and between bands 5 and 6. These degeneracies
exist only when k is at a ~ line. The figure show-
ing the bands at general points (Fig. 8) clearly
demonstrates these splittings. In the subsequent
discussion we always number the band curves from

below in energy. Only at the two crossings at 4
mentioned above will there then be an artificial
discontinuity in the group velocity &„E(k).

As anticipated in the first part of this section,
the relativistic effects are large. The bottom of
the band (I';) is lowered by 0. 230 Hy relative to
the nonreiativisiic value [E(1,) = 0. 0685 Hy, E(&~')
= —0. 1641 Hy]. Thus, the lowering is even larger
than estimated from the atomic calculation (0. 15Hy)
This is also what one might expect since the wave
function in the solid (for r &H,) is larger than the
atomic %'ave function. The spin-orbit spllttlng of
I'3~ into I'8' and I'7' is Q. OV7 Hy, which agrees mlth
the estimate (0.08 Hy). But at X(X,—X6+X,') the
band calculation (&E„=0. OV8 Ry) showa that the
calculation (hE„=0. 05 Hy) using the atomic spin-
orbit parameter underestimates the splitting. Since
E(X,') and E(X,') are larger than the levels E(I';)
and E(i,") considered, this shows that the sptn-
orbit parameter —,$~(E) increases with increasing
energy E. The caicuiation of $~(E) for Pd in Ref.
20 from the functions &, (E) and P, (E) also shows a
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Ejl II E
Ry

2.0

1.8
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p 0.4

, 0.0

— -0.2
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FIG. 5. BAPW energy bands of gold (normal volume). Ez =0.530 By. Energies are measured from the muffin-tin zero.

similar dependence.
The nonrelativistic calculation yielded 0. 501 Ry

for the I ~ I", separation whereas the RAP% value
is only 0. 275 Hy. Thus inclusion of relativistic
effects leads to a reduction of this transition energy
by 0. 226 By or 3.05 eV. The particularly large
effect at this gap is supposed to be caused partly

by the d states inft. uencing the gap by means of the
hybridization.

During the preparation of this paper, four other
relativistic band calculations for gold have been
reported. ~ 26 These are compared with our results
in Table III. The d bandwidth as determined by
Sommers and Amar~3 seems to be far too large

TABLE III. Band separations in gold. Relativistic calculations. Column a is from Sommers and Amar (Bef. 23)
(2/3 Slater exchange); b, Conolly and Johnson (Bef. 25) (1/1 Slater exchange); c, Kupratakuln (Bef. 24) (19/24 Slater
exchange); d, Ramchandani (Ref. 26) (1/1 Slater exchange).

s bandwidth

X6 —I'+6

XG-L,4
p+

d bandwidth
Xy -X6
r"8-18
I-6+a-L 4

s-d separation
«-L6.5

Xe -Xv+

Lattice const.
a.u,

0.81
0.17
0.64

0.52
0.19
0.51

—0.11
0.05

0.79
0.17
0.63

0.415
0.18
0.375

0.115
0.25

0, 805
0.175
0.630

0.435
0.174
0.391

0.074
0.207

0.802
0.108
0.594

0.459
0.166
0.427

0.096
0.176

Present
BAPW

0.803
0.161
0.641

0.431
0.173
0.386

0.101
0.221

7.6813

Present
expt. lattice

0.781
0.156
0.625

0.406
0.174
0.364

0.112
0.229
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(a)

eV Ry
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FIG. 6. HAP% energy bands of gold (normal volume), general points; k is in units of x/4a.

(Sec. V). They constructed their potential in a
way similar to ours but included only 3 exchange.
In view of the discussion in Sec. II, it is clear that
this must lead to bands that are broader than those
we calculate with full Slater exchange. Sommers
and Amar find a band crossover at A whereas the
corresponding bands A4 and A~, 6 in our calculation
are separated at all A points. Further, their cal-
culation near K is not sufficiently detailed to rule
out the existence of critical points in the joint den-

sity-of-states function. That there is a possibility
for such critical points can be seen from Fig. 5,
and after a more detailed examination we actually
found one, although not exactly the one discussed
in Ref. 23. Our critical point corresponds to tran-
sitions from Z,' to Z, very near K. The potentials
applied in the calculations (c) and (d) in Table III
are similar to the one we constructed. Probably
the only differences consist of different ~VO, It is
therefore somewhat disappointing that there is no
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better agreement among the three calculations (c)-
(e). However, in (d) the HAPW expansion probably
hLas not converged since only a small matrix was
used. The energies of (d) must contain errors of
at least 0.02 Ry since there is that much fluctua-
tions in the results at points that, due to symmetry,
are equivalent. In (d), only 12 basis vectors were
included, and in view of our convergence test (Fig.
4) it is obvious that this does not yield satisfactory
accuracy for our calculation. This somewhat re-
duces the inconsistency of the columns (c)-(e).

C. Density of States and Fermi Level: Interpolation

70-

60

LU

ZO

fo

Because the number of points k at which the en-
ergy values were calculated by the RAPW method
is very small (89 in „zone), it was necessary to
interpolate the energy bands by some means in
order to calculate the density-of-states functions

4

0.2 O.C Ry

FIG. 7. Density-of-states function. Histogram calcu-
lation based on SPW expanded bands. 7216 k in ~ zone.
49 SPW's were used in the expansion.

(2)

J(I&)=, Q d'0 f(E)(k)) [1-f(E, (fc))](2v)', ,

E] &Ey
E) )Ep

N(E) being the one-particle density of states and

J(S&) the joint density of states.
Three methods of interpolation were tried. A

combined OPW-LCAO scheme similar to the one
suggested by Ehrenreich and Hodges~v-with spin-
orbit coupling —was fitted to the initial RAPW bands.
It was, however, impossible to achieve rms errors
less than 19 mRy. Therefore it was decided to
consider purely mathematical interpolation methods.
A global interpolation based on a least-squares-
fitted series of symmetrized plane waves (SPW)
led to small rms errors (Table IV). Band 6 is not

70"
Au

50"

flat as are the five lower ones, gnd it is therefore
more difficult to approximate by the SPW series.
Probably better results for this band would have
been obtained if cubic harmonics had been used in-
stead of SPW's. The density-of-states function (2)
was calculated as a histogram, i.e. , by scanning
a small energy window along the energy scale and
at intervals 4E counting the number of energies
in the interval E+ b,E/2, each attributed its proper
weight. For this purpose, 49 SPW's were included
in the series and N(E) corresponding to several
sets of points k. Figure 7 shows the result obtained
with 7216 k's in ~48 zone. Even when that may
points are included, the statistical fluctuations are
quite large.

The most successful way of calculating functions
(2) and (2) seemed to be a combination of local

TABLE IV. rms errors in interpolation based on a
series of symmetrized plane waves as a function of the
number of SPW's included in the expansion. The errors
are in units of 0.001 Ry.

40"
6
O

30-
Q

20-
No.

of SPW's
Band

1
Band

2
Band Band Band

5 6 10" E
13
20
30
40
49

3e 1
1.6
0.85
0.65
0.6

3.5
1.8
1.1
0.85
0.7

7.5
2.7
2.4
1.6
1.4

7.5
3.1
1.9
1.5
1.3

5.0
3.2
2. 2
1.5
1.4

10.4
7.6 0

0.2 0.0 0.2 OA 0.6 Ry

FIG. 8. Density-of-states of gold. Gilat-Raubenheimer
calculation.
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TABLE V. BAPW eigenvalues. Dilated lattice. The crystal volume is increased by 3.9% compared to the normal
lattice. The energies are in Ry and measured relative to Vo= —l.0317 Ry.

Band

r(000)
~(04o)
x(0so)
iv(480)
z(66o)
z(44o)
z(28o)
L, (444)

—0.1665
—0.0090
—0.0203

0.0420
0.0188
0.0581
0.0069

—0.0178

0.0949
0.0565
0.0062
0.0831
0.0574
0.0812
0.0301
0.0852

0.0957
0.1429
0.2979
0.1413
0.2077
0.1418
0.2317
0.1796

0.1943
0.2394
0.3087
0.2513
0.2576
0.2080
0.2838
0.2946

O. 2639
0.2551
0.3860
0.3441
0.3292
0.2653
0.3552
0.3466

0.2654
0.3025
O. 6145
0. 8489
0.7878
0.4623
0.7422
0.4585

1.6451
1.4943
0.9025
0.9236
0.8517
1.1081
0.8766
0.7070

1.8051
l. 6418
1.2176
1.0192
1.0224
l. 2466
l. 1537
1.5607

l. 8051
1.6564
1.3194
l. 1637
l.4460
1.7264
1.2265
1.7234

scheme by the appropriate Debye-Wailer factors,
e . The Debye-Wailer exponent corresponding
to the reciprocal lattice vector 5 (in units of 2v/a)
is"

D« = 4a(cos —,
'

q, a cos —,'q&a+ cos —,
' q;a cos —,

'
q„a —2)

—4P sin~ —,
'

q, a+ —,
' B,a~G (qA„,)q& (8)

a,nd
1 G'a 1 1 + (n. &+-'. „,
2NM 8g 3 D, &

———4n sin —,
'

q&a sin —,
'

q&a+ ,' B~ G (—qR„,)q;q& .
(9)

where
1

a~iar

and M is the ion mass.
Equations (8) and (8) show that we must know the

phonon frequencies &o~ and the spectrum N(&)—the
density of phonon states.

The phonon dispersion relations were evaluated
by using the simple model applied by Sharma and
Joshis' and by Gupta. ' In this model, the phonon

dispersion relations are calculated from knowledge
of only the elastic constants, the ionic mass, and
the lattice geometry. Thus, the dispersive be-
havior of +(q) is determined from knowledge about
the nondispersive regime as obtained by measure-
ments of sound velocities. In a metal, knowledge
of the interactions between the ions and the electrons
is essential for determining the phonon frequencies.
This electron-ion interaction is accounted for by
describing the conduction electrons as a uniform
gas surrounding the ions and having a bulk modulus
that has to be adjusted to the experimental sound
velocities. In the present model, the forces be-
tween the ions are assumed to be central, and only
nearest- and next-nearest-neighbor ion-ion inter-
actions are included. Under these assumptions,
and averaging the electronic effects over a Wigner-
Seitz sphere, the equations of motion for the ions
are deduced. These equations contain the ion-ion
force constants and the electronic bulk modulus.
Denoting by a the nearest-neighbor force constant,
by P the next-nearest neighbor constant, and by

B, the electronic bulk modulus, the phonon frequen-
cies ~ are obtained from"'36

det(D-M&1)=0, (7)

where M is the ion mass, I is the unit matrix, and
D is given by

In these expressions a is the lattice constant, 8„,
is the Wigner-Seitz sphere radius, and the function
G(x) is

G(x) = 3 (sin x/x' —cos x/x~} . (IO)

The parameters n, P, and B, can be expressed in
terms of the elastic constants by taking the long-
wavelength limit of Eqs. (7)-(9) and requiring them
to yield the correct sound velocities in symmetry
directions. The results are

1e = ——,ac44,
1
4 a(c1i c12 c44)

Bg- cj.g —c44 .

Inserting the elastic constants as derived from the
experiments by Neighbours and Alers at zero
temperature, we calculated the phonon frequencies
at 10 569 points q in ~«zone and constructed the
density-of-states function N(&u) as a histogram (Fig.
13). The points q were distributed in a uniform
mesh, and to each point was attributed the proper
weight according to the symmetry. In the rather
crude model that we use, we always apply the same
elastic constants although in reality they vary with
the temperature T. In evaluating W(T), we, in fact,
ought to recalculate N(~) at each temperature using
the corresponding elastic constants. The Debye-
Waller exponent for a unit reciprocal lattice vector
as a function of temperature T is shown in Fig. 14.

Although the rms error in the fit of the OPW-
LCAO scheme (with spin-orbit coupling) was 19
mRy, we used this scheme in estimating the effects
on the band structure due to the lattice vibrations.
The order of magnitude of the shifts due to the po-
tential smearout was obtained for the conduction
states by multiplying the pseudopotential Fourier
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FIG. 13. Phonon spectrum
of gold calculated as a histogram
based on frequencies at 10569
q vectors in 4z zone. Character-
istic data for the spectrum:
co~~„=29.4 x10' sec =224. 6K,
((u)/(u~„=o. 573, ((v )/(u~„
=0.391, [(cu)/(1/(u)]/u) 2 „
= 0.264.
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constants V(4) by e . The largest shift was ob-
served at X6, where it was 0.002 Ry or 27 meV if
T is changed from 0 to 750K. Since this is small.
compared to the strain response, we conclude that
the calculated strain responses really give the tem-
perature shifts in the band structure.

IV. OPTICAL EXPERIMENTS: INTERPRETATION RULES

The theoretical model- of the electronic structure
and the numerical results have been described in
Secs. I-III. We want to check this against experi-
mental evidence, and therefore it is necessary to
discuss how connections between the band calcula-
tion and the optical experiments can be established.
We will discuss the possible existence of effects
from localization of the d electrons, and in this

-3
75X70 '

I

It 7. O

05

0 . I a I ~ I ~ I ~ I ~ I ~ I ~ I ~ I

o zoo 400 600 800 K

Temperature

FIG. 14. Debye-Wailer exponents 8" for a unit (2x/a)
reciprocal lattice vector G as a function of temperature
T. (Silver results included for comparison. )

context study the importance of nondirect transi-
tions.

A. Localization of d States

In relating the calculated energy differences to
observed excitation energies, we must apply an
analog to Koopmans's theorem. The derivation
of Koopmans's theorem is based on two assump-
tions: (i) that the Hartree-Fock approximation
is valid, and (ii) that all one-electron orbitals are
unchanged under the excitation. The latter assump-
tion will not hold if the states invol. ved in the exci-
tation are localized. The states of the electrons
within a screening length from the localized hole
formed by the excitation will have to be described
in terms of a completely new Hamiltonian, and the
wave functions will be changed. Therefore, even
if we had used the Hartree-Fock method in the
band calculation, there might be effects from lo-
calization of the d states, and only if by some means
we could assert that the d bands are wide enough
to be considered as representing good band states
could we apply Koopmans's theorem.

Now, condition (i) is not fulfilled. We do not
apply the Hartee-Fock scheme, but a scheme with
the simpler statistical exchange term. This implies
that the eigenvalues we calculate (e,) do not cor-
respond with discrete changes in the occupation
number. In the Hartee-Fock scheme the one-par-
ticle energies are c;=4H„„,, the change in then)- n;-S~
total energy when the occupation number n; of the
orbital i is changed by l [assuming that condition
(ii) is.fulfilledt. When we use the statistical ex-
change, then e, = &Hjan, , the derivative of the total
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energy with respect to occupation numbers. " Only
in cases where the bands are wide is the e; calcu-
lated in this way the term that we mant to compute
because only then are the excitations extended
rather than localized.

The crystal wave function consists of Bloch
waves, and the energy needed to remove an elec-
tron is H(n;) -H(n; —1), n, being the number of elec-
trons in Bloch state f T. his is equal to SH/&n,
—

& (i, i), (i, i) being the self-energy. ~8 Only when
the state i is widely spread throughout the crystal
is (i, i) vanishingly small, and the calculated quan-
tity SH/sn; is the energy needed to move an electron
from the crystal S.till, in deriving e, = 8H/Sn, , it
is assumed that the wave functions are unchanged
during the excitation. But this assumption is more
reasonable the wider the bands are.

So, only if the d states are good band states can
me compare the calculated band structure to the
results of optical experiments. The crucial point
is then to make a distinction between localized and
extended states.

Photoemission experiments give a hint about the
importance of localization effects. The degree of
localization of the d states will be reflected in the
photon-energy responses in the distribution of emit-
ted electrons since the type of transition-direct or
nondirect-is related to localization effects. 4' lf
the d states are localized, there will be possibili-
ties for nondirect transitions. These are not ver-
tical in k space, but k conservation is provided by
momentum exchange with the localized holes. If
there are no localized holes, as in the case of wide
bands, such an exchange is not possible and the
transitions are direct.

The energy distribution curves (EDC) obtained
from the photoemission experiment will in cases
mhere the transitions are exclusively nondirect
ref lect3 the product of the densities of initial and
final states. In the noble metals, the final states
are free-electron-like and the density-of-states
function for these states is fairly smooth. There-
fore, considering an EDC plotted-vs-initial state
energy, it should be possible to extract the d hump
of the density of states. At least the spectral po-
sitions of peaks in the tmo curves should coincide.
The amplitudes will differ by variations of the
escape probability' and matrix elements

In a model assuming all transitions to be direct
we must compare the EDC's to a function D(E„R&u)
that may be quite different from the density-of-
states product. D(E„h'&u) is the energy distribution
of joint density of states. It gives the number of
vertical transitions mith a given initial energy E,
and transition energy 5+. The function D(E„hro)
is given by

D(E„N&u) = C g fd~k f(E„(k))[1 —f(E (k))]

x 6(E„(k)—E,) 5(E (k) —E„(k)—8&). (12)

The function D(E„h&) of Eq. (12) has been examined
in detail by Koyama and Smith'9 in their discussion
of nondirect and direct models for photoemission
properties of simple metals.

If the EDC's are plotted versus the initial state
energy, then nondirect transitions from points
E;(k), where the density of states is large, wiU
manifest themselves in peaks in the EDC's that
remain stationary during variation of the photon
energy. In general, peaks corresponding to direct
transitions will move on the E; scale mhen EDC's
with different 5+ are compared.

However, in actual cases it is not easy to distin-
guish between the two types of transitions. If the
initial bands are flat, then even the peaks corre-
sponding to direct transitions will remain stationary
when the photon energy is changed. Further, a
large level broadening can imply that D(E„A~) be-
comes similar to the product of the initial and final
density of states. In the photoemission experiments,
it is customary to cover the sample surface with a
thin layer of cesium in order to lower the work
function. Part of this Cs layer will diffuse into the
sample metal and may form impurities of concen-
tration and concentration gradients large enough to
produce considerable changes of the band structure
in the part of the sample reached by the photons. 4

In fact, it cannot be excluded that these changes
are such that when the photon energy, and thus the
escape depth, is varied, then apeak corresponding
to nondirect transitions responds similarly to a
peak of direct transitions. Thus, if the EDC peaks
there is a possibility that nondirect transitions
are important, and we must be careful since this
may imply that localization effects are not neglig-
ible. On the other hand, if the peaks do move,
then a very detailed comparison between experi-
ments and a theoretical model assuming direct
transitions is necessary (Eq. 12)." If such com-
parison shows full agreement, it is reasonabe to
interpret further optical experiments in terms of
direct transitions and to do this on the basis of the
calculated band structure, i. e. , assuming the d
states to be band states.

B. Static and Modulated Reflectance

The complex dielectric constant e(v) has two
contributions, e'"(&u) and e "(+), the intraband
and interband terms, respectively:

e(~) = e, (~)+ i (~e) = [e,"'(~)+~', "(~)]

Assuming that the intraband contributions to the
dielectric function can be subtracted in the analysis
of the experimental results, we will concentrate
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on the interband part of e2(&) since this parameter
relates more directly to the band structure.

The static reflectance and transmittance experi-
ments measure the total absorption at a given pho-
ton energy S(d. The sum total of all direct interband
transitions at this energy is proportional to a~2" (8'&o):

&p"(&) = C 2 J ~
&«~ 'f(E (k)) [I -f(Ey(k})1

&~f

x g(E, (k) —E, (k) —h~) d'k, (14)

where C is a constant, f(E) is the Fermi function,
aDd M g ls the matrix elemeQt fol' transition fl om
state i to state f If t. he transition matrix elements
were constant, this would imply

&2~" (&u) &u~ ccJ'(g&u),

where Z(k&u) is the joint density-of-states function
discussed earlier [EQ. (3}]. At critical points,
points in k space where V-„[E,(fc)] = 0, the integrand
in (3) will contain a singularity. Its potential to
generate significant structure in the spectral profile
of e3 has in the past been frequently overemphasized.
Consequently, such structure was assigned to band
gaps at specific critical points. As pointed out in
particular by Herman et al. ,

' such practice can lead
to serious and consequential errors if the assign-
ment is used for an adjustment of the crystal po-
tential.

Although undoubtedly present in the experimental
trace, the resolution of static reflectance techniques
is too low to resolve the contribution of the eritical-
point singularity from the large background origi-
nating ln extended, noncrltlcal. x'egloDs of the Bl 1

louin zone. The spectral profile of the static trace
reflects that of the integral of Eq. (14) rather than
the line shape of a localized contribution.

Summing up, we can state that critical points do
generate structure in the optical spectrum ea(&},
but not necessarily a11 structure results from crit-
ical points. Their contribution probably appears
as fine structure only, which may or may not be
near the broad peaks with which they must not be
exclusively associated. '43 Further, the structure
in e~(&) due to critical points would only in rare
cases be expected to be shaped like a peak, as this
would call for the unlikely arrangement of two crit-
ical points back-to-back at nearly the same energy.

To get experimental information about the tran-
sition energies at localized points in k space, we
must turn our attention to the modulated reflectance
measurements. The separation of the critical-
point transitions from the background is probably
accomplished by utilizing the analytic singularities
of the integrand in (3), Near a critical point, Z«(h+)
is parabolic. If we assume that the modulation re-
sponse &ea can be derived from (15) with the modu-
lation resulting in changes 4E~ in the spectral posi-

tlon E of the gap, then

As an example of a critical point, let us consider
one of type Ms, i.e. , J'«(R~) = C, + Cz(E~ —k~)'
Then b J/4E~ b'ehaves like

d J,'q Cl
dE, (E,—a~)'" '

The xesponse disappears as the spectral distance
from the critical point increases. Noncritical. areas
in which the joint density-of-states function is
smooth and free of square-root slope discontinuities
should not be affected by the modulation. '~

The 4&3 spectrum is derived by Kramers-Kronig
analysis from an experimental &R/R trace. It
depends on the particular choice of the modulation
parameter. %6 will mostly be concerned with
thermorefleetance. In addition to the critical-
point responses, thi.s spectrum will contain struc-
ture elements corresponding to transitions to the
Fermi level. These responses may be strong even
if the final and initial bands are not parallel.
Further, these transitions may or may not be lo-
calized in k space. As will be demonstrated, the
strongest thermoresponse in gold is due to transi-
tions in a large area of the Brillouin zone.

V. INTERPRETATION OF OPTICAL EXPERIMENTS ON GOLD

Following the rules of interpretation given in Sec.
IV, we will now demonstrate how the optical experi-
ments are related to the calculated band structure.
In Sec. VA, the photoemission experiment is con-
sidered, and it seems reasonable from this to con-
clude that, in gold, nondirect transitions are in-
frequent eveD from the d baDds. It ls showD lD See.
VB that an attempt at interpreting the results of
static reflectance in terms of critical-point transi-
tions fails completely although the calcul. ated e~"(&)

f I I I I l I l I 4 I g I I I 1 I I I I l ~ I I I I

I I 1 \ I I I ~ l I I I

00 ' 0 I 0.2
y)

FIG. 15. Calculated (broadened) density of states and ED
curve froxn photoemission experiment.
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agrees well with the experimental quantity that cor-
relates to the joint density of states. Structure
elements in the modulated reflectance spectra are
interpreted in Sec. V C in terms of the present
band model.

A. Photoemission

In Fig. 15, the ezperimental4' electron distribu-
tion (ED) curve corresponding to the photon energy
5& = 11.15 eV is plotted together with the one-elec-
tron density-of-states function derived from the
RAPW band structure. The latter function is iden-
tical with the one shown in Fig. 8 apart from the
fact that the energy levels have been broadened by
a I.orentzian with half-width T'= 0. 1 eV. The width
of the d band cannot be derived from the experimen-
tal ED curve in Fig. 15 because the photon energy
was not large enough to allow excitation of states
at the bottom of the d band. Higher photon energies
were used in the measurements by Eastman and
Cashion, 44 and they obtained for the d bandwidth the
value 5. 7 + 0. 3 eV. This agrees well with our value
(5. 8 eV).

The positions of the peaks in the two curves are
almost uncorrelated, and further, it was found in
the experiment that some of the peaks moved when
the photon energy was changed. "'4' Therefore we
must conclude that although the gross features of
the ED curves are reminiscent of those of the one-
electron density-of-states function, comparison of
the detailed structure in the two curves demonstrates
that the nondirect model does not apply for most of

41the transitions. We have therefore calculated the
energy distribution of joint density of states [Eq.
(12)], i. e. , the function that in the direct model
predicts the peak positions of the ED curve for a
given photon energy k~. This function for 5&= 10.6
eV is shown in Fig. 16 together with the ED curve

-6 -5 -4 -8 -& -f 0 ey (Ei Ep'&~
I ' I ' I ' I ' I ' I

-Au.

I '
~I ~ 0 ~ I

$

I

I

~ ~ ~

10 ff
photon pnyIgp ~ (yp'p

12

FIG. 17. Variation of spectral position (initial-state
energy) of the peaks in D(E&, ~) and the ED curves vs
photon energy S~ (direct model). Broken lines are peak
positions predicted by a nondirect model.

corresponding to almost the same photon energy.
There are eight peaks in the ED curve, and the
same number of peaks appear in the calculated
function D(E„&)for Z, in the range of initial state
energies covered by the photoemission experiment.
All peaks agree in spectral position.

This agreement is not unique to the photon energy
10.6 eV. Figure 17 shows that, when A(d is varied,
all theoretical and experimental peak positions fol-
low each other. The same figure shows how a non-
direct model would predict the positions of peaks
B', C', E', and O'. The nondirect model predicts
the correct peak positions only in very small ranges
of photon energy.

We thus conclude that it is not necessary to in-
voke the concept of nondirect transitions in an anal-
ysis of photoemission data for gold. The photo-
emission spectrum can be described in terms of a

Zoo 600 ~000 r w~
I I I I I

$0
structure in

abs. curves,

4.$

4.0

AZ
~(X~ ~X6 )

+g) +(X6 ~X6

~(L ~LC )

+(X ~ X-~
7

APW

0.Z 06 Ry E,.~
-E~

0.05 o.to o.ts ma (a.u~

FIG. 16. Photoemission ED curve Iexperiment by
Nilsson gf gE. (Hef. 43) j plotted vs initial-state energy
together vrith D(E;, ~), the energy distribution of joint
density of states (direct model).

FIG. 18. Broken lines: elements of structure in the
static absorption curves (Ref. 10). Full lines: RAPW
band separations for varying lattice parameter.
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resolution) than contained in the curves obtained by
Nilsson et al. 3 To compare the dix'ect model to
the ED curves of Ref. 46 we would have to introduce
a considerable level broadening. In fact this would
to some extent make the gross features of D(E„h(o)
and N(E,) similar. But there are still peaks in
D(E„h&) that are not in N(E,). The reason we can
rule out the nondirect model, is that we are able to
make a detailed comparison bebveen theory and
experiment. Results similar to ours have been
obtained fox Cu" and Pd."

OOOOO

h~(eV)

FIG. 19. z2(~) ~2 of gold as obtained by Pells and
Shiga (Ref. 10) from their polarimetric measurements at
T = 295 K {circles). The joint density-of-states function
obtained from the HAP% calculation is plotted as a full
line and is made to coincide with the experimental point
at 5 eV, with no adjustment for slope.

model assuming nondirect transitions to have neg-
ligible occurrence when compared to the number of
direct transitions. This is somewhat in disagree-
ment with the conclusions of Krolikowski and
Spicer. " However, theix arguments are based on
ED curves with fewer elements of structure (lower

B. Static Reflectance

The static reflectance spectrum of gold has been
recorded by several authors. 6'O' In a recent po-
larimetric work over an extended temperature
range, the present authors' interpret their results
in terms of critical-point transitions. Guided by
the qualitative features derived from nonrelativistic
calculations, Pells and Shiga'0 assign the bvo most
prominent structure elements (4. 6 and 4. l eV) to
transitions Xs -X4 and I.2'- I &. In the experiment,
both elements of structure show negative tempera-
ture coefficients.

In Fig. 18, we have plotted the spectral position
of the observed structure elements as a function
of temperature togethex with the calculated energy
separations relevant for a check of the above-men-
tioned interpretation. The temperature shifts were
calculated as described in Secs. IIID and III E. It
is seen that the energies do not agree, and further,
all the calculated X transitions in Pig. 18 exhibit
temperature coefficients opposite to the ones ob-
served for the elements of structure inthe absorp-
tion. By searching the whol. e BriHouin zone for

Flo. 20. c&~~(~) cu2 as obtained
by Thee (3.ef. 50) together with the
calculated J (k(o) and J(ken) —J36(S~).

9
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FIG. 21. Logarithmic plot of &2~~(~) uP in the tail re-
gion. Circles indicate the experimental results (Ref.
5o).

TABLE VI. Comparison of the calculated interband edge
(S~&) vrith experimental results.

Cooper
8g QE.

(ref. 6)

Pells
and Shiga
(Ref. 1O)

Thee
(Hef. 5O)

Present
calc.

critical points, me found several but none with a
gap in the energy range of interest here. Thus,
it was not possible to find in the cain lated band
structure any critical points matching the observed
structure in the static curves. This result is com-
pletely in line with the discussion in Sec. IV. Som-
mers and Amar~3 report similar discrepancies,
but they call in many-body effects and phonon-as-
sisted transitions as a possible explanation.

In a crude model'we can calculate 811"(e), which
is also the result of the experiment when the Drude
term has been subtracted. %'e assume all matrix
elements to be constant and use therefore the re-
lation (15). Figure 19 shows the calculated joint
density-of-states function and 81(&)& as derived
from the experiments by Pells and Shiga (T = 295K)
in the energy range 0-6 eV. The tmo curves are
adjusted at 5 eV. %'e have chosen a point of adjust-
ment for unknown parameters far from the inter-
band edge since the Drude term49 has not been sub-
tracted from the experimental curve. It is seen
that with only one point of adjustment the theoretical
curve even in this crude model fo1.loms the experi-
mental one fairly well. In Figs. 20 and 2j., the
calculated 82 (K)H fl111ctl011 is c0111paxed to the ex-
periment by Theye. ' The deviations between the
experimental and theoretical results around 5 eV
probably are due to our assumption about the con-
stant matrix elements. If me take out the partial

joint density-Of-states fu11Cti011 Col'1'espolld111g 1'0

transitions from band 3 to band 6, the calculated
curve follows nicely the experimental curve. How-
ever, relative meights cannot be attributed to the
different transitions before the calculation of the
matrix elements has been completed. " Further,
it cannot be excluded that excitation of surface
plasmons'3 may cause structure in the experimental
curve around 5 eV.

The behavior of 81"(co) in the energy range near
the interband edge S&= 8+& is particularly interest-
ing. The edge is often assumed to be mell defined.
However, below +; the e~z"+~ function has a tail
that is well described as being exponentially de-
pendent on +. This tail is also present in our cal-
culation, and thus it is not due to many-body effects,
level broadening etc. , but simply reflects the band
structure. In order to follow conventions from
experimental work we define the edge energy h&,
as being the spectral position of the parabolic foot-
point (see Fig. 20) of the 811"(&u)(u function. In
Table VI, we compare our theoretical value of 5&
to experimental results. The tail 81"'(&o)H below
the edge is shown in the logarithmic pl,ot in Fig. 21.

The shape of the function 81'(~) at and below the
interband edge is entirely determined by bands 5
and 6. This can be seen from the plots of the par-
tial joint density-of-states functions (Fig. 9). For
photon energies less than 5+ = 1.7 eV no final states
above the Fermi level can be reached, and 813"(~)
is zero. When the photon energy is increased, the
surfaces of constant energy difference, E&- E& = h+,
first touch the Fermi surface at the points X~
(I'-X direction) (see Fig. 22), and then for larger
k& they cut through the Fermi surface. However,
as long as 8+ & Sw, , only few final states are avail-
able since only a small portion of the constant en-
ergy difference surface (CEDS) is outside the Fermi
surface. Thus the tail absorption is caused by
transitions between states corresponding to k being
near the X~ points.

Figures 22 and 23 show that when the photon en-
ergy is increased to 2. 38 eV the corresponding
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TABLE VII. Structure in A&2 determined from thermo-
reflectance and its assignment to band separations calcu-
lated by the RAPW method (Table II, Figs. 5 and 22-24).

15

Ag

2.4
2.9

2.38
2. 92

Energies (eV)
Expt. RA PW

(1)
(2)

Assignment

band 5-band 6Nz) (see Fig. 23)
Fermi-level transitions, e.g. ,
2 or Q2 E&(236)

0
O

10-

3.2

3.6

4.1

4.6

3.21

3.71

4.10

4.52

(3) band 4 band 6 EJ, e.g. ,
(Qg + Q4) Ez(Qg + Q4)

(4) L4-L 4

(5) Xv X6

(6) third d band Ez,'g' @3.~4)'-Ez
I ~ I ~ I ~ I . I . I . I . I . I a I . I

0 f 2 3 4 5 6 7 8 9 10 f1 12
8~ (ev~

5.6

6.1

7.2

8.0

8.9

g. 3

9.7

5.7

6.18

7.15

8.08

8.98

9.37

g. 68

second d band-E~, e.g. ,
near (3, 5, 2) 1t/4a

(7) lowest d band Ez, e.g. ,
Z5-E, (Z,)

(8) &'3) S'36

(9) w', —w',

(10) ~6~-~6

w', -m',

(12) Z,'- Z',

the structure elements at 3.6 and 4. 1 eV in the ex-
perimental trace. These we have assigned to tran-
sitions at the points L and X, namely, L4- L4 and
X7' -X6- (Figs. 5 and 26). When calculating the

strain responses, we found these energy gaps to be
particularly sensitive to strain (Fig. 18). It is
therefore a strong support for our interpretation
that particularly large piezoresponses are observed
at these energies (Fig. 24).

The transition X3 -X4 is forbidden. When spin-
orbit coupling is introduced, the number of differ-

FIG. 25. 6&2 obtained by Kramers-Kronig analysis
(Ref. 56) of the thermoreflectance spectrum (Ref. 53).
Arrows indicate the spectral positions of Fermi-level
and critical-point transitions as derived from the RAPW
band calculation. Assignments are given in Table VII.

ent irreducible representations is decreased, and
the transition corresponding to X3-X4 becomes
allowed. However, since it is forbidden in the non-
relativistic case, it is reasonable to assume the
matrix element to be small. We therefore attempted
to perform the interpretation of the modulated re-
flectance experiments without including this tran-
sition.

Note that in the experimental column of Table VII
the margin of 0. 1 eV for the spectral location of
structure in 4e & is rather wide. Defining the en-
ergy of structure to better than 0. 1 eV would ignore
the notorious difficulties that the line-shape inter-
pretation of modulated spectra encounters. With
our present knowledge of the basic modulation
mechanism, we cannot decide whether the critical-

I8—

l2—

;~ IOx b,R/R (BOOK)
~ ~
~ ~
~ ~
~ ~~ ~
e ~
~ ~
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FIG. 24. dA/R obtained from piezo- and thermoreflec-
tance of gold (Refs. 53 and 55) (after Cardona, Ref. 56).

FIG. 26. Critical-point transitions and representatives
of Fermi-level transitions entering the present interpre-
tation of the modulated reflectance spectra of gold.
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point arrow is correlated to a peak, a dip, or an
inflection point. The value of the agreement must
be seen in the gapless coincidence of the first 13
critical-point and Fermi-level energies on the one
hand, and on a sequence of structure elements on
the other hand, with respect to their relative spec-
tral location and their energy differences, given
the cautious margin of 0. 1 eV for the definition of
structure.

VI. CONCLUSION

Although ambiguity exists in the construction of
the muffin-tin potentials, it is with some satis-
faction that we conclude that the method of con-
structing a si].ver potential which on many accounts
has proved to give a band structure in close agree-
ment with experiments applies equally successfully
to gold.

Whereas copper, and to some extent silver, can
be considered in the nonrelativistic scheme, the
relativistic effects in the band structure of gold are
large. By comparing APW and RAPW band calcu-
lations of gold, we found shifts of the same order of
magnitude as the band gyps. Therefore, it was
important to apply the relativistic scheme in this
work where a quantitative interpretation of optical
experiments was performed.

Establishing the rules of interpretation of the
optical data, it was important to discuss the possi-
ble effects of localization of the d states. It was
found that in gold the d states can be well described
as being good band states; i.e. , localization effects
can be neglected. This implies that we could cal-
culate the d band in the same way as the broad
conduction band. Further, the fact that the d band
also is broad enabled us to relate the calculated
energy gaps directly to the observed excitation
energies in the same way as given by Koopmans's
theorem.

The consistency of the whole interpretation of
the optical experiments is in itself a support for
the conclusion about the localization effects being
small in gold. This interpretation could be made
in terms of direct transitions only although we
realize that there may be, even in the photoemission
experiment, difficulties in distinguishing bebveen
direct and nondirect transitions. The calculated

values of the critical parameters, width and posi-
tion of the d band, agree with the results obtained
from photoemission. But our comparison between
the experimental ED curves and the theoretical mod-
el is so detailed that we can conclude that it is not
at the present stage necessary to involve the concept
of nondirect transitions. The calculated spectral
position of the interband edge deviates only a few
hundredths of an eV from the observations in static
as well as modulated reflectance experiments.
Also the tail of e2'"(~) below the edge is accounted
for in our model. By calculating constant energy
difference surfaces we saw that the absorption cor-
responding to the tail occurs between states having
k close to the I'-X points at the Fermi surface.
The edge transitions occur at an area where the
CEDS (AZ = h& = h&, = 2. 38 eV) coincides with the
Fermi surface. This region has been traced out.

The interpretation of static and modulated reflec-
tance in terms of our band model establishes firm
guidelines for the analysis of such spectra:
clearly relates to a calculated density-of-states
profile. Attempts to fit structure in e2 to critical
points fail with respect ot energy value and temper-
ature coefficient. A sequence of structure elements
in 4e~, however, correlates remarkably well with
a series of critical-point and Fermi-level gaps.
Such proper interpretation eliminates problems
encountered in all previous band calculations of
gold.
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