Effective-Mass Splitting in a Magnetized Metal

A. W. Overhauser

Scientific Research Staff, Ford Motor Company, Dearborn, Michigan 48121

(Received 31 March 1971)

The (density-of-states) effective masses at the two Fermi surfaces of a magnetized, freeelectron metal are calculated as a function of fractional spin polarization P. Coulomb interactions cause the minority-spin mass to exceed the majority-spin mass. The effective-mass splitting is linear in P, for small P, and approaches 20% at $P=1$. It is concluded that the smallness of exchange and correlation corrections to m^* for an ideal metal is accidental. For real band structures they may be of greater significance.

I. INTRODUCTION AND CONCLUSION

For many years it has been known that manybody corrections (arising from Coulomb interactions) to the energy spectrum $E(k)$ of a free-electron metal are very small. The density-of-states effective mass m^* , at the Fermi surface, deviates from m by only a few percent.¹ A recent study² has shown in detail how this small effect results from the cancellation of two large contributions. $E(k)$ is the sum of three terms:

$$
E(k) = \hbar^2 k^2 / 2m + E_x(k) + E_c(k) \tag{1}
$$

 $E_x(k)$ arises from exchange, is kinematic in origin, and contributes a positive, (logarithmically) infinite term to dE/dk at the Fermi surface. $E_c(k)$ arises from correlation, is dynamic in origin, and contributes a negative, (logarithmically) infinite term to dE/dk . That the singularities in these two terms should cancel has long been appreciated, ³ and results from screening of the long-range part of the Coulomb interaction.

It is possible, however, that the near-perfect cancellation of dE_x/dk and dE_c/dk at the Fermi surface of a free-electron metal is fortuitous. The differing physical origins of exchange and correlation, emphasized above, suggest that under more general conditions, contributions from exchange and correlation to m^* may be quantitatively significant. This question is of considerable importance when mathematically accurate band calculations (employing well-chosen crystalline potentials) are compared with experimentally determined band parameters. Perhaps good agreement should not be expected in all cases.

It is easy to perceive how the balance between dE_x/dk and dE_c/dk can be upset. $E_x(k)$ may be regarded as an attraction in k space of the electron in state k to the filled states $\{\mathbf{k}'\}$ with a strength $4\pi e^2/|\mathbf{k}'-\mathbf{k}|^2$. Similarly, for small $|\mathbf{k}'-\mathbf{k}|$, $E_c(k)$ may be regarded as a repulsion from filled states together with an attraction to empty states, each of half-strength, $2\pi e^2/|\mathbf{k}' - \mathbf{k}|^2$. For larger $|\overline{k}' - \overline{k}|$, however, the recoil energy $E(k') - E(k)$

of the electron (as it suffers a virtual excitation from \vec{k} to \vec{k}') becomes important and modifies each contribution to $E_c(k)$.² Obviously $E_c(k)$ depends on $E(k)$, whereas $E_x(k)$ does not. This difference alone indicates that changes in $E(\vec{k})$ caused by band structure will upset the balance between exchange and correlation.

It must be remembered that the k dependences of $E_r(k)$ and $E_c(k)$ individually are quite large. For a typical metal they exceed the first term of Eq. (1). Consequently significant fractional changes in $E_c(k)$, for example, will cause proportionate changes in the total (quasiparticle) energy $E(k)$.

The foregoing speculations can be easily tested by computing the effective mass gt the two Fermi surfaces of a magnetized, free-electron metal. Such an inquiry has the advantage that Bloch functions need not be substituted for plane waves and energy gaps need not be incorporated in $E(k)$. The plasmon model² for computing $E_c(k)$ can be employed after a relatively minor generalization to include change of the electron-gas dielectric function with fractional spin polarization P. Details are given in Secs. II and III.

The radius k^* of the Fermi sphere for spin-up electrons is

$$
k^* = k_F (1+P)^{1/3} \t\t(2)
$$

where k_F is the Fermi radius of the unpolarized metal. The spin-up energy spectrum is

$$
E^*(k) = \hbar^2 k^2 / 2m + E_x^*(k) + E_c^*(k) \tag{3}
$$

The effective mass for spin-up electrons is found from the reciprocal of dE^{\dagger}/dk , computed at $k = k^{\dagger}$. Equivalent expressions apply for spin-down electrons.

The variation of the majority-spin and minorityspin effective mass with polarization P is shown in Fig. 1. The splitting is linear in P (for small P) and approaches 20% at $P=1$. The total electron density was taken to be that of the conduction electrons in sodium metal. These results show that significant changes in effective mass can be caused by a minor change in electronic configuration.

3318

 $\frac{4}{1}$

FIG. 1. Effective mass at the two Fermi surfaces of a magnetized, free-electron metal. Total electron density is that of the conduction band in sodium, $r_s = 3.93$ Bohr radii.

The energy-band problem for the case studied here-an empty lattice-is exactly solvable; $E^{\pm}(k) = \hbar^2 k^2 / 2m$. $m^*/m = 1$ for both spin states, independent of P. Therefore an accurate band calculation (without detailed many-body corrections) cannot be expected to yield reliable $E(k)$.

We conclude that the smallness of many-body contributions to m^* in an ideal metal is fortuitous. In a real metal such contributions may occasionally be much larger. They will depend critically on the over-all band structure, Fermi-surface topology, proximity of energy gaps, etc. It seems worthwhile to emphasize these inherent limitations of band-structure theory in view of the great accuracy of modern techniques for measuring Fermi-surface properties.

II. DIELECTRIC FUNCTION OF MAGNETIZED METAL

The correlation energy $E_c(k)$ depends² on the plasmon frequency spectrum ω_q , which, in turn, is related to the electron-gas dielectric function (\vec{q}) is the wave vector in a Fourier decomposi- ϵ_{α} tion),

$$
\epsilon_q = 1 + \frac{Q(x)}{1 - G(x)Q(x)} \qquad (4)
$$

 $Q(x)$ is the response function of an electron gas:

$$
Q(x) = C f(x) / x^2 \t{5}
$$

where $x \equiv q/2k_F$, $C \equiv me^2/\pi \hbar^2 k_F$, and

$$
f(x) = \frac{1}{2} + \frac{1 - x^2}{4x} \ln \left| \frac{1 + x}{1 - x} \right| \tag{6}
$$

 $G(x)$ relates the Fourier coefficient V_{xc} of the exchange and correlation potential to the amplitude Δn of an electron-density deviation,

$$
V_{xc} = -\left(e^2 k_F / 3\pi n x^2\right) G(x) \Delta n \tag{7}
$$

We seek a generalization of these relations, applicable to a polarized metal. We shall generalized the derivation given in Sec. IV of Ref. 2.

The Fourier amplitude of the spin-up and spindown density deviations, caused by self-consistent potentials V^* , are

$$
\Delta n^+ = -\left(3n/4E_F\right)uV^+(x/u),
$$

\n
$$
\Delta n^- = -\left(3n/4E_F\right)vV^-(x/v),
$$
\n(8)

where $u \equiv (1+P)^{1/3}$, $v \equiv (1-P)^{1/3}$, $E_F = \hbar^2 k_F^2/2m$, and $P = (n^* - n^*)/n$. The Fourier coefficient of the electrostatic potential is

$$
\varphi = (4\pi/q^2)(\mu - e\Delta n^+ - e\Delta n^-) , \qquad (9)
$$

where μ is the Fourier amplitude of an imposed charge distribution. The Fourier amplitudes of the self-consistent potentials are

$$
V^{\pm} = -e\varphi + V_{xc}^{\pm} \,, \tag{10}
$$

where V_{xc}^{\pm} are the exchange and correlation potentials caused by Δn^{\pm} . The generalization of Eq. (7) is

$$
V_{xc}^{+} = -(e^{2}k_{F}/3\pi nx^{2})(G_{1}\Delta n^{+} + G_{2}\Delta n^{-}),
$$

\n
$$
V_{xc}^{-} = -(e^{2}k_{F}/3\pi nx^{2})(G_{3}\Delta n^{+} + G_{4}\Delta n^{-}),
$$
\n(11)

where ${C_i}$ are functions of x and P. These four functions, which describe the exchange and correlation potentials caused by spin-up and spin-down density deviations, are not well known. The seven equations $(8)-(11)$ relating the eight variables Δn^* , V^* , V_{xc}^* , φ , and μ can be solved to yield a linear relation φ = $4\pi\,\mu/\vec{q^2}\epsilon_q$ which defines the dielectric function ϵ_q .

Rather than speculate about the precise behavior of ${G_i}$, we shall approximate, $G_i = G(x)$. The dielectric function then reduces to Eq. (4), but with $Q(x)$ given by

$$
Q(x) = \frac{1}{2} C x^{-2} [u f(x/u) + v f(x/v)]
$$
 (12)

instead of by (5). The exchange and correlation function $G(x)$ will be taken to be the one employed previously,

$$
G(x) = 1.1x2/(1+10x2+1.5x4)1/2.
$$
 (13)

The splitting shown in Fig. 1 is not very sensitive to the details of $G(x)$.

III. SPIN-DEPENDENT ENERGY SPECTRUM

The exchange energy $E_r^*(k)$ for spin-up electrons is given by

$$
E_x^*(k) = -\left(2e^2k + \pi\right)uf(y/u),\tag{14}
$$

where $y = k/k_F$ and f is the function defined by Eq. (6). The spin-down energy is obtained by substituting v for u in (14).

The correlation energy for spin-up electrons is

easily obtained.⁵ We quote the final result. With $s \equiv q/2k^*, t \equiv k/k^*,$

$$
E_c^*(k) = -\frac{me^4}{3\pi^2\hbar^2u^3} \left(\int_0^{\frac{11+t}{2}} (1-G)^2 \frac{Hds}{st} \times \ln\left|\frac{1-Hst-Hs^2}{1+Hst-Hs^2}\right| + \int_{\frac{11+t}{2}}^{\frac{11+t}{2}} (1-G)^2 \frac{Hds}{st} \times \ln\left|\frac{(1+Hst+Hs^2)(4-H+Hs^2)}{(1+Hst-Hs^2)(4+H-Hs^2)}\right| + \int_{\frac{11}{1+t}/2}^{\infty} (1-G)^2 \frac{Hds}{st} \ln\left|\frac{1+Hst+Hs^2}{1-Hst+Hs^2}\right|\right) . \tag{15}
$$

This expression is valid for $t \leq 1$. For $t > 1$, the argument in the logarithm of the first term (only) must be replaced by the argument appearing in the third term. The function H is

$$
H = \left\{3u^2F/\left[s^2 + Cu^{-2}(1 - G)F\right]\right\}^{1/2},\tag{16}
$$

 $\overline{4}$

where $G = G(us)$ in (15) and (16), and

$$
F = \frac{1}{2} \; uf(s) + \frac{1}{2} \; vf(su/v) \; . \tag{17}
$$

Equation (15) gives the majority-spin spectrum for $P > 0$ and the minority-spin spectrum for $P < 0$.

In computing the slope of $E(k)$ at the Fermi surface one should be aware of the anomalous behavior of $E_r(k)+E_c(k)$ (see Fig. 4 of Ref. 2). The m^* values shown in Fig. 1 were obtained by evaluating Eq. (15) at $t=0.99$ and 1.01.

 1 L. Hedin and S. Lundqvist, Solid State Phys. 23, 1 (1969); see p. 103.

 A . W. Overhauser, Phys. Rev. B 3, 1888 (1971). The theoretical method used in this study is similar to one proposed earlier by B. l. Lundqvist, Phys. Kondensierten Materie 6, 206 (1967).

 E^3 E. P. Wohlfarth, Phil. Mag. 41 , 534 (1950); D. Pines, Phys. Rev. 92, 626 (1953).

⁵Reference 2, Sec. VI.

 \overline{w} we omit here any consideration of electron-phonon interactions, which are known to cause further changes in $E(k)$ within $k_B\Theta_D$ of the Fermi surface.