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The (density-of-states) effective masses at the two Fermi surfaces of a magnetized, free-
electron metal are calculated as a function of fractional spin polarization P. Coulomb inter-
actions cause the minority-spin mass to exceed the majority-spin mass. The effective-mass
splitting is linear in P, for small P, and approaches 20% atP =1. It is concluded that the
smallness of exchange and correlation corrections to m* for an ideal metal is accidental. For
real band structures they may be of greater significance.

I. INTRODUCTION AND CONCLUSION

For many years it has been known that many-
body corrections (arising from Coulomb interac-
tions) to the energy spectrum E(k) of a free-elec-
tron metal are very small. The density-of-states
effective mass m*, at the Fermi surface, deviates
from m by only a few percent. A recent study
has shown in detail how this small effect results
from the cancellation of two large contributions.
E(k) is the sum of three terms:

E(k) =I k /2m+E„(k)+E, (k) .

E„(k) arises from exchange, is kinematic in origin,
and contributes a positive, (logarithmically) infinite
term to dE/dk at the Fermi surface E,(k) .arises
from correlation, is dynamic in origin, and con-
tributes a negative, (logarithmically) infinite term
to dE/dk. That the singularities in these two terms
should cancel has long been appreciated, 3 and re-
sults from screening of the long-range part of the
Coulomb interaction.

It is possible, however, that the near-perfect
cancellation of dE„/dk and dE, /dk at the Fermi
surface of a free-electron metal is fortuitous. The
differing physical origins of exchange and correla-
tion, emphasized above, suggest that under more
general conditions, contributions from exchange
and correlation to m* may be quantitatively signif-
icant. This question is of considerable importance
when mathematically accurate band calculations
(employing well-chosen crystalline potentials) are
compared with experimentally determined band
parameters. Perhaps good agreement should not
be expected in all cases.

It is easy to perceive how the balance between
dE„/dk and dE, /dk can be upset. E„(k) may be
regarded as an attraction in k space of the electron
in state k to the filled states (k') with a strength
4ve~/lk'-kl~. Similarly, for small Ik'-kl, E,(k)
may be regarded as a repulsion from filled states
together with an attraction to empty states, each
of half-strength, 2ve /I k' —k I

~. For larger
Ik -k I, however, the recoil energy E(k') —E(k)

of the electron (as it suffers a virtual excitation
from k to k') becomes important and modifies each
contribution to E,(k). Obviously E,(k) depends
on E(k), whereas E„(k) does not. This difference
alone indicates that changes in E(k) caused by band
structure will upset the balance between exchange
and correlation.

It must be remembered that the k dependences
of E„(k) and E,(k) individually are quite large. For
a typical metal they exceed the first term of Eq.
(1). Consequently significant fractional changes in

E,(k), for example, will cause proportionate
changes in the total (quasiparticle) energy E(k).

The foregoing speculations can be easily tested
by computing the effective mass gt the two Fermi
surfaces of a magnetized, free-electron metal.
Such an inquiry has the advantage that Bloch func-
tions need not be substituted for plane waves and

energy gaps need not be incorporated in E(k). The
plasmon model2 for computing E,(k) can be employed
after a relatively minor generalization to include
change of the electron-gas dielectric function with
fractional spin polarization P. Details are given
in Secs. II and III.

The radius k' of the Fermi sphere for spin-up
electrons is

k'=k~(1+P)'

where k~ is the Fermi radius of the unpolarized
metal. The spin-up energy spectrum is

E'(k) = K k /2m E„'+(k) E~+(k) .
The effective mass for spin-up electrons is found

from the reciprocal of dE'/dk, computed at k = k'.
Equivalent expressions apply for spin-down elec-
trons.

The variation of the majority-spin and minority-
spin effective mass with polarization P is shown

in Fig. 1. The splitting is linear in P (for small
P) and approaches 207' at P= 1. The total electron
density was taken to be that of the conduction elec-
trons in sodium metal. These results show that
significant changes in effective mass can be caused
by a minor change in electronic configuration.
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v„,= —(e'k„/3vnx') G(x) nn .
%'e seek a generalization of these relations, appli-
cable to a polarized metal. Vfe shall generalized the
derivation given in Sec. IV of Ref. 2.

The Fourier amplitude of the spin-up and spin-
down density deviations, caused by self-consistent
potentials V', are

nn' = (3—n/4E, )uV'f(x/u),

&n = —(3n/4zz)vV f(x/v),
where u=-(1+P)', v-=(1 —P)'~', E„=k k~/2m, and
P= (n' —n—)/n. The Fourier coefficient of the elec-
trostatic potential is

y = (4v/q')(p, —ean'- enn ),
FIG. 1. Effective mass at the bvo Fermi surfaces of

a magnetized, free-electron metal. Total electron den-
sity is that of the conduction band in sodium, x~= 3.93
Bohr radii.

where p. is the Fourier amplitude of an imposed
charge distribution. The Fourier amplitudes of
the self-consistent potentials are

V'= —ep+ V„', , (10)

q(x)
1 —G(x)q(x)

q(x) is the response function of an electron gas:

(4)

The energy-band problem for the case studied
here —an empty lattice —is exactly solvablg;
E'(k)=h k /2m. m*/m=1 for both spin states, in-
dependent of P. Therefore an accurate band cal-
culation (without detailed many-body corrections)
cannot be expected to yield reliable E(k)

VVe conclude that the smallness of many-body
contributions to m* in an ideal metal is fortuitous.
In a real metal such contributions may occasionally
be much larger. They will depend critically on the
over-all band structure, Fermi-surface topology,
proximity of energy gaps, etc. It seems worth-
while to emphasize these inherent limitations of
band-structure theory in view of the great accuracy
of modern techniques for measuring Fermi-sur-
face properties.

II. DIELECTRIC FUNCTION OF MAGNETIZED METAL

The correlation energy E,(k) depends on the
plasmon frequency spectrum (d„which, in turn,
is related to the electron-gas dielectric function

(q is the wave vector in a Fourier decomposi-
tion),

q(x) = -', Cx ' [uf(x/u) + vf(x/v )] (12)

instead of by (5). The exchange and correlation
function G(x) will be taken to be the one employed
previously,

G(x) = l. lx /(1+lox +1.5x )'" . (»)
The splitting shown in Fig. 1 is not very sensitive
to the details of G(x).

III. SPIN-DEPENDENT ENERGY SPECTRUM

where V„', are the exchange and correlation poten-
tials caused by An'. The generalization of Eq.
(V) is

V„;= —(e k~/3vnx )(Gqhn'+ G2nn ),
V„,= —(e k„/3n'nx )(Gq&n'+ G4&n ),

where (G,. J are functions of x and P. These four
functions, which describe the exchange and cor-
relation potentials caused by spin-up and spin-down
density deviations, are not well known. The seven
equations (8)-(ll) relating the eight variables
hn', V', V„'„y, and ILt, can be solved to yield a
linear relation y = 4v p/q e, which defines the di-
electric function E'q.

Rather than speculate about the precise behavior
of fG, ), we shall approximate, G, =G(x). The
dielectric function then reduces to Eq. (4), but with
q(x) given by

q(x) = Cf(x)/2,
where x= q/2k~, C= me /vlf —kz, —and

(5) The exchange energy E„'(k) for spin-up electrons
is given by

1 1 —x~ 1+~
f(x) -=—+ ln (6)

Z„'(k) = (2e'k„/v—)uf(y/u), (14)

G(x) relates the Fourier coefficient V„, of the ex-
change and correlation potential to the amplitude
4n of an electron-density deviation,

where y —= k/k~ and f is the function defined by Eq.
(6). The spin-down energy is obtained by substitut-
ing v for u in (14).

The correlation energy for spin-up electrons is
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easily obtained. We quote the final result. With
s—= q/2k'. , t= k/k—',

4 l1+t I /2

0

] —Hsg —Hs +"
2 HdSxln, + (1 —G)'

1 + Hst —Ps I1+]I /2
st

H= (SPZ/[ s' +Cu '(1 —Gyl)'",
where G = G(us) in (15) and (16), and

F= ,' uf(s-)+ ,' uf(su/-u) .

(16)

(I'I)

This expression is valid for t —1. For t&1, the
argument in the logarithm of the first term (only)
must be replaced by the argument appearing in the
third term. The function H is

(1+Hst+Hs )(4 —H+Hs~)
(1+Hst —Hs )(4+H-Hs )

z Hds 1+Hst+Hss
1 ~ 2 I~

ln 2st 1 —Hst+ Hs
I 1+0 I /2

(»)

Equation (15) gives the majority-spin spectrum for
P & 0 and the minority-spin spectrum for P & 0.

In computing the slope of E(k) at the Fermi sur-
face one should be aware of the anomalous behavior
of E„(k)+E,(k) (see Fig. 4 of Ref. 2). The m*
values shown in Fig. 1 were obtained by evaluating
Eq. (15) at t=0. 99 and 1.01.
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E(k) within k&& of the Fermi surface.

~Reference 2, Sec. VI.


