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The results of a self-consistent Xe augmented-plane-wave calculation of the cohesive energy,
pressure, and enthalpy of bcc and fcc cesium metal are presented. The exchange factor used
was approximately the one which made the total atomic Xo.'energy equal to the total atomic
Hartree-Pock enexgy. The maximum value of the cohesive energy was calculated to be 0.062
+0.0015 By, and it occurs when the volume of the primitive unit cell is 780 + 30 cubic atomic
units. These results can be compaxed with the experimental values of 0.062 By and 745 cubic
atomic units. The computed pressure and enthalpy predict that the isomorphic transition of
the fcc phase of cesium should occur at 26 +2 kbar at O'K. The computed isomorphic transi-
tion is accompanied by severe distortion of the Fermi surface, as suggested by Vamashita and
Asano and by Kmetko.

Cesium metal at room temperature is knomn to
undergo a transformation fx'om the bcc to the fcc
structure at a pressure of 23 kbar. ' At 42 kbar,
the metal experiences an isomorphic tx ansition in
mhich the fcc structuxe is retained but the volume
is discontinuously reduced by 9%.' The collapsed
fcc lattice is stable over a pressure range of only
0.5 kbar, above mhich it loses the cubic fox'm Rnd

assumes an as yet unknomn structure. 1 The first
theoretical explanation of the isomorphic transition
mas given by Sternheimer. 3 Based upon the results
of an energy-band calculation for cesium by the
%igner- Seitz method, he proposed that as the pres-
sure is increased, the bottom of the unoccupied 5d
band is pushed domn relative to the partially occu-

. pied 68 band. Ultimately, the valence electronic
charge begins to assume a more compressible 5d-
like character, and the crystal collapses. Modern
cRlculatioDS of the one-electxoQ energy levels '

tend to support the essence of Sternheimer's ex-
planation, although they criticize it as Rri ovex-
simplification. In Refs. 3 and 4, the Fermi sur-
faces of compressed fcc cesium mexe calculated,
and the authors, independently and for different
x'8Rsons, reRched the conclusion that thk isomorphic
transition should be accompanied by considex'able
distortion of the Fexmi surface. Unfortunately,
the Fermi surface of compx'essed cesium is not
experimentally kQomn and Qot s1nce the mork of
Sternheimer has thex'e been an attempt to calculate
the total energy and pxessure of the metal. As
a consequence, neither of these later papers has
been able to make a direct connection betmeen their
results and the experimentaQy observed isomorphic-
transition.

Recent developments, 5'6 homever, have now made
it possible to calculate the total energy Rnd px essure
of a metal fxom a self-consistent energy-band cal-
culation. The purpose of this paper is to px'esent

th8 x'esults of such R calculRtioD for cesium aDd to
relate these results to the previous mork in Refs.
3 and 4.

The numerical methods used are essentially the
same as those used by Boss and Johnson~ on alu-
minum. The one-electron Xn equations is solved
self-consistently mithin the muffin-tin approximation
by use of the augmented-plane-wave (APW) method,
Rnd the x esulting one-electron energies and charge
densities axe then used to calculate the total Xo.
energy per primitive unit cell of the crystal. By
performing the above procedure at R number of dif-

ferentt

1Rttlce constaQts, oQ8 cRn detex'm1Q8 th8
volume dependence of both the total energy Rnd the
energy bands. The exchange factor used in both the
atomic and crystRQine calculations mas the one
mhich makes the atomic Xo. and "Hartree-Pock"
enexgies equal. Using this critex'ion, the exchange
factor fox cesium mas determined to be equal to
0.69941.

The calculation required an unusually high degree
of numerical accuracy mhich made it necessary for
great care to be exercised in the solution of the one-
electron equation. The Herman-Skillman radial
mesh10 mas used in an calculations. This mesh
mas of sufficient density such that the radial nu-
merical integration error in the total energy of the
cesium atom mas of the order of 0.0005 Ry. The
core electron mave functions mere calculated self-
consistently using a computer program mhich in-
tegrates inmard and outmard in the manner of the
Schrodinger subroutine of the Herman-Skillman
px'ogram. The calculations mere begun on Rn

IBM NO/65 computer, but the last two iterations
of the self consistent crystalline cRlculatlons mere
performed on a CDC 6700 computer to obtain great-
er accuracy. It is estimated that mithin the model
employed, the crystalline total energies presented
in this paper are numerically accurate to about
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ure 1 is a plot of the pressure and total energy of
both bcc and fcc cesium as functions of the volume
of the primitive unit cell. The total energy of
the metal is given relative to the calculated Xe
energy of the cesium atom which is -15 107.7719
+0.0005 Ry. Experimentally, bcc cesium is known

to have zero pressure, zero temperature volume
of 745 cubic atomic units (c.a.u. )' and a cohesive
energy of 0.062 Ry per atom. 3 The results can
also be compared to the theoretical values obtained

by Sternheimer of 869 c.a.u. and 0.051 Ry. The
close agreement between the pressure, as deter-
mined by taking the volume derivative of the total
energy and by applying the virial theorem to the
computed results [Figs. l(b) and l(c)], lends con-
fidence to the numerical accuracy of the calcula-
tion. The most striking feature of Fig. 1 is the
region of instability in the fcc lattice between the
volumes of 350 and 400 c.a.u. Somewhat similarly,
the bcc lattice has a momentary cessation in the
decrease in the compressibility between the volumes
«425 and 450 c.a.u.

To understand these results from the thermody-
namic point of view and to determine the most sta-
ble lattice and volume at R g1ven pressure and 0 K~

requires knowledge of the enthalpy as a function of
the pressure. Figure 2 is a plot of the calculated
enthalpy of the fcc lattice in the pressure range
between 20 and 35 kbar. The figure clearly shows
that the volume of the fcc cesium lattice should de-
crease discontinuously at a pressure of about 26
kbar. Unfortunately, the numerical accuracy of the
calculation is not great enough at the present time
to allow any conclusions as to which lattice, the
fcc or bcc, is more stable at a given pressure.
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FIG. 1. (a) Calculated total energies of bcc and fcc
cesium metal relative to the separated atom limit, as
functions of the volume of the primitive unit cell. Squares
and circles are data points of the bcc and fcc lattices, re-
spectively. In order to facilitate the comparison of figures
in this paper, some of the fcc data points have been num-
bered. g), (c) Theoretical pressures of bcc and fcc
cesium metal as functions of the volume of the primitive
unit cell. In (b) the pressure was obtained as the negative
of the numerical volume derivative of the total energy
given in (a). Value of the pressure given in (c) was cal-
culated by use of the virial theorem (see Refs. 5 and 6).
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0.0015 By, and the calculated pressures are in
error by no more than 2 kbar.

The results are presented in Figs. 1 and 2. Fig-

FIG. 2. Theoretical enthalpy of fcc cesium as a func-
tion of the calculated pressure. Enthalpy as defined in this
figure is equal to E+PV, @&here E is the energy of the fcc
cesium given in Fig. 1(a) at volume V, and P is the pres-
sure of fcc cesium given in Fig. l(c) at volume V.
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The energy bands resulting from this calculation
are in qualitative agreement with those presented
in Ref. 3, and it is therefore unnecessary to re-
produce them in this paper. The connection between
this paper and the work of Refs. 3 and 4 can best
be made by describing the characteristic features
of the Fermi surfaces obtained at volumes near
those at which the compressibility is seen to in-
crease in Fig. 1. At a volume of about 580 c.a.u. ,
the bcc Fermi surface has developed a pocket of
electrons about the symmetry point 8, and at a
volume of 425 c.a.u. , that pocket includes ~ of the
~ symmetry axis. The changes taking place in the
fcc Fermi surface are somewhat similar. At a vol-
ume of 450 c.a.u. , the fcc Fermi surface includes
most of the XU symmetry line, although the point
fJ is still outside the surface (see Fig. 3 of Ref. 3).
When the volume is 375 c.a. u. , the U symmetry
point is inside the Fermi surface (Fig. 4 of Ref. 3),
and as the volume is further decreased to 325 c.a. u. ,
the additional Fermi sheet begins to develop about
the symmetry point X. Thus, as suggested by
Yamashitae and Kmetko, ' the dip in the fcc pressure
vs volume curve and the corresponding isomorphic
transition are seen to be closely correlated with the
occurrence of these topological changes in the fcc
Fermi surface. Similarly, the brief leveling off
of the bcc pressure curve is correlated with topo-
logical changes of the Fermi surface for that struc-
ture.

Based upon the information found in Figs. 1(c) and

2, one would predict that at 0 K the fcc lattice
would discontinuously decrease in volume from 410
to 320 c.a.u. at a pressure of 26 kbar. There is
no experimental data on the transition at or near

O'K with which to compare. However, experiments
at room temperature have shown that the isomorphic
phase transition occurs at a pressure of 42 kbar with
the volume changing from about 362 to 329 c.a.u. '
The quantitative differences are obvious, but it is
not clear how much of the difference is due to tem-
perature effects and how much is due to approxima-
tions of the model. In the calculation, the zero-
point motion of the lattice has been ignored. By use
of the GrGneisen model, ~'~3 it is easy to show that
the error in the total energy and pressure introduced
by this approximation is less than the estimated
numerical accuracy. However, if the calculation
was to be extended to nonzero temperatures, it
would no longer be satisfactory to neglect the lat-
tice in this manner. Also, at temperatures greater
than zero, it is the Gibbs free energy rather than
the enthalpy which determines the relative stability
of a system. This quantity has not as yet been cal-
culated and it is, as a result, not possible to make
a quantitative comparison between the results and
the experimentally observed isomorphic transition.
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