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A general formalism is developed by means of which the radiative heat transfer between
macroscopic bodies of arbitrary dispersive and absorptive dielectric properties can be evalua-

The general formalism is applied to the heat transfer across a vacuum gap bebveen two
identical semi-infinite bodies at different temperatures. The peculiarities arising when the gap
width is of the order of, or smaller than, the dominant thermal radiation wavelengths are
studied and quantitatively evaluated for the case of two metal bodies. The predicted strong in-
crease with diminishing gap width is in qualitative agreement with experimental results.

I. INTRODUCTION

Consider a set of bodies of macroscopic dimen-
sions with arbitrary dispersive and absorptive
dielectric properties. These bodies emit thermal
radiation depending on the local temperature. With
the aid of the fluctuation-dissipation theorem and

electromagnetic theory we shall derive a formula
for the heat flux at an arbitrary point due to the
radiating bodies. Integration of this heat flux over
a closed surface gives the net power dissipated in
the absorbing matter contained in the enclosed
volume.

By this method we intend to determine and dis-
cuss the net heat transfer between two semi-in-
finite absorbing bodies with arbitrary dielectric
properties at slightly different temperatures
separated by vacuum of width d. The heat trans-
fer between closely spaced bodies differs from
that when the spacing is large for two reasons.
Firstly, when the separation d is comparable to,
or smaller than, the dominant vacuum wavelengths
at the temperatures considered, interference
effects must be expected in the waves multiply re-
flected between the two surfaces. Secondly, the
evanescent fields normally present in thermal
equilibrium at the outer surfa, ce of each body can
reach over to the opposite body and transfer energy
if the distance is sufficiently small. As will be
explicitly shown for metal bodies, the latter

mechanism of energy transfer is the dominant one
for small distances, giving rise to a strong in-
crease of heat transfer with decreasing d.

Rytov has developed a treatment of problems of
this kind. Rytov's work and ours differ in the
following respects. One difference is merely
formal: Rytov starts from random thermal exciting
electromagnetic fields, for which he writes down
a correlation function, in which a constant, factor C
appears. In Ref. 1, C is determined a Posteriori
by reproducing Kirchhoff's law for radiation emit-
ted into vacuum. In Ref. 2, C ~.s obtained from
Nyquist's formula, and a discussion of the zero
correlation radius used by him (and by us) appears.
In our work we take electric currents rather than
fields a,s the random thermal sources and use the
fluctuation-dissipation theorem to determine their
statistical properties; this rather simplifies the
formal treatment.

The second difference is that Rytov's study of
the heat transfer across a gap is confined to the
case of one semi-infinite absorbing body at tem-
perature T separated by vacuum from an almost
perfect mirror at zero temperature: The mirror
is described by the approximate boundary condi-
tions of Leontovich, which state that the magnetic
fields are the same as if the mirror were perfect.
In our work we study the heat transfer between two
arbitrary identical semi-infinite bodies at dif-
ferent temperatures, while exact boundary con-
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ditions are used. In addition we present a thorough
and quantitative analysis of the distance and tem-
perature dependence of the heat transfer between
metal bodies. A comparison of our formulas and
Rytov's for the case of highly reflecting metals
shows similarity in over-all features but reveals
discrepancies in detail, which we ascribe to the
use of approximate boundary conditions by Rytov.

A related problem has been considered by Cra-
valho et al. and Olivei, viz. , the heat transfer
across a vacuum gap between two semi-infinite
nondispersive nonabsorptive media, in which the
origin of the thermal radiation is unspecified.

The problem of the heat transfer between closely
spaced bodies was taken up independently by Har-
greaves, who has also shown the existence of
proximity effects experimentally. ' It was his
interest that prompted us to carefully reinvestigate
the theoretical aspects of the problem and in par-
ticular to concentrate our attention to transfer
between metals. In Hargreaves's experiments
chromium layers were used as emitting bodies,
and for this reason a numerical analysis of the
case of chromium is included as an example in our
payer.

In Sec. II of this paper we shall present a theory
that is generally valid within the following limits:
(i) continuum electromagnetic treatment (macro-
scopic Maxwell's equations); (ii) zero correlation
radius for electric currents; (iii) isotropic non-
magnetic substances; (iv) stationary in time with
local thermodynamic equilibrium. There we also
specialize to problems with translational symmetry
in two directions. Section IIIsolves Maxwell's
equations for layered media. In Sec. IV the theory
will be applied in some detail to the case of ra-
diation of a semi-infinite body into vacuum (yield-
ing Kirchhoff's law). In Sec. V the problem of
radiative heat transfer between two semi-infinite
bodies will be solved. In Sec, VI the general re-
sult of Sec. V will be reformulated so that general-
ized transmission coefficients t appear in the ex-
pression. The structure of the t'sand their in-
fluence on the integrated result will be discussed
with special reference to materials of high re-
flectivity. In Sec. VII an attempt will be made to
extract the dependence of the result on the various
parameters (gap width, temperature, material
constants) in the case of strongly absorbing metals.
Numerical integration will be used to illustrate
the case of a realistic material, for comparison
with experiment.

It is worth pointing out that the final expression
for the heat transfer depends in such a complex
way on the specific dielectric properties of the
material, that it does not seem possible to foresee
immediately even qualitatively the behavior of the
result for an arbitrary material.

BH
curlE = ——

c Bt

Here the inhomogeneous term j „„„(x,t) is the
thermal random current density source, while

j„~(x, t) comprises all induced current densities
in the substance due to the presence of the electro-
magnetic field. We assume that the substance
is nonmagnetic and isotropic and that a local re-
lation holds between j„s(x, t) and E(x, t) in such a
way that we may write for each frequency com-
ponent

1 BE 4m. i&
+ ] = &(M)E

C Bt C C

The dielectric constant e(&u) = e' —ie" is complex
and contains in its imaginary part all the dissipa-
tive properties of the substance.

The ~ component of any quantity G(t) is defined
as

G((o) = (2v) '~' J dt e-'"'G(t)

and will be used for +& 0 only.
Thus, we have

curlH (x, e) =—e(x, v)E(x, &u)+
4m .
C

lsosscs(Xt +)

curlE(x, a&) = ——H(x, ur)

The ur component j(x, a&) of the source T(x, t) is a
(Gaussian) random variable which, according to
the fluctuation-dissipation theorem, obeys the
relation

(j,(x, (o)jf (x', (o')) = (2v) 'e "(x, (u)h(u'

x(e"" s —I) ' &((u —(u')&(x-x')&„, (4)

while (j,j)= (j*,j*)= 0; k and kT have their usual
meaning and () is the ensemble average. The
spatial independence of current sources at different
points is compatible with the assumed local proper-
ties of the medium, the independence of the dif-
ferent vector components (a, k = x, y, z }with the
assumed isotropy.

It is difficult to give more than a qualitative dis-
cussion of the limit of validity of the phenomeno-

II. METHOD

The technique used starts from a macroscopic
description of the substance considered, together
with a postulated form of the fluctuation-dissipation
theorem applying to the thermally fluctuating
microcurrents in the substance which constitute
the sources of the thermal radiation emitted by
the substance. We have

- 1BZ
curlH =, + 3)ng + 3 sourcecBt c " c
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logical approach described here, since it mill
much depend on the physics of the material in-
volved. For instance, if we have a metal mhose
"optical" properties are largely determined by
the conduction electrons and these electrons have
a long mean free path, then we expect that any
contributions from spatial Fourier components
shorter than that mean free path mill be inadequate-
ly dealt with in the present treatment. Related
to this is a limitation on minimum geometric
dimensions such as radii of cQx'vatul'e ox' thick-
nesses or distances. Also, materials for which
the optical properties are affected by phenomena
such as the anomalous skin effect are excluded
from the present treatment.

Fox' the purpose of calculating the radiative
energy transfer we shall need the ensemble average
of the Poynting vectox'

S (x, t) = (c/4v)E(x, t) x H (x, f)

at suitable points x. Because of Maxwell's equa-
tions, each field in this expression is itself pro-
portional to current sources at all points x' of the
emitting body. For instance me have, e being a
tensor,

E(x, f) = (2g) '~' j d~ ' jdx'e'" '

x e(x, x', (u ') j„„„,(x', (o ')+ c.c. , (5)

and a similar expression for H(x, f). The expres-
sion for (S(x, t)) is then an eightfold integral over
&', &u", x', x" involving (j(x', m') jf(x", &")).
Because of Eq. (4) this reduces to a fourfold in-
tegral over &' and x', shoming that each volume
element, each frequency component, and each
vector component of the source contribute indepen-
dently.

The x'esult then takes OD the following fox'm ln
obvious DotatloD:

(S(x))=.—,'(2v) 'cZ, jd&dx' e,(x, x', ~)

xh,*(x,x', ~)}I&a (e""i ' ' —I) '« "(x',&u)+c. c.

Thus the heat flux 1D any polDt, x 18 found as 8oon
as the tensors e and h have been determined, which
can be done by solving Maxwell'8 equations in the
desired geometry with jo&(x —x')e'"' as point
8oux'ce s.

If the px oblem shows translational symmetry in,
say, the x and y directions, this is beet taken ad-
vantage of by introducing the x and y Fouxier com-
ponents of the fields and the current soux'ces. Thus,
we have

E(x, f) = (2v) "'j"d(o' jj du„'dP,
'

xe""' '~"'~ "E(k' 0' g ~')+c c (6)

and, because of translational symmetry,

E(k„, k„, g, (g)

= j dg ' e (k„, 0„,g, g ', (o) j „„,(&„,&„,g', (o) (I)

defines the tensor%(&„, )t„,g, g', &). Similar ex-
pressions hold for H+(kz, kz, g, (0). With the aid of
Eq. (4) one easily deduces the ensemble average

(j,(}t„,k„, g, (o)jf(k'„, k„', g ', (o '})

2(ehtulkr I)-10(& &&)

&& 5(k„—k„')6(}t~—k,') 5(g —g ')5,q, (8)

so that finally we have

&S(.) &

= —,'(2v) 5 ', j d&u dk„dk~dg' e, (k„, k„, g, g', &g)

x h~(}t„,k„, g, g ', (o)

&&}I~'(e" ~' —I} 'g "+c.c. , (9}
where, of course, &" and T may still be functions
of 8 «

III. SOLVING MAXVfELL'S EQUATIONS

We must determine the tensors e(k„, k„,g, g', &)
and h(k„, k„g, g', &). Therefore, we calculate
the electromagnetic fields due to a current source
of the form

Q(g gl) e'l(&04 Ngx kyhl)- (IO)

g(g gi)e&hut-a~)

causes a jump in H~ equal to

e&(~t «„w3-
while H„, E„, E„are continuous.

without loss of generality we can confine ourselves
to the case k„=0, as the problem nom has azimuthal
symmetry.

The medium in which these sources are present
will consist of layers perpendicular to the s axis,
each layer having a constant 4. The space can
then be divided into sections, in each of which the
field mill consist of a combination of tmo maves:

Ae'i(Alt k+kllgs) (P E or H)

with @~+ha= ear~/cg and in which Imk, ~ 0, Rek, ~ 0
(Ime ~ 0). 'Ihe complex amplitude A shows jumps
at the boundaries of the layers and at the plane z
= z' of the source. The jumps at the boundaries
of the layers are determined by the usual conditions,
E„, E„, H„, H„continuous across the boundaries,
while for those sections extending to a only one
wavewith, respectively, —k, and+I, mill be present.
The jumps at z = s' mill be discussed nom.

A source



A source

g(g g 1)e)(~t az-x)

cRuses R juIQp ln H» equRl to

4vc-1j e) hot a)e-:)

mhile H~, E„, E„are continuous.
A source

i)(g g &)ei hot «P-)

causes a dipolar layer mith a, potential jump equal
to

4~&( «)-)j e) (rut k~)-

which in turn causes a jump in E„given by

(&e)-)j ei (ro) k~)- (14)

RQd slIQllR1'ly fox' h.
%8 will complete the solution of Maxwell's

equRtlons in tmo specific cRses.

IV. FIRST APPUCATION: RADIATION INTO VACUUM

If the half-space z& 0 is filled by a medium mith
dielectric constant e(v) and temperature T, and
for g & 0, & = 1 (vacuum), Kirchhoff's law states
that the RIQount of energy x*RdlRted into R solid
Rngle dQ Rt RQ Rngle 3 fx'oIQ the g axis Rnd R fre-
quency interval de is given by

= (1-R„+1-R,)(2g) ')f~'c '{e""' —1) 'd&udQ.

(16)
Here R„and R~ are the reQection coefficients for

the tmo pola, rization states of a light beam incident
at the angle 3. As is mell known, Kirchhoff's lam

can be derived mith the aid of a simple thermo-
dynamic argument from the thermal equilibrium
radiation denslt, y. ln vacuum.

The purpose of this section is to shorn hom this
result is obtained with the aid of the procedure out-
lined in the preceding sections. It mill also serve
to discuss a fern points which mill be of importance
fol the more complicated px'oMem of the ladlRtlve
transfer between tmo bodies to be dealt with in the

Nom Ey p H»q H~ Rx'8 continuous~
All further dlscontlnultles ln the field quantities

ox' their derivatives at z= z' follom fx'om those
given above.

The combined boundary conditions Rt the bound-
aries of the layers, at the source, and at infinity
suffice to determine the electromagnetic fields
E,(k„, 0, g, g ', &u) and H, (k„, 0, g, g ', &) due to the
given soux'ce Rt g . Fox' example~ Rccox'ding to
Eq. (f) the tensor e for k, = 0 then follows from

E (k„, 0, g, g ', (u) =Z), e ),(k„, 0, g, g ', (o) joq

second application. We shall first ealeulate the
electromagnetic fields at g & 0 as produced by a
source To~(g —g')e " ~"' (g'«0). ~e sha]]. dis-
tinguish between tmo states of polarization, the ll

polRI'lzRtlon fox' which @y=H»=Hg= Oy RQd the ~

polarization, for mhich E»= E,= H„= 0. From the
nature of the singularities at the source it is easily
seen that the components j„and j, only excite II maves,
while j„only exci.tes l maves.

For waves of either type of polarization, we have
one mave decaying towards z- —~ in the region
z&z', tmo waves in the region z'&x&0, one de-
caying to the right and one to the left, and in the
vRcuuIQ I'egloQ ODe mRve pl opagRtiQg ox' decRylng
towards z- ~. These four fields ean be expressed
in terms of jo with the aid of four boundary con-
ditions, tmo for the field components parallel to
the surface at z = 0 and tmo for the plane z = z '.

For the tl polarization me find, for instance, for
z&0,

H, = —4vc '(ek,„+k,) '(k, je,- k„jII,)

X ef(~g-o~-k~„e+k a'),

while for the ~ polarization me have, for instance,

2(k + k ) lj e'l(l4 t ll~ AgyE +light
')

gtP

where ka+k~=@~a/c and k~+ka„=&3/ca. The full
tensors e and h at k„=0 easily follow from these
expx'esslons.

As long as ik„i «~/c, these fields represent
plane waves (k,„real) propagating at angle 3= arctan
{k„/k„). For i k„l & ~/c these fields constitute
evanescent waves with vanishing amplitude as
z-~. The lattex' waves do not contribute to the
emitted radiation. As is mell known the average
energy flow in these waves is parallel to the sur-
face.

The total radiation into a solid angle dQ= e &

(cosh) dk„dk„within the frequency interval dw is
therefore obtained by integrating the integrand of
Eq. (9) only over g' from —~ to 0. This integra-
tion gives a factox

I 0f„dg' exp(i(k, -k,*)g ') = ——,'(Imk, )

= 2(2v) 'I'(o'c '(e"" ' —1) 'e "(-lmk ) 'k

mhere the two texms between the large parentheses
originate, respectively, fx om ~I and ~ polarized waves.

The energy reflection coefficients of these tmo

maves at the angle of incidence 3 ean be written as
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Ek~ —kg
II ~k +k

With the aid of the relations

kg„- kg

k +k,

'

2

&"=—2c v Rek Imk

Re(e/k, )=c'& (k„+k,k,*)Re(k,)ik, i

3

(16) e, h(k„, 0, d„z', &u) (z' & 0).

These tensors are determined by solving the Max-
wellproblem, that, for eachpolarizationstate, in-
volves six waves and sixboundary conditions at the
boundaries of the media and at the source plane.
For the calculation of S, we need the result for the
following components:

and recalling that we deal with azimuthal symmetry
about the z axis, one demonstrates the equivalence
of Eq. (17) and the Kirchhoff formula, Eq. (16).

U. HEAT TRANSFER BETWEEN TWO BODIES

If the half-space z & 0 is filled by a medium with
dielectric constant «, (&u) and temperature T, and the
half-space z & d is filled by a medium with &z(&u)

and Tz, the region 0& z&d being vacuum (cf. Fig.
1), the radiative transfer of heat can be calculated
in the following way.

We first consider the fields set up by the noise
sources in the medium at z & 0 and calculate the
(averaged) Poynting vector in the z direction at
the point d„ i. e. , just inside the second medium.
This is the heat transferred to the second medium
due to the thermal radiation from the first. In the
same way we calculate the Poynting vector in the
—z direction at z = 0, due to the sources in the
second medium. The difference of the two expres-
sions is the net energy transfer due to the temper-
ature difference of the two bodies.

It is clear that whatever functions &,(v), «2(&o)

one takes, the net energy transfer expression must
be zero if the temperatures T, and T& occurring in
the Bose-Einstein factor of the two media are equal.
Thus the differential energy transfer

W = lim
(T -2'&)~01

originates entirely from the temperature derivative
of the Bose-Einstein factor and there is no contri-
bution from the temperature dependence of &, and

The values for «, (&u) and &,(u&) to be used are
those pertaining to the working temperature T,
= T2. In the further discussion we specialize to
the case of identical media, i. e. , E—= &,=&&.

It is of importance to note that, in this calcula-
tion, multiple reflection at the two boundaries is
fully taken into account. The corresponding inter-
ference effects constitute one reason for a depen-
dence of the energy transfer on the distance d. The
second reason is that, in contradistinction to the
first example, vacuum waves with imaginary k,„
values now contribute to the net energy flow, and
especially at small-d values this will be an impor-
tant contribution.

For the calculation of the Poynting vector S at
z=d, we need the tensors

h~=-ck, ~ 'e»=8wk k, c 'C-

= —Bgkg„kg&c C~~'e' g'

e„~=e„„=e„g=h„„=h„g——h»=0

where

C„= («k,„+k,) e' '" —(zk,„—k,) e '"~~

C, = (k,„+k,)'e"»" —(k,„—k,)'e '"~"

Because of azimuthal symmetry, in Eq. (9) we
can substitute for e and h the quantities at k„=0
which we have just calculated and replace dk„dk„
by 2gk, dk„, integrating between 0 and ~. We
finally obtain

S,(d,) = f d&u f dk„16(2v) k„ik,„i

xk+(ehkl IAT~ I)-I

&&([Re(&k,*)] )C„) +(Rek, ) )C, (
z) . (19)

The differential energy transfer is

&S,(d.)
8T1 (2o)

the differentiation being understood to be with re-
spect to the explicit T dependence in the Bose-Ein-
stein factor only.

UI. STRUCTURE OF THE RESULT

W = W"' W'"
7 (21)

both contributions will now be separately discussed.

The result as given by Egs. (19) and (20) ex-
hibits in the curly brackets the additive contributions
of the two independent polarizations. These con-
tributions have quite similar structures and may
thus be treated together throughout this section.

The distinction between real and imaginary k,„
is quite interesting, though not of great physical
importance in the present problem. It is the dis-
tinction between waves propagating undamped across
the vacuum gap and the evanescent waves reaching
over the gap. The contributions corresponding to
these two types of waves we shall denote as W"'
and W'"', respectively: W' ' involves the k„-inte-
gration interval [0, &o/c]; restriction to the interval
[&/c, ~] yields W'*'. Then, we have
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X

vacuum

ities R„and A„which in turn are a consequence
of the high absolute value of & encountered in
metals. The ref lectivities pertaining to the case
of Fig. 2 are shown in Fig. 3.

In W'"' the integrand can be rewritten as follows.
Since now k„& id/c, we define

k,„=—iK with K=(k„-&u2/c )'~2& 0,
Z

FIG. 1. Geometric situation for the calculation of the
radiative heat transfer between bodies a distance d apart.

yielding

lliexe f d& f dk (2v)-2k (felix+ fexe)

spf(d/(8" "~"T —1)]
8T (24)

In W'" it is rewarding to introduce the reflectiv-
ities R„and R, already used [cf. Eq. (18)]. One
then obtains

W""=f der f dk (2v) k (f' '+i' ')

s [k~/(ex ie/ 1gT 1)]'
8T (22)

where

(1-R„)',i, (1 —Rx)'
] y -R„e&+ii m"

)
~ (f -R e~+~ +»"

j

with

and

1 —cos g()

cosh[2K(d 5e)] coslte

1 —cos gg

cosh[2K(d —5,)]—cosy,

i tc+ k»e" '=
k

ge = 2 arg[(- i Ke + kx)(- i Ke —kx)*]

pe = 2 arg[(ekx„—k, )(ekxe+ kx)*]

px= 2 arg[(k „—k )(k „+k )*]

The quantities t8„" and t~
' can be considered as the

energy transmission coefficients for a wave with
real k„& (u/c, passing the surface at z = 0 and being
detected at z=d, . This can easily be verified by
tracing the multiple reflections of such a light ray
through the optical system and summing the ampli-
tudes of the transmitted waves, taking 2P„and ~P~
as the phase jumps at reflection so as to account
properly for interference effects. It is clear that
in the present simple geometry Eq. (22) could
have been obtained directly from Kirchhoff's law

by substituting for 1-R the transmission coef-
ficients t"' pertaining to the new geometry. In
order to illustrate the structure of the transmission
coefficients we shall consider the case of a metal.
In Fig. 2, t'„" and t~

' are set out against k„and d
at fixed vacuum wavelength ~= 5 pm for a dielectric
constant representative of metals; we now only
consider 0& k„& &/c.

As a function of d the transmission coefficients
have rigorous periodicity, the period being mk

and growing continuously from —,'X to ~ when k„
grows from 0 to ~d/c. In the figure the observed
sharpness of the ribs results from high reflectiv-

X, = 2arg[(-iK'+k, )(-iK —k,)e]

Again i'*e and f'~ can be considered as energy
transmission coefficients for waves with real k„,
where now k„& &o/c. However, Eq. (24) could not
have been obtained directly from the Kirchhoff ex-
pression, simply because Kirchhoff's law only ap-
plies to waves with k„«d/c arid there is no immedi-
ate thermodynamic argument leading to a cor-
responding expression for k„»/c (i. e. , complex
angles of propagation in vacuum).

Specializing to the case of a metal, one can
show that, as a result of Re& & 0 and Ime & 0 (as
is the case in most metals for wavelengths above
1 llm)

~„&O and ~, &O .
The d dependence of t'~ and t'~ is easy to visual-
ize and is also illustrated in Fig. 2 as the contin-
uation of f,',

"and f,' ' for k„& &u/c. When d- ~,
the transmission now falls off as e 2"", as one
would expect.

A remarkable fact is that for a wave of parallel
polarization which suffers total reflection in the
presence of only vacuum at z & 0 (i.e. , k, & iii/c),
there is a certain value of d, namely, &„, such
that we have total transmission of that wave to
an opposite identical body.
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Let us novg consider +hat conclusions can be
dravrn as to the behavior of 8' in view of the
structure of the integrand as depicted in Fig; 2.
First of all for d ~, integration over k„means
'an integration over an infinitely densely ribbed
structure. With the aid of the averaging pro-
cedure

l (l -R„) l-R„
il —R„e' I l+R/woo 2+ 0

(where R„and R, still depend on k„and &o) we find,
since 8 ~-0 as d- ~, the exact expression

W(d-~)= f d&o J dk„{2g) ak„

&& [(l R )j(l +R))) + (l R~)/(l +R~)t

8[h~/{eh tu/kr l)]
BT

independent of d. This result is not surprising;
it could have been obtained by tracing a ray of
light through the optical system, adding trans-
mitted intensities rather than transmitted ampli-
tudes.

For smaller values of d, i.e. , d graduaOy de-
creasing to the order of c/u& at the frequency con-
sidered, Fig. 2 showers how fewer and feebler peaks
contribute to the integration over k„. Of course,

1.0-

FIG. 3. Energy reflection coeffi-
cients R„(k„)and R (0„) between vacuum
and a medium of dielectric constant
q =- 200- i130, for waves of vacuum
wavelength A.= 5 pm.
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FIG. 4. Frequency spectrum of the contributions W'„+ and W& to the net heat transfer at the temperature T =315K
for d =10pm (solid curves) and d ~ (dashed curves) obtained by numerical calculation, using the dielectric constant
represented by the curves 4 and 5 in Fig. 8. The corresponding scale of vacuum wavelengths is included.

the number of these peaks depends on the partic-
ular frequency. Indeed, the frequency spectrum
of W"' at a given value of d (cf. Fig. 4) shows a
number of steep rises at those frequencies where
a new peak enters the integration interval over
k„at k„= 0, i. e. , at the frequencies &u = n(c/d)
(n= 1, 2, . . .). In Fig. 4 the frequency spectrum
of W"' is shown for the two polarization states,
while for comparison the frequency distribution at

d-~ is also shown. Data used are given in the
caption.

For a given frequency (for which we may take
the dominant frequency in the Planck radiation
expression) and with d=c/v we no longer find
peaks in the integration range 0&4„&&u/c. This
will have a strong diminishing effect on the
value of W"'. On the other hand P'~ is now

already increasing strongly with decreasing d,

10Q-
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FIG. 5. Frequency spec-
trum of the contributions
W~), and W~~ to the net heat
transfer for d= 2 @m, «r-
ther data as in Fig. 4. The
inset shows the low-frequency
behavior of W~~ (note the
unit of A).

1013

10-14

010'
I I I

0o200 50

1014

I

20

2x1014
I

10

3x10" C,x10'4
I

5x10'4
~I'sec1]

) [pm]



THEORY OF RADIATIQE HEAT TRANSFERo ~ ~

at first mainly because of the peak in the Il polari-
zation at k„& (0/e. The importance of W'~ is
illustrated by Fig. 5, which gives the frequency
spectrum of the l~ polaxization contained in W'~

for a typical distance of this order; note that this
spectrum is already comparable in magnitude to
the spectrum of S" ' at the much larger distance
in Fig. 4. Also shown in Fig. 5 is the frequency
spectrum for the ~ polarization contained in W'"':
Tile c811'tel' of gravity of 'tl11s dlstrlbut1on ls vex'y

much at the low-frequency side. In terms of the
behavior of t'"' as depicted in Fig. 2, it originates
from the rise near d= 0, which is tremendously
moxe pronounced at low frequencies. While with
decreas1ng d the ll polar1zat1on part of ~ rises
above the W' ' contribution, it in turn is rapidly
overtaken by the ~ polarization part of % ~.

In Sec. VII we shall try and give a, somewhat
more precise discussion of the qualitative points
just mentioned, including the d, T, and e depen-
dence to be expected in a model conductor with
purely imaginary 8 (proportional to ~ ').

satisfactory in the d 0 limit. This is of no con-
sequence as 5 ~ has much larger values then.

As regards the contribution W'"~, it is con-
venient to use the following exact expression, ob-
tRlne(i fl'Onl Eq. (24):

e(( ~/kf'
W'~= J d~(2v) '[f„+f,]

[Re(ek,*)]'/ I ok, I

'
I cosh«(f+-,'i[k,/(&«) —z«/k, ]sinh«d I'

{Rek,)'/ Ik, I'
Icosh«d+-,'i(k, /« — «/ k)sinh«d I

&vhere k„dk„= —k~, dk~ = I{"d~ has been used.
To treat these: integrals we again assume that

(& )» 1 holds for all relevant frequencies. We
define p() = Rrg(k~/6) RIld pI= Rrgkg.

For d» I& I' &/(2v) we then obtain

Consider t/V f1x'st. Its d 0 llm1t can be ob-
tained with some accuracy under the assumption
I& I

» 1. If we write &=-I'4&&/& for a substance of
conductivity a', this assumption is equivalent to

+ cospit dll t~ )$/P

(2((+Pl(/
I

I/8
CQ

(34)

T/o «2x10 "
(in Gaussian units), where Wien's relation

(28) For d» I&I'/ &/(21/) one obtains, using J~ dxx~/
sinh x= l. 803,

T& = 0. 2kc/k (29)

between temperature and dominant vacuum wave-
length has been used.

Now we obtain, using J"dxx e"/(e"-1) =55. 2
for the frequency integration, from Eq. (2V),

(35)

I,=-, cos p, (& )& e

For d» I& I
'/ &/(2w)„we have

Ig V 212cos pgc (tl ~~~a

The point d= Ie I' l(/(2II) separating Eq. (34)
from Eq. (35) corresponds to the maximum value
of &„ in Eq. (25).

For d « I & I
' &/{21(), ,Ibecomesindependent

of d:

(30) f,=V. 212cos'p, c'~'~~~ 'd' . (O'V)

exhibiting clearly temperature and conductivity
dependence (cr may still depend on temperature,

g Q'(c T )
Equation (30) may be easily understood in terms

of the Stefan-Boltzmann law, which predicts a
differential heat transfer proportional to dT /dT
c(- T and proportional to the averaged transmission
coefficient (~ TI/ao '/2).

A crude idea of the decrease of 8""for small-
@ values can be obtained by cutting off the fre-
quency integration leading to Eq. (30) below the
fil'st 1'lse ill 'tile spec tl'uIII (cf. Flg. 4)~ i. 8 ~ ~

below
re= IIc/d. The distance d* of largest 8 I("'/Bd
then satisfies d*= p. 163T ' or d~=p. 5'7&,„. This
approxlmatlon by fx'equency cu'toff ls vex'y Qn-

The Bose-Einstein factor of Eq. (31) is con-
stant fox' low frequencies. Thus, the low-fre-
quency end of the spectrum will be laxgely shaped
by I„and II (cf. Figs. 4 and 5). Taking for ex-
ample d= X, so that Eqs. (34) and (SV) apply, we
see that I„ falls rapidly to zero as e- 0, because
I„o-~ )& I

'~ . However,

I~fx. cos p~(d I& I o= cos p&

so that I~ only falls to zero when cos p~ compen-
sates the dlve1glng factor ; 1t ls possible to
show that this compensation happens near a fre-
quency (umq„roughly determined by the x"elation
I&(a~(,) I&a I, =c d, which becomes, for I& I

= 4IIO'/((I,
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FIG. 6. Approximate integrated contri-
butions to the net heat transfer as obtained
in Sec ~ VII Rnd thei1 suQl 8 Rs functions
of d in the ease T = 315K, e = —i 4' cu

and 0=7.0xlo sec . 5 l~ has been calcu-
lated with the frequency cutoff described
in the text. The T, 0, and d dependence
of the various contributions and of d* are
included. Below d=lo pm=100k these
curves lose their physical meaningfulness,
owing to electronic and atomic effects.
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(o „=(4v) 'c'o 'd'
To integrate these results over frequency we

specify that e = —t4mo/to. The various regions of
validity of the expressions obtained will be de-
scribed by comparing d to the dominant wavelength
& ~ defined by Eq. (29).

For d«[e(X ~) ~'~sX ~/(2v), since

j,"dxx"'e"/(e -1)'=13.1,
Eqs. (31) and (34) yield

-4 46 V'"

respect to W"'.
For

d« ~e(a )~
"'a /(2v),

the J. polarization yields, with f" «x'&"/(e*-1)
= V. 20,

W',~=0.5V4k'I c oTe=1. 52&10 "oT . (40)

d» ~e(& )~
"'x /(2m)

we have, using Eq. (3V),

S,"'=V. 3~10 Ae 0' 'd

)&[5.5+in(4m 10 'kl 'c ')+in(oTd')]

Equation (35) gives a heat transfer negligible with = 908o ' d [1n(oTda) —20. 4), (41)

- erg - "0-
cm2secK

@7

I"IG. 7. Numerically integrated contribu-
tions to the net heat transfer Rnd their sum
8 Rs functions of tg fo1' the cRse of Fig 6
with (dashed curve) the total approximate
result of Fig. 6 superimposed.
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FIG. 8. Dielectric constants as functions of frequency v (and vacuum wavelength P): curve 1: Ime =—4'" with
g =7.0 x10 sec; this choice of ~(u) (with Rem = 0) is used in the approximate integrations of Sec. VII, as represented in
Figs. 6 and 7; curves 2 and 3: Be~ and Im~, respectively, as measured by Lenham and Treherne; curves 4 and 5: He&
=1-4xgwo(m2+coo )" and Ime=-4xguo +" (aP+ mo), respectively, with g =3.5 xl0~6 sec", coo=1.41xl0~4 sec ~, as an
approximation to the measured values (curves 2 and 3); this choice of e is used in the computation of Fig. 9.
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FIG. 9. Contributions to the net
heat transfer and their sum 8" as func-
tions of d as calculated at T =315 K
with the dielectric constant represented
by the curves 4 and 5 in Fig. 8.
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because

f dx xe"/(e* —1)
"min

= f '" dx/x+ f" dxxe"/(e"-1)'

= ln(0. 01x '„)+ 5. 6 (42)

where x „=8~ „/» [«. Eq. (88)j.
The theoretical approximate results as functions

of d are represented in a specific case in Fig. 6;
here a=7. 0x10 sec and T=315 K, so that
~ ~= 9. 2 p, m. Notice the remarkably large con-
tribution of 5"*'owing to a very intense spectrum.

With the knowledge of the d, 0, and T dependence
of the total heat transfer as given by the above ap-
proximations (and brought together in Fig. 6) we
cari, for example, predict that the dip occurring
near d= 3X ~ will disappear if o is chosen smaller;
then also the height of the shoulder diminishes and
sensibly approaches the d- ~ value; and vice versa,
large conductivities favor a dip and a large ratio
of shoulder height to d-~ value.

A temperature increase will in first approximation
shift the dip up along the d slope in Fig. 6, while
it reduces the ratio of shoulder height to d-~
value.

One should in fact take into account the temper-
ature dependence of o (e. g. , o ~ T '), but this only
influences quantitatively the features just men-
tioned.

Fig. 7 shows computed result based on the exact
formulas in the same physical situation. These
confirm the discussed expectations.

In the foregoing example, condition (28) was
satisfied. We now consider a more realistic sit-
uation and try to treat the case of chromium near
room temperature. In the (infrared) frequency
region corresponding to such temyeratures, the
condition t & [»1 is not everywhere fulfilled for
chromium. Thus, the analytic approximations
lose their reliability and we have to concentrate
on numerical integration.

To obtain &(&) for chromium we apply the method
of curve fitting of a theoretical expression for

&(co) satisfying the Kramers-Kronig relations to
experimental optical data (taken over from Ref.
6 and later measurements by these authors). The
expression Im& = —4nam ' has the free parameter
o and gives Re& through the Kramers-Kronig re-
lations. But it is simpler and more realistic to
use an expression provided by Drude's theory of
conductivity, incorporating a low-frequency con-
ductivity a and a mean free flight time &go, which
we may consider as free parameters:

4 2

A reasonable fit to experimental data in the
frequency range of interest is found for cr= 3. 5
x10"sec ' and ar, =1.41x10' sec '. The resulting
e(v) is represented in Fig. 8, together with ex-
perimental curves and Im& =-4moao as used in
the preceding example. And Fig. 9 shows the
corresponding heat transfer 8'.

Comparison of Figs. 9 and 7 shows at once that
the d-~ value has diminished rather than been
augmented, although )&I has diminished: The
reason for this lies in the fact that now the argu-
ment of & has changed markedly in the short-
wavelength region. Nevertheless, the curve of
Fig. 9 has the same general characteristic shape
as that of Fig. 7; in particular, the distance at
which the small-separation effects appear has not
changed, being in first approximation only depen-
dent on temperature.

In Ref. 5, Hargreaves published measurements
of radiative heat transfer between flat chromium
bodies with a mean temperature of T= 315 K in
the separation range 1 &d & 10 pm. We find very
good agreement with experiment as regards the
shape of the curves and the critical distance be-
low which the small-separation effect becomes
noticeable.

The absolute values of the heat currents, though
of the same order of magnitude, do not coincide,
however, not even for d- ~: It appears after
examination of more recent, as yet unpublished,
measurements by the same author that the dis-
crepancy lies in a difference between bulk chromium
(on which our calculations are based) and the
chromium layers used in the experiments.
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