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We recently reported that, using a self-consistent warped-muttin-tin potential which was a
straightforward generalization of the ordinary Inuffin-tin potential, we were unable to obtain a
negative cohesive energy for y-Fe. We here report that by using another self-consistent
warped-muffin-tin potential which is more akin to the true crystal potential, we obtain a nega-
tive cohesive energy and shifts in band gaps of almost g eV.

I. INIODUCTION

In a recent calculation (hereafter called I), we
used a self -consistent wa, rped-muffin-tin potential
(SCWMTP) to study the effects of various xo( ex-
change approximations on the energy bands and co-
hesive energy of y-Fe. The Kohn-Sham' (a = -', )
exchange potential, though better than other. ex-
change potentials, still failed to give cohesion by
over —,

'
Ry per atom. The calculation was made

using the modified augmented-plane-wave (APW)
method, where the basis functions are given by

3
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where N is the number of unit cells of volume 0,
the f, are solutions of the radial Schrodinger e(lua-
tion within the inscribed sphere of radius xo, the

jl Rr8 spllel'ICRl Bessei fullctlolls, r1 = I' —%1, wltll

Ry a lattice vectory 0" is a unit step function, and
the F&„are spherical harmonics. yg(r ) differs
from the ordinary APW basis function only in that
I is summed froxn 0 to 2 rather than to ~. The
wave function for a state in the gth band at the
point k in the Brillouin zone is then

P„f (r ) =+5 &n) P. 4+8 ) (~)

where the sum is over all reciprocal-lattice vec-
tors 5. The total 3d, 4s, 4p charge density may
be written

&56

p(r")=33 & ~e.r(r)~

=pl. (r")+p(0)+Z' p(@)c' ',
where p(0) and p(G) are due to plane-wave-plane-
WRve pl'odllcislll tile sg'narc of cp„f, Rnd pl (I'),

which vanishes outside the inscribed spheres,
includes everything else. The sum over the lowest
256 states in the 64-point sample of the Brillouin
Zone is discussed ln I.

In Sec. II we discuss hoer a self-consistent
muffin-tin potential (SCMTP) is ordinarily obtained
from (3) in standard APW calculations, how in I
we obtained a SCWMTP for use in our modified
AP% calculation by making a simple generaliza-
tion of the SCMTP, and finally we describe a new
SC%MTP which is more akin to the true crystal
potential. e then compare the cohesive energy
and energy bands calculated from the two
SCVfMTP's.

II. SCWMTP

The SCMTP is usually obtained &
5 by first taking

a spherical average of (3) for r &ro,

p(~) = p,.(r)+ p(0)+Ra p(C') j, (G'~), (4)

and then assuming the remaining charge g is dis-
tributed with constant density g/0() in the interstitial
region where Qo = + —+) and Ag = 3 7Fvo is the volume
of the inscribed sphere. One may calculate g by
noting that the last term of (3) has a space average
of zero; t erefore its contribution to & must be
equal and opposite to its contribution to the total
charge within the inscribed sphere. Thus

~~=4vZs f ' p(5)f, (ar)r'd~
0

=4m)'OZs p(5)j,(Geo)/G .
Note that in the ordniary APW expansion, the
spherical Bessel functions exactly cancel the
e' '

within the inscribed sphere in Eq. (I); there-
fore the expansion of p(x) into three terms in Eq.
(4) may seem artificial to some practitioners of
the APW method. Ne hope to demonstrate that it
is not, but in any event our p„(r) will contain
terms to exactly cancel the p(0) and p(5) terms
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(111 'tile APW cRse) 80 tllR't p(t') will colltR111 colltl'I-
butions from the radial functions f,{l")only.

Fronl the cllRI'ge dellsity dlstrlbutlon p(f') wltlllll
the inscribed sphere and z/Ao outside, it is a
straightforward matter to calculate the spherically
averageds potential inside the inscribed spheres.
In addition, in the APiV SCMTP method one needs
Rn average value of the potential outside the in-
scribed spheres, which may be calculated by the
method of Blater and 08Cicco. ~ The SCWMTP
modified APVf calculation requires a spherically
avex'aged potential within the inscribed sphere but
uses the exact potential outside. (This exact po-
tentia1, in the interstitial region enters the calcula-
tion only through Fourier transforms of the entire
crystal potential. ) Therefore in I we calculated
the energy bands of y-Fe using exactly the same
charge density distribution described above for
ordinax'y AP%' calculations and exactly the same
spherically averaged potential within the inscribed
sphere, but the potential in the constant-charge-
density intex'stitlRl regioQ wRs not approximated by
a constant.

The greatest shortcoming of the SC%MTP de-
scribed ln the preceding parRgrRp1l ls its neglect
of the variation of the cha.rge density in the inter-
stitial region. This has a strong effect on the
Coulomb potential inside the inscribed sphere Rs
well as in the interstitial region. Therefore we
have recalculated the cohesive energy and energy
bRQds of p-Fe using

p'(I ) = p,.(~) + p(0),
g'= p(0)A, ,

p&(r ) = &8 p(G) e' ',
where the primes are to distinguish the new
SCWMTP calculation from the old, and where
p (r) and z' have the same meaning as p(I ) and
z, i.e. , a spherically averaged charge density
within the inscribed sphere RIll R chRrge distributed
with constant density in the interstitial region. In
addition, we now have po {r) existing throughout the
crysta1. , which yields a Coulomb potential

V', (r) =&v Z~G-'p(@e'S' (lo)

V'(r)=gvZsG '~, (a~)

replaces the contribution of the last term in Eq.
(4) to the potential within the inscribed sphere. In
the Appendix we calculate the difference between
the spherical averages of the old Rnd new potentials
within the inscribed sphex'es.

The exchange potential was calculated using the
oM method. Because the Kohn-Sham exchange is
proportional to pl~I (r ), the superposition theorem
does not hold Rnd within the inscribed sphere it

llllls't be cRlclllRt8d fl'onl p(t') of EII. (4). While I't
would have been preferable to calculate it in the
interstitial region using the exact charge density,
it would be very tedious and the error made by
treating the interstitial charge as constant intro-
duces a much smaller error in the exchange po-
tential than in the Coulomb potential, for the fol-
lowing two reasons. In the first place, the charge
density in the interstitial region does not affect the
exchange potential in the insc&ibed sphere; sec-
ondly, the cube root makes the variation of the
exchange potential in the interstitial region much
less than the variation of the charge density.

In Table I we compare energy levels at points
throughout the Brillouin zone for the two calcula-
tions. According to the results of the Appendix
we expect the Qew calculation to yield 1Hgher OQe-
electron energies, Rnd indeed we find them to
average 0. j. Ry higher throughout the Brillouin
zone. More important, we find relative shifts of
up to 0.0335 Ry between various levels. (Note,
however, that the same 256 levels remain below
tile Fel'nil surface ill 'tile cllRI'ge dellslty SRIllpllllg. )
The binding energy, calculated from EII. (I.1V),
is coHlpRx'ed in TRble II We Dote thRt the binding
energy is a full Ry more negative for the new po-
tential, yielding a negative cohesive energy, where-
as for the old SCWMTP the cohesive energy was
positive. It is the Madelung terms in (I.17) which
yield the extra negative binding energy. Because
of the larger negative charge g in the interstitial
region (see Table II) the potential is more repulsive
for electrons within the inscribed sphere, but this
is dominated by the fact that the same potential is
more attractive for the atomic nucleus.

It is interesting to note that standard AP% cal-
culations have given good results for the binding
energy of Gs ~ and Al. 4 This leads us to speculate
that in free-electron metals the interstitial charge
density is sufficiently constant to justify R

SCMTP AP% calculation but that for the transition
metals the variation of the interstitial charge den-
sity must explicitly be taken into account in a
modified AP% SC%MTP calculation.

APPENDIX

We here calculate the differences between the
inscribed-sphere spherical averages of the old
and new SCWMTP's {assuming, of course, that
they are cal'culated from the same charge density).
First, we have an extra constant density bz/Ao
in the interstitial region for the new potential,
where &s = s -z (see Table II) is the contribution
of gs p(5) e' ' to the spherically averaged charge
density in the oN potential. Vfe calculate the con-
tribution of 4g to the potential by taking a constant
charge density 4s/Ao existing everywhere plus in-
scribed spheres of charge density —nz/Ao. The
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TABLE I. Energy levels for various states (in Ry)
calculated using the oM and new SCWMTP and their shifts
relative to the 1"25. level. The number preceding a given
state is theweighting of its contribution to the self-con-
sistent charge density.

State

per atom. Tile potential due to 8, sphere of con-
stant charge density —&z/Qo is (within the inscribed
sphere)

3 x AgQ;
&~syhere =—

+0 +0 0

xr,
3I 25t

3'
3X3
X2
X5
X4~

8I 3

I3

66(
642'
6hg

12@
12Z3
12+
12@
2'

Ej
6Wji

128)
6Sg

TV3

8Ag

8A)
16A3

A3

24

Kg

Xg

E3
X4
K2
K3
Xg

0.0827
0.5692
0.6582
0.3703
0.4158
0.7195
0.7385
0.8621
0.3659
0, 5624
0.7217
0; 6727
0.2789
0.4871
0, 6015
0.6390
0.6879
0.4122
0.5088
0.5291
0.6199
0.6589
0.8300
0.4409
0.5078
0.6506
0.7390
1.2603
0.2354
0.5352
0.5843
0.6668
0, 4211
0.4716
0.5635
0.6362
0.7270
0.9021
0.4271
0.4531
0.5861
0.6711
0.7209
1.1243
1.2337

0.1814
0.6665
0.7593
0.4837
0.5121
0.8249
0.8443
0.9420
0.4567
0.6616
0.8271
0.7852
0.3806
0.5834
0.7011
0.7389
0.7908
0.5099
0.6058
0.6351
0.7230
0.7605
0.9340
0.5554
0.6045
0.7538
0.8449
1,3458
0.3330
0.6339
0.6830
0.7696
0, 5221
0. 5780
0, 6598
0.7383
0, 8325
l.0127
0.5345
0, 5559
0.6835
0.7754
0.8220
1.2126
1.3332

0. 0014
0
0.0038
0.0161
0. 0010
0. 0081
0. 0085

—0.0174
-0.0065

0. 0019
0. 0081
0.0152
0.0044

-0.0010
0, 0023
0.0026
0.0056
0. 0004

—0.0003
0.0087
0. 0058
0. 0043
0.006V
0.0172

-0.0006
0.0059
0. 0086

—0.0118
0.0003
0. 0014
0.0014
0.0055
0.0037
0.0091

—0.0010
0. 0048
0.0082
0.0133
0.0101
0.0055
0. 0001
0.0070
0.0038

-0.0090
0. 0022

The potential due to other spheres when combined
with —hz Q, /Qo protons vanishes. Using
Q, = ~~m 03 and adding (Al) and (A2), we obtain

3.58344 ~zQ
b, g

+%S 0 0
(As)

A second difference in the spherically averaged
potential is the difference between V~(r), the con-
tribution of the last term in Eq. (4), and Vo (r) of
Eg. (11). We have

V, (r) = avZ6 p(5) [(1/~) f "j, (C~') ~"dr'

+ J j 0 (cr )r'dr' ]

S.68844 AgQ
6V(r = -4m 0—

Qo
0

Qo

+avZ p(P) C acosCxo . (Aa)
5

Using that for a fcc lattice r„a = (SQ/4w) ~', Q
= 4a', and if the inscribed spheres touch, x, =-,' g,
we can rewrite (A6) as

6V(~) = (~~a'/2Q, ) [S.68844(-', &)"'—v]
I

+8&&Sp(g) C-'cosC~, . (AV)

Although (AV) is valid only when the old and new

potentials are calculated from the same charge
density, we can estimate the first term by taking

= avZq p(C) C-'[j,(Cr) —cosC~,], (A4)

and on subtracting (A4) from (11)we obtain

6'(r) =aves p(5) C 'cosC~O . (A6)

Thus the total change in the spherically averaged
potential within the inscribed sphere is a constant
(independent of x),

3.58344 ~zO 4m &z
~~Mad g 3 g (Al)

former (together with &sQ/Qo protons on each lat-
tice site) yields a spherically averaged Madelung
potential"

TABLE II. Total charge (in electrons per atom) in the
interstitial region and binding energy and cohesive energy
(in Ry per atom) obtained by subtracting an ionization
energy of -2517.788 Ry from the binding energy for the
oM and new SCWMTP calculations.

where r» = (SQ/4v)'~' is the Wigner-Seitz radius,
0 is the unit-cell volume, Q0 is the interstitial
volume, and 4g is measured in units of electr ons

, gg 8
Binding
Cohesive

0.819
-2517.005

0.783

1.035
—2518.018

0.275
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&z=z —z from Table II. (Note that z and z are
actually calculated from different self-consistent
charge densities. ) The first term gives 5U(r)
= 0. 0619 Ry. The second term is small because
the sign of p(G) and cosa' is different for different
6's and in fact the sign of the second term is

positive when the old charge density is used and
negative when the new charge density is used.
Because from this estimate 6V is positive, we ex-
pect the one-electron energies of the new calcula-
tion to be higher than those of the old calculation
as Table I confirms.
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The lattice spacings and compressibilities of the nontransition-elemental solids are calcu-
lated using Ashcroft pseudopotentials to describe the cores and the von Weizsacker method to
describe the valence electrons. The observed correlations of these quantities with the Pauling
radii and the valencies are thereby obtained.

I. INTRODUCTION

The success of the pseudopotential method in the
theory of metals is now established' and it would

appear to be an appropriate time to investigate
whether the method might be adapted to other sys-
tems. We have in mind, in particular, applica-
tions to molecular chemistry, a suggestion which
has also been made by Harrison. The aspect of
the standard pseudopotential technique for metals
which cannot be taken over into other problems
is the method of linear dielectric screening by the
valence electrons, which depends on there being a
zeroth-order description in terms of plane waves.

In an earlier paper it was suggested that a
Thomas-Fermi (TF) type of description of the va-
lence electrons might be a suitable alternative.
Indeed, conversely, the pseudopotential description
might be regarded as offering further scope for
the extension of TF-like methods which often ex-
perience difficulties in the very regions, the cores,
which are eliminated on using pseudopotentials.

It is well-known, however, that the TF method
alone cannot produce a stable lattice. For this
reason, we now generalize the previous work and
show that a generalized TF method, namely, the
Thomas-Fermi-Dirac-von Weizsacker (TFDW)

In this work we will be interested in describing
the total energy E of the system as a functional
of the particle density n(r ), the fundamental status
of this viewpoint having been discussed by Kohn
and coworkers. ' Let us write

E = ff(n)d7 —&e fnU, d7+ U;, (2. I)

where e= le) is the size of the electronic charge,

Ue = —e
n(r')
Ir —r

(2. 2)

is the electrostatic potential resulting from the
electron distribution, and U;; represents the
Coulombic ion-ion contribution. Specific forms
will be taken for f later. The Euler equation for
(2. I) reads

—-e(U, —U, ) =0,
5n

(2. 2)

where Uo is a Lagrange multiplier arising from

description will give accurate interatomic spac-
ings and compressibilities. In fact, it is prob-
ably fair to say that the average accuracy achieved
is higher than in any other calculation of pseudo-
potential type. 3

II. GENERAL THEORY


