ERRATA

Influence of the Phonon Spectrum of In-Tl Alloys on the Superconducting Transition Temperatures. R. C. Dynes [Phys. Rev. B 2, 644 (1970)]. In this paper the value for $\langle \omega \rangle$ was incorrectly calculated. Rather than calculate $\langle \omega \rangle$ as was defined in the paper, namely,

$$\langle \omega \rangle = \int_0^\infty \alpha^2(\omega) F(\omega) \, d\omega \Big/ \int_0^\infty \frac{\alpha^2(\omega) F(\omega)}{\omega} \, d\omega$$

the author inadvertently calculated

$$\int_0^{\infty} \omega \alpha^2(\omega) F(\omega) \, d\omega / \int_0^{\infty} \alpha^2(\omega) F(\omega) \, d\omega$$

which we will now denote $\overline{\omega}$. The correct numerical values for $\langle \omega \rangle$ and $\overline{\omega}$ are given in the revised version of Table II, which is presented here. It can be seen immediately that, using the correct values for $\langle \omega \rangle$, much better agreement is found between the values of T_c determined experimentally and those calculated using McMillan's equation [Eq. (8)]. This agreement is shown in Fig. 1 (which is a corrected version of Fig. 7). Clearly, when used with the correct $\langle \omega \rangle$, McMillan's equation adequately describes the T_c 's of these alloys throughout the entire series.

The correction of the values of $\langle \omega \rangle$ leaves the other conclusions of the paper unchanged. As Garland's equation does not involve $\langle \omega \rangle$, it is still in rather poor agreement with the experimental results. The values presented in the T_c -versus-con-

FIG. 1. Comparison of the experimentally measured transition temperatures with those obtained from the theoretical expressions of McMillan (using $\langle \omega \rangle$ as defined in the text) and of Garland and Allen. This is a revised Fig. 7.

centration plot (Fig. 9) are changed, as can be seen from the new Table II, but the basic shape of the curve, with a minimum in $\langle \omega \rangle$ near 30% Tl, remains the same. Thus the discussion of mode softening at the phase transition is unaltered.

The author wishes to thank C. Owen for pointing out this error.

Alloy	$\langle \omega \rangle$ (meV)	$\overline{\omega}$ (meV)	$\langle \omega^2 \rangle$ (meV ²)	λ	T _{c expt} (°K)	Т _{с МсМі11} (°К)	Т _{с G. А.} (°К)	$\langle \omega^2 / \omega_0^2 \rangle$
In	6.91	8.86	61.17	0.834	3.40	3.44	2.57	0.2613
$In_{0,90}Tl_{0,10}$	6.46	8.41	54.30	0.850	3.28	3.42	2.40	0.2413
$In_{0,73}Tl_{0,27}$	5.76	7.67	44.19	0.933	3.36	3.60	2.47	0.2131
$In_{0,67}Tl_{0,33}$	5.88	7.81	46.00	0.899	3.26	3.42	2.21	0.2218
$[n_{0,57}Tl_{0,43}]$	5.51	7.33	40.50	0.847	2.60	2.70	1.68	0.2066
$In_{0,50}Tl_{0,50}$	5.45	7.20	39.32	0.835	2.52	2.58	1.57	0.2035
$\ln_{0.27} Tl_{0.73}$	4.56	6.46	29.32	1.092	3.64	3.95	2.76	0.1609
In _{0.17} Tl _{0.83}	4.67	6.30	29.45	0.980	3.19	3.31	2.26	0.1916
In _{0,07} Tl _{0,93}	4.86	6.09	29.61	0.889	2.77	2.76	1.79	0.2319
Tl	4.98	6.04	30.13	0.780	2.33	2.10	1.41	0.2584

TABLE II. (Revised)

Influence of the Dipole-Dipole Coupling on the Specific Heat of Cesium Titanium Alum, Paul H. E. Meijer [Phys. Rev. B 3, 182 (1971)]. In Sec. III the length $a\sqrt{2}$ is taken to be 12.17 Å. For the alum in question it should have been 12.45 Å. This is based on the results of Haussühl¹ and the fact that Haussühl is, in all comparable cases, 0.025 Å higher than Lipson and Beevers.² Hence, the author averaged over the two by subtracting 0.012 Å. Note that with this lattice constant our τ becomes identical with the value of τ used by Hebb and Purcell.³

The numbers of g^2P remain the same, since they are expressed in units of *a*. The entropy correc-

3

4

3255