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The use yf the neutron spectrometer in the quentitativsdetenninationof neutxon scattering
gro88 s@ctign8 is discussed ip detail. /he jgplicit analytical dependence of the total detection
efficiency of the thx'ee-crystal apect'rom@ter on incident and scattered neutron energies as vrell
as qy ipstx'umentaf parameters is pge@enteg, Rnd measurement qf the energy sensitivity of the
anwlyger-detector 8$'8tpm i8 depcri4ed, A cqmyrqh@nsive treatment of hvo-crystal inelastic
scattering is given, and a practical method is pevelqped for carrying gut the inelastic analysis

.of Qo-.crystal data u@ing the expeximental g/pgge resolution function. The quasielastic ap-
px'qgixnatiqn is digcussed, Several zngchanisms vrhich extend its range of validity are descxibed,
and its appljcability i@ sQwyg tq depend qg @ pa~meter vrhich is a dimensionless combination
of the vagiables in Np problem. These techniques are applied to th@ measurexnent of the spin-
pah' cexre&attn function, in the neighborhood of the critical plaint, for the ideal Heisenberg
antifqrrqmagnet Qh)CnF~, . 7he pxedictions of dynamic-scaling theory, recently proposed by
Halpex'in and gohenbex'g, are ygte@sively tested and find strong suppqrt in experiment, The
ene~ vrid+8 qf the scat tyrigg, measured in the qygiqn 7~ Tz, ary qoxjIl pare/ vyith theo x etical calcu-
latioQQ flax' QN Heisggperg@gtjf8Ã'/OK, agn@tby. pigs fbols Rng Pipette and by Huber and QrQegeg. The
xnp88uregpent, by means yf the two-crystal diffractometer, qf the static cox relation function
at the critical point is discussed- in detail, and direct evidence IIs presented fox departLLre from
the qlassicpl Ornstejn Fe~i~ behavior, The parameter q, vrhiqh xneasures this departure,
is deterined by means of +gee indqpepdent experiments an/, after the inelhsticity of the
scattering' iNI- @II"egj jnto fuQ 8cqqgnt, is found to be 0.055g0, 019, Measurement of the critica3
jedic'es above Tg gives y ~ l.$66 +0, 084 and v =0.70/. +0, 013,, and the static scaling relation
y=(3-q)p' is v@rifie4. Belwv Tz, me find p 0.82+0.02 and v' =0.54+0.03; these values are
consistent writ/ tb@ statiq. scaling gelation gp = (],+q)v', whereas the symmetrJJ relation v = v'
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qUANTITATIVE ANALYSIS OF INELASTIC SCATTERING IN. . .
I. INTRODU. CTION

The magnetic scattering of neutrons as a function
of energy and momentum transfer determines, in
principle, the complete space-time spin pair-cor-
relation function, from which, in turn, all intrinsic
magnetic properties can be obtained. While it is
difficult to carry out this determination directly,
one can fit the observed scattering to theoretical or
empirical forms for the correlation function and,

by evaluating the associated parameters, obtain a
detailed description of static and dynamic proper-
ties. Even this simpler procedure is far from
straightforward, inasmuch as sizable corrections
for instrumental resolution and energy sensitivity
are often required. We discuss these corrections
in detail and indicate how, building on earlier work
of Cooper and Nathans, ' they can be applied in
quantitative fashion. Spatial correlations, which
are ordinarily obtained from two-crystal experi-
ments by invoking the quasielastic approximation,
may be seriously in error because of the inelastic-
ity of the scattering. In view of the importance of
the two-crystal method, we have carried out a
comprehensive analysis of the quasielastic approxi-
mation and have obtained estimates of the correc-
tions involved.

We have used both two- and three-crystal tech-
niques' to study spin correlations in rubidium man-
ganese fluoride HbMnF3 in the vicinity of its mag-
netic critical point. This compound is an ideal
magnetic system in many respects. It is simple
cubic in the paramagnetic phase and undergoes an
antiferromagnetic transition at 83 'K in which the
unit cell is doubled (a0= 8.453 at 83'K) and the

spins order by alternating in sign along each cube
edge, as shown by Pickart, Alperin, and Nathans.
The x-ray studies by Teaney, Moruzzi, and Argyle
indicate essentially no detectable departure from
cubic symmetry in passing through the Noel point.
Windsor and Stevenson have demonstrated that
RbMnF3 is well described by an isotropic, nearest-
neighbor Heisenberg Hamiltonian. Their spin-wave
dispersion measurements indicate a nearest-neigh-
bor exchange constant of 0. 29+0.03 meV, a sec-
ond-neighbor constant of less than 0. 02 meV, and
very little anisotropy. The antiferromagnetic res-
onance experiments of Teaney, Freiser, and
Stevenson indicate, in fact, that the magnetic
anisotropy is only 4. 5 G. Critical scattering from
RbMnF3 was first investigated by Nathans, Menzin-
ger, and Pickart, who reported the existence of
magnonlike excitations above the Noel point and,
using high-resolution techniques, observed the
critical slowing down of spin fluctuations that had
been predicted by Van Hove and previously reported
for terbium by Als-Nielsen, Dietrich, Marshall,
and Lindgard. This slowing down in the neighbor-

hood of the critical point pad -not been found pre-
viously since, as Marshall pointed out in discussing
the earlier measurements, the experiments were
performed with relatively low resolution and were
thus insensitive to the long-range fluctuations,
whose detection requires small wave-vector trans-
fer. Preliminary accounts of some aspects of the
present work have also been published. We note

. that some of the previously quoted numerical values
have been recomputed on the basis of more complete
analyses of inelasticity corrections and of experi-
mental errors.

The many similarities exhibited by dissimilar
physical systems undergoing second-order phase
transitions have led to a search for general princi-
ples underlying all such transitions. . One such idea
is that of sealing, which has been generalized re-
cently by Halperin and Hohenberg' to include dy-
namic as well as static phenomena. The central
concept here is that the behavior of the space-time
correlation function is determined essentially by
the ratio of the wavelength of the spin nuctuations
to a single range parameter characteristic of the
system. We have tested the theory of dynamic
scaling by measurement of the energy and momen-.
tum dependence of the critical scattering from
RbMnF3. Our results strongly support the concept
of dynamic scaling and confirm specific predictions
of the theory. We have obtained analytical expres-
sions for the full correlation function at the Noel
point, and for the characteristic frequencies, or
energy widths of the scattering, above the transi-
tion. These frequencies are in good agreement
with those calculated for the Heisenberg antiferro-
magnet by Rbsibois and Piette" and by Huber and
Krueger. '

Critical indices y and v, describing the limiting
behavior of the susceptibility and range parameter
respectively for T& T&, have been obtained from
our two-crystal experiments after applying the nec-
essary corrections for inelasticity. The data have
bees analyzed in terms of the simple Fisher and
Burford' approximant for the scattering and direct
measurements have been made of the parameter q,
giving the departure from Ornstein-Zernike behav-
ior. The static sealing relationship y = (2 —q)v is
well obeyed, but v is found to differ significantly
from the corresponding index v' determined from
inelastic measurements below T„. The indices y
and v agree well with those obtained by Jasnow and
Wortis' for the Heisenberg antiferro. magnet by
high- temperature series expansions.

The plan of the paper is as follows:, In Sec. II,
we give cross sections and a general description
of the experimental arrangements for the two- and
three-crystal experiments. In Sec. III, the mea-
surement and use of the two-crvstal elastic resolu-

' tion function is discussed. Experimental determi-
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nation of mosaic spread and collimation parameters
is described. In Sec. IV, we give the results of
two-crystal measurements. Use of the simple
Fisher-Burford approximant for the scattering is
justified and several independent determinations of

g are described. Values of the inverse range pa-
rameter c as a function of temperature, as well as
the critical indices v, y, and P are presented and
certain static scaling relations are tested. Section
V treats the determination of the three-crystal res-
olution function from measured instrumental param-
eters and its use in quantitative intensity calcula-
tions. Detailed analytical expressions are pre-
sented for the dependence of the total detection effi-
ciency on incident and scattered neutron energies
and on instrumental parameters. Measurement of
the energy sensitivity of the analyzer-detector sys-
tern is described. In Sec. VI, the results of three-
crystal measurements are presented wwithin the con-
text of dynamic-scaling theory. The correlation
function is described in the "critical" region, where
momentum transfers q are large compared to w,

and in the "hydrodynamic" region above T& where

q «w. An analytic expression for the characteristic
frequency is given for general values of q and ~.
These measurements are discussed in relation to
dynamic scaling and to calculations for the Heisen-
berg model. A determination of the critical index
v' from inelastic measurements in the hydrodynam-
ic region below T& is described in this section. In
Sec. VII» we px'esent R comprehensive analysis of
the quasielastic approximation and discuss several
genex'al mechanisms which extend its range of use-
fulness. Corrections arising from inelasticity are
evaluated for & and v and a method is proposed for
determining v with minimal error from this source.
Corrections are discussed for the case of finite res-
olution and a, px'RctlcRl method ls developed fox' CRr-

rying out the inelastic analysis of two-crystal data
using the experimental elastic resolution function.
This method is applied to an independent determina-
tion of q. In the Appendix, we derive the bvo-crys-
tal x'esolution function for the case of inelastic
scattering and discuss its use in determining "con-
stant-angle" cross sections.

Here KQ=Ik, -5Q is the neutron momentum change;
f(Q) is the neutron scattering form factor; Kop =E,
—&z is the neutron energy loss; 55~(t) = 5~(f) —(S;)
is the deviation of a spin from its average value,
and (No(0) ~ OS'(f)) gives the correlation of the spin
deviation at position r and time t with that at the
or&gin at t = 0. With a suitable experimental ar-
rangement, the scattering corresponding to a given
change of neutron momentum hQ and energy h(u

measures the (Q, &o) component of the space-time
Fourier transform of the correlation function. The
experimental results reported here for inelastic
scattering were obtained using a three-crystal neu-
tron spectrometer in the "constant-Q" mode. Such
an instrument is shown schematically in Fig. 1.
In operation, a neutron beam from the reactor is
monochromatized by reflection from a germanium
crystal M scattered from the sample crystal 8 and
reQected by a germanium analyzing crystal A into
a BF3 detector.

The total scattering in a given direction, regard-
less of energy transfer, is a quantity that can be
relatively easily obtained experimentally by replac-
ing the analyzing crystal of Fig. 1 by a detector.
The cross section for this so-called two-crystal
case is given by the line integral of Eq. (2. I) with
respect to energy, along the path of the scattered
beam. It. is to be noted that Q (and therefore kz) is
not constant along the path, but rather a function
of the energy transfer h+. For Nm sufficiently
small compared to the incident energy E&, devia-
tions from the elastic values can be ignored and the
constant-angle experiment is equivalent to one at

BF

DETECTOR

II. CROSS SECTIONS AND EXPERIMENTAL
ARRANGEMENT

The scattering of neutrons from a magnetic crys-
tal is closely related to the spin-corx elation func-
tion. Assuming that, over the crystal as a whole,
the spin directions are randomly distributed, the
"diffuse" cross section for the case of exchange
coupling only, is given by

3 I"—' IX(Q) I
& df""'"""&»,(0). ss,(f)&.

dQ de

SOLLER

REACTOR

(a)

FIG. l. (a) Schexnatic representation of the three-crys-
tal spectrometer. (b) Vector diagram of the scattering
process in reciprocaj space.
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constant Q. Equation (2. 1) can then be integrated
ovel enelgy to give

2

lf(Q) I
~ e" "'«S.(0) ~ ~S&(0)),

relating the scattering at fixed angle to the static
spin-correlation function. For @co«AT, this ex-
pression ean be shown to reduce to the "quasielas-
tic" cross section

—„„"lf(Q) I' »(Q) (2 2)

where X(Q) is the wavelength-dependent susceptibil-
ity.

In the three-crystal experiments, the collimators
shown in Fig. 1 were of the Soller type with a nomi-
nal horizontal divergence, given by the ratio of the
distance between vertical septa to the length of the
eollimator, of approximately 20 min of are. No
vertical collimation was used other than that pro-
vided by the 2-in. vertical opening of the slit sys-
tem and the 3. 5 in. diam of the reactor beam tube
mhieh extended approximately 9 ft beyond the in-
Pile eollimator. The monochromator and analyzer
were germanium crystals cut parallel to (110) and
reflecting from (111)in transmission geometry.
They had been plastically deformed" to give x ocking
curves mith a "full width at half-maximum" of -12
min. The incident beam intensity was monitored

by a fission counter. Angular settings. were made
to an accuracy of 0.01' using optical encoders con-
trolled by an on-line computer. ' Measurements
were made Rt approximately 6. 6, 13.0 Rnd 47. 0
meV, the last being close to the maximum of the
Pile spectrum. The lower energies are subject to
severe contamination by higher-order neutrons,
particularly those of third order, since the second
order is eliminated by the vanishing of the (222)
structure factor in germanium. Higher-order neu-
trons mere removed by a filter consisting of a 2-in.
block of oriented pyrolytic graphite inserted into
the beam before the sample. At the lomest incom-
ing energy, the response of the analyzer as a func-
tion of energy change in the sample mas found to be
appreciably distorted by additional Bragg scattering
from reciprocal lattice points which are simultane-
ously present on the sphere of reflection. A de-
crease in scattering by the analyzer is in fact ex-
pected at an energy for mhich such simultaneous
Bragg scattering can occur since these neutrons do
not enter the counter. To minimize this effect, the
analyzing crystal mas rotated about its scattering
vector so that simultaneous Bragg scattering oc-
curred only for energy changes that mere larger
than about 7 meV.

To achieve horizontal resolution in the bvo-crys-
tal experiment that is as good as that obtainable
with a three-crystal spectrometer, it turns out to

be necessary to decrease the horizontal collimator
divergences. The increased intensity available in
the tmo-crystal experiment makes this feasible and
also permits an improvement in the vertical resolu-
tion. Thus, in the two-crystal case, the following
arrangement was used: 10-min horizontal collima-
tion in the in-Pile region, 10-min vertical collima-
tion between the monochromator and the sample,
and 10-min horizontal and 10-min vertical collima-
tion in front of the counter. The germanium mono-
chromator in this case had a rocking-curve width
of 6 min and all measurements were carried out at
an incident energy of approximately 48 meV
(~=1.3 A).

The single crystal of RbMnFS, approximatej. y
4 em in volume, mas grown from the melt by
Linz. ' The full midth at half-maximum of the
rocking curve was 4 min, with some additional
mosaic structure in the wings. The crystal was
mounted with a (110) axis vertical. Both the two-
and three-crystal measurements were made in the
vicinity of the (ill) magnetic reflection. . The sam-
ple mas contained in a sealed aluminum can filled
mith helium exchange gas. A platinum resistance
thermometer mas placed inside a hole drilled into
the bottom wall of the aluminum container. A re-
sistance heater mas attached to the bottom surface of
the can. This assembly was connected by a, suitably
adjusted thermal resistance to a large copper block
tail-piece of a variable temperature Dewar. The
temperature of the copper block was regulated to
+ 0.2'K. The sample assembly, in turn, mas reg-
ulated by means of an ac resistance bridge' and
the platinum resistance thermometer to + 0.005 'K.

m. mao-cRvsTAr. EI.wsTIc REsoaUTIoN FUNcTIoN

In the conventional elastic two-crystal measure-
ment the intensity of scattering is given by the
convolution of the cross section with an effective
resolution function R,(q —q,), where q is a vector
drawn from 2gv, a reference reciprocal lattice
point, to a general point in reciprocal space and q,
extends from 2m7 to the center of the resolution
function (see Fig. 2). R, is itself a convolution of
the true instrumental resolution function with the
mosaic distribution of the sample. For a nominal
instrumental setting corresponding to a displace-
ment q, from the reciprocal lattice point, and a
cross section (do/dQ) (q), the intensity is thus

f(q,) = —(q) R,(q —q,)dq .

B, ean be obta, ined experimentally in the usual way
using the magnetic Bragg reQeetion as a probe. It
is important to observe that the resolution function
obtained in this way is entirely elastic and not nec-
essarily appropriate to an experiment mhich inte-
grates over energy. It mill be shown in the Appen-
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FIG. '2. Diagram of the scattering geometry in recipro-
cal space for elastic scattering. k~ and kz are the inci-
derit and scattered wave vectors corresponding to the most
probable process and- define the most probable wave vec-
tor transfer go;. Vector Q refers to a general elastic
scattering process, Reference reciprocal lattice point
is given by'2R. Components of hQ in the scatteringplane
are referred to axes X& and X2.

dix, however, that its use is proper whenever 'the

energy chaitges are small enough to justify using the
"quasielas'tie" expression for the cross section.

'In the experimental determination of the resolu-
tion function by means of the- Bragg peak, it is con-
venient to use a nonorthogonal coordinate system
centered at the reciprocal lattice point 2m7, with
axes u~, u~, and u„defined in reciprocal spa~e by
the angle of rotation g of the sample about the verti-
cal ixis, the counter angle 2~, and the angle of
rotation X of the crystal about an axis in the horizon-
tal-plane and perpendicular to 2m~. The resolu-
tion function R, was obtained on a three-dimension-
al grid by making a series of P scans for different
settings of 2~ and g. The angular increments in 20
and pwere 0. 02 and 0.1, respectively, whereas
the interval in P was 0. 02 in the central region
(+ 0. 2') and 0. 05' outside this region. Scans were
terminated when the intensity dropped to 0. 5% of
that at the center. The maximum number of grid
points covered were 45 along u~, 31 along u&, and
25 along u„.

The effective resolution function was obtained at
54'K using the (111)magnetic reflection. The mag-
netic scattering at this temperature is intense and

only slowly varying with temperature. The data
taken at this temperature are, however, subject to
a sma11 error arising from extinction. If the angu-
lar distribution of mosaic blocks in the sample is
correlated with size (as would be the case, for ex-
ampylje„-„;g. bj;ocgs. in the wings of the mosaic distri-
bution were ackuNty Stttiller':in size), then the con-

volution with the mosaic distribution would contain
a weighting factor arising from the variation of ex-
tinction with angle. This weighting factor should
not be included in the effective resolution function
used to analyze data in the critical region where ex-
tinction is absent. P scans taken as a function of
temperature did in fact show a small variation in
shape, whereas, no effect was observed in the u&

and u„directions. (This is understandable inas-
much as the mosaic distribution does not change in
the u& direction, and along u„ the resolution is too
poor to see the effect. ) The variation of shape with
temperature disappeared several degrees below the
Noel point (88 'K) and the data at 81 'K, which ap-
peared to be unaffected either by extinction or crit-
ical scattering, wereusedto correct the low-tem-
perature resolution function. The intensity in the
wings of the 81'K profiles, normalized to that in
the center, was approximately 25% lower than that
in the 54 K scans, but the half-width was decreased
by only about 5%. The final values for the half-half
widths of the resolution function. along u~, u~, and
u„were 0. 07', 0. 10', and 0.48, respectively, or
expressed as lengths in reciprocal space, 0.0016,
Q'QQ83, and p. p107 A

Analytical expressions of the resolution function
for the three-crystal spectrometer and for elastic
scattering by the two-crystal spectrometer have
been obtained by Cooper and Nathans. ' They as-
sume a Gaussian shape for the collimator trans-
mission function and for the monochromator (and
analyzer in the three-crystal case) mosaic block
angular distribution. The two-crysItal elastic reso-
lution function depends on the setting Q„ the most
probable wave-vector transfer, and is given by

f~(q —q,) = fI(~Q)

xpI. 2 ( 11X1 M12 1X2+M22X2+ M33 X3)]

(3.2)

where Q is a' general wave-vector transfer and X,.
are' the components of hQ=Q-Q, with respect to the
following set of orthogonal axes: the X, axis is
antiparallel to the scattering vector Q„ the X2 axis
is contained in the scattering plane and is directed
towards the inside of the sphere of reflection, and
the X3 axis is vertical. ' The connection between
the vectors q and Q is shown in Fig. 2. The M,&

are involved algebraic expressions containing, be-
sides kz and Q, -, the standard deviations of the
Gaus8ian monochromator mosaic block distribution

(1l„) and of the horizontal and vertical collimator
transmission functions (e and p). The mosaic
spread parameter of the monochromator g& was ob-
tained from' a rocking curve (P scan) of the mono-
chromator placed in the sample position, with a
perfect crystal, reflecting at the same angle, em-
ployed as monochromator and with the monochro-
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FIG. 3. (a) Comparison of fheox'8Ncgl QgKl @Nperf45Otal
horizontal two-cxystal elastic i@so)@@onfunotionIsI, Solg
curves represent the VS and 50% contour@ of th@ resolu-
tion fgnction and the P0$+t8 8x'8 exp@rixsent@l valQ@8, Re
ciprocal axes Xq aud Xt are in unite of l;0't A"t. !b) Dia-
gram shlwing the relative orJientgtign of the x'esolgMon
ellipsoid with respect to the scgttering geg~ytgy. .

mator-to-sample collimator re~eved, Under those
conditions the rocking curve gives t)s directly.
(Note that the same result could have been obtained
by rocking a.pex feet crystal in the sI,&gyle yositiqn
with the monochromator fixed in its usual position. )
The collimation parameter o was obt@ine4 fgqm 0
detector (i.e. , 8&) scan with the crystal held fixed.
The theoretical exyreIIsiqn for such i, Icn il given
by Egj. (35) of part III of Ref. I for the case Of a
perfect samp1e. In the esse where the garoplq has
finite mosaic spread, one can obtQ ge equal, tiop
for the detector scan Qy cvgqting thy geriei'@1 ex-
pression for I(p, 25), given in Eq. (4l) of this ref-
erence, with the mosaic spread of the gaglple. The
result is

experimental detector scan was obtained with

q = 0, 445 gg', where o' is the geometrical aperture
of the slit, given by the slit opening divided by its
length, (Ideally. , the cojjjmator transmission func-
tion should be triangular, but imperfections in the
slit system and scattering from the walls m@e jt
more nearly Gaussian. + If the Gaussian js fitted
to a triangular distribution at the center angl at the
half-width, one finds q 0, 485 o'. } The reeolution
function for the two-crystal experiment was calcu-
lated using gq~ 8, V &gin and 0~4.46 min. The vex-
tics4 collie, &ox's gyre geo~etx'4cl. lay identical tq
the horisontal collimators and the parameter P was
gssgmed to be gpll, ted tq @e aux text ip tQe Ss,me
way as gtI, The vertical tuosaje spread parameter
of thj9 mqiqcgroggatog was ggsurg@g equal to tQe
measured horjsontal value. Figure 3 shows good
Ql;x88&ggt bate@n expgbgentg a@4 cl,)c/, te@
values of the 50 and V5% resolution function con-
tours jn the horirontaj plane, The observed and
cgmgated v@g(ical reqq1gtiop fugetiong aN, x qe wolfe,

as can be seen jp Fjg. 4. The effect of sample
mosaic (t}a~ I, 5 mjn) on these curves is small and
has not. beyn inqMo@ in the cj@cq1ations.

IY. RESULTS QF TWC44RYSTAL MEASjJREMENTS

Tbi@ section 4@lie yifh the results of bvo qryllta1
NCQSQFQNQAt41;iA ting cx'Njc41 x@giep, 85qve nd be-
low y'& in the vicinity of the (Ill) magnetic recipro-
cal lattice. point) The data above Tg are auajysed
in tegejy Of the qqaeio&@otic gyp' ogimatiop, The
gluestjon of the range of validity of this approxima-
tion together with appropriate corrections for in-

elasticityy

are covered in detail jn Sec, VII and wji1
not &jj gfi,scggs@f gqj'q,

Measurement of the angular distribution of dif-
f&sely scatters'ed eeutgqpy con. be us@4 to detegggine
the (static} staggered susceptibility, y, as weil ss

gQQ -I-
I

I(38) Io.exp . N (4LS8) I ': '"-a--
a j-" 'a

(

where the notation is that of Ref. I. The term con
taining I goes to zero fear the case in which P~~ P~
(focusing condition) and the monochromator-to-
sample collimator is removed; it is negligibly
small under the conditiqns of actual mea@qx'ement,
where the sample was BbwnFq (Sa &. 5'.) and the
monochromator was germani~~ (S„a ll, &').

For a Gaussian distribution, the standard devia-
tion is given by 0, 425 co, whex'e te is the full wj5th
at half-maximum. In the detegrn$nation of the eeDi-
mation parameter o, a, Iomejvhgt better 6t of th@

FIG. 4. Co~pggjyoy, qf 44yeigIIIgcjg axial eyrpyrfjgyyfjg
vertical resolutiea fuaettone,
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the inverse correlation range parameter K, using
the quasielastic approximation given in Eg. (2. 2)
for the cross section. Data have been analyzed using
an expression for the wavelength-dependent sus-
ceptibility given by Fisher and Burford, ' who have
evaluated the Fourier transform of the reduced
static spin pair correlation. Their first-order ap-
proximant for this Fourier transform, which rep-
reserits an improvement over the classical Ornstein-
Zernike approximation, is

gence, are defined by

(~- 4).
These definitions lead to the relation

y = (2- n)",

(4 2)

(4. 2)

(4.4)
. (.T) 1-0/2 .

x(q. , T)&= j 3
K +go

(4 l) which is a generalization of the Ornstein-Zernike
result (y = 2v).

Here A is a very slowly varying function of the tem-
perature T and g is a small positive quantity which
is calculated to be 0.056 for the Ising model'3 and
0.02-0. 03 fo'r the Heisenberg antiferromagnet, '
but which is precisely zero in the Ornstein-Zernike
approximation. On approaching the critical temper-
ature T~, both the staggered susceptibility and the
correlation range diverge. The critical exponents
y and v, which characterize the nature of the diver-

A. Determination of tc and q

Diffuse scattering data, obtained from P scans
using a two-crystal spectxometer, were collected
at a number of temperatures above T~ and a non-
linear least-squares analysis was used to determin
the parameters ~, g, and A. The expression for
the observed intensity is, using the coordinate sys-
tem described in Sec. III,

~-ega

a'+(q~cosea)'+(q -qgsin&s —q, -sg)'+qa ' " " "
~(q 'q q

(4. 5)

Here sz represents a possible erxor in the orienta-
tion of the crystal in the q~ direction and B is the
background. The background, consisting of a q, —

independent component and higher-order nuclear
Bxagg scattering contributions, was obtained from
a xun at T —T& =50, which had been previously
corrected for residual magnetic scattering computed
on the basis of pxeliminary estimates of the param-
eters. The constant component was consistent with
values obtained in the critical region by missetting
cxystal and counter. The background was held fixed
in the least-squares analysis. The results of this
analysis are listed in Table I. The only weighting

I

applied to the input data was that due to the statisti-
cal counting error of the individual points. Since
the fit to the data becomes progressively more in-
sensitive to the value of g as the temperature is
raised, g was held fixed beginning at 84. 50'K at
its average value of 0. 06V obtained from the lower
temperature data. The over-all agreement is good,
although the residue o is somewhat larger close to
the Noel temperature. This probably' arises from
a combination of several factors: (a) the larger
resolution correction; (b} greater sensitivity to
temperature fluctuations and temperature gx'adients
over the sample; (c) progressive failure with in-

TABLE I. Least-squares fit of two-crystal data above T~. Quoted errors are one standard deviation.

10'~'(A-')

D. 027 +0.001-
0.008 +0.001
0.009 + 0.001
0. 00,8 +0.001
0.003 +D. 001

. 0.028+0.002
0.014+0.002
0.014 +0.005
0.064 +0.015
0.-025 +D. 010

+0.065

83.055
83.074
S3.12
S3.166
83.24
83.301
83.60
84. 50
86.031
S9.695
97

2.014 +D. 016
1.990 + 0.014
l.991+0.016
l.964+0.012
2.006 +0.015
l.972' 0.018
2.028 +0.020
2.074+ D. 013
2. 100 +0.024
2. 234+0.033
2.566+0.074

2.436
6.780

18.26
26. 92
52. 85
'68. 43
212.6
756.7

2088
8460

21800

0.133
0.205
0.47
0.62
1,02
1.98
4.5
8.1

+ 41.0
+183
+ 830

0.082 +0 004
0.070 +0.004
0.064 +0.005
0.070 +0.005
0.063+0.006 '

0.065 +0.009
0.058 +0.010
0.067
0.067
O. D67
0.067.956, . —.D. D14

Note that the quantit'y A defined in Eq. (4. 5) contains an instrumental normali2;ation parameter.

4. 14
2.75
3.20
1.39
2. 24
2. 57
2.41
3.05
0.72
1.50
1.59
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TABLE II. Results of least-squares analyses of Noel temperature two-crystal data taken over the indicated angular
range. Note that the different analyses associated with the angular range (-3' to —9') refer to the same set of data.

p range Residue
Inelasticity Resolution Counting Angular
correction correction time step

-3' to —9' 43
43
43

—3' to —30' 108+9 0.054 +0.013

0.053 +0.010
0.053 + 0.010
0.053 +0.012

62 +1
62 +1
60+2

1.37

1.30
1.30
l.33

no

no
no
yes

no

no
yes
no

15 min

6 min

0.5'

0.I'

variable that generalizes the q, dependence of the
cross section (4. 7) to larger values of q,. '3

The measurements were made at the temperature
83. 028 K (x& 0. 001 A ') and the range of angles
chosen to satisfy the above requirements (i) and (ii)
goes from —3 to —9 (q, range: 0.067-0. 202
A '). The range of q, chosen will be justified
shortly a Posteriori in discussing the results of this
analysis that are displayed in Table II. In fitting
the data between —3 and —9 the background B is
not a free parameter. B is a quantity which was
determined independently by means of the following
procedure. Data were collected over the angular
range —3' to —30' and represented by a function
of the form

B+f(q,),

where f(q, ) stands for the magnetic scattering cross
section. The assumption is then made that one can
use (A/K )' "~~ with A and q adjustable parameters,
as a "model" for f(q, ) in the following sense: even
if the quasielastic approximation should break down
over such a wide angular range (but this is probably
untrue as we shall see shortly) the function
(A/K )' " is still a close enough representation of

f(q, ) so that by means of an adequate distortion of
the parameters A and q, it can adjust itself to re-
produce the q, dependence of f over the angular
range —3' to —30'. In fact the statistical accuracy
is sufficiently good and the angular range sufficient-
ly large so that, if one is misrepresenting the func-
tion f in Eq. (4. 10), the failure can hardly be com-
pensated by a change in the constant background.
Therefore, because of this decoupling, the residue
resulting from the three-parameter fit obtained us-
ing the interpolation function (4. 8) provides a mea-
sure of the reliability of the "model" and hence of

The results obtained from the least-squares
fit described above, over the angular range —3' to
—30, are displayed on the first line of Table II.
The corresponding data, together with the least-
squares curve of the form (4. 8), are shown in Fig. 7
in a log-log plot of (I -B)K vs K. Note that in such
a plot a horizontal straight line would represent the
g= 0 case. The magnitude of the experimental error
varies considerably over the range covered by the

data, however„ the over-all distribution of the ex-

I I I I I

N 2—

tXl
I

M
~ . ~

~ ~ ~ $ 0 ~

~ OO
~ ~

~ ~

~ ~ ~ ~ ~ 00
~ ~

K/K(-3 )

I I I I I I

4 5 6 7 8 9IO

FIG. 7. Log-log plot of Q-B) X2 vs E, for the range
-3 to —30'. I is the total intensity, 8 is the background,
and X is the generalization of the qo variable defined in
Eq. (4.9). Straight line represents the least-squares fit
to the data and corresponds to g=0. 054.

perimental points is consistent with a linear trend
as given, in such a log-log plot, by a function of the
form (4. 8). Quantitatively, the quality of the agree-
ment is given by the residue 1.37 (Table II). Note
that the only result being retained from this fit is
the value of the background B (108 counts in 15
min) in order to allow for the possibility that the
value of g has been distorted so as to reproduce ef-
fectively, as explained above, the magnetic scatter-
ing function f(q, ).

Having determined the value of the background I3

by means of the above procedure, the analysis of
the data in the range —3' to —9 was carried out
in order to determine the best value of q. Three
separate least-squares fits of the data, correspond-
ing to three different choices for the magnetic scat-
tering intensity functions, were performed using the
normalization and the exponent q as free param-
eters. The first choice, as shown in Table II, cor-
responds to the function given by Eq. (4. 8) which
makes no correction for the effect of resolution or
inelasticity; the second and third choices use forms
for the magnetic scattering intensity in which first
resolution and then inelasticity are separately cor-
rected for. The resolution-corrected intensity is
obtained, as usual, using Eq. (4. 5). (Here, of
course, we put w= 0; furthermore, the correction
s& is set equal to zero because the intensity, at
angles greater than 3', is unsenstive to it. ) The
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PIG. 8. Plot of ln[(E-B)X jvs InK for the range -3'
to -9'. I is the total intensity, 8 is the background and
E is the gerieralization of the qo variable defined in Eq.
(4.9). Straight line represents the least-squares fit to
the data and corresponds to g =0.053. Note that the case
q =0 corresponds to a horizontal line in this plot.

inelasticity is accounted for by using, in place of
the two-crystal cross section, the expression for
the full line integral of the differential scattering
cross section (2. 1), with respect to energy, along
the path of the scattered beam. These line inte-
grals can be computed, as explained in detail in
Sec. VII, by using, for the ~ dependence of the
cross section, the results of the three-crystal mea-
surements; normalization and g are left as free pa-
rameters in the expression for the line integral.
Such an analysis of two-crystal data„done in terms
of line integrals of the inelastic scattering cross
section, we call "inelastic analysis" of two-crystal
data. Comparison of the results of the three fits
shows the following: (i) The resolution correction
can surely be neglected, at angles greater than 3'
and (ii) the inelasticity is certainly negligible over
the angular range —3' to —9'. The result of the
analysis is

g= 0. 044+ 0.010. (4. 13)

From the three. independent evaluations of g refer-
red to above we obtain, by averaging, our final
value:

q= 0. 055+ 0.010.

B. Determination of v, y, and P; Static Scaling

(4. 14)

The values of the inverse correlation range &

tabulated in Table I were used to determine the
critical exponent v defined in Eq. (4. 3). A least-
squares analysis in which the Noel temperature T„
is treated as a free parameter gives v=0. 707

cannot be dragon thxough the data, seithout, on one
hand, impairing quantitatively the goodness of the

fit and giving rise, on the other hand, to local sys
tematic trends of the deviations from experiment.

The value of 'g given in Eq. (4. 11) is the final re-
sult of the "Ndel-temperature high-q" measure-
ment. It is consistent with the value given in Eq.
(4. 6), which was the result of a quasielastic analy-
sis of the full scattering curve carried out over a
range of temperatures 0. 0042& (T —T„)/T„
& 0. 00700. This consistency is noteworthy because
the latter analysis relies heavily on a proper reso-
lution correction plus a proper evaluation of x, to
which q is correlated, and these constitute possible
sources of error quite different from those in the
analysis resulting in the value (4. 11) where, on the
contrary, the evaluation of the background plays a
major role. In addition to the above, we have car-
ried out still another evaluation of g, which is de-
scribed in detail in Sec. VII 8 2. It is the result of
an inelastic analysis of two cryst-al data at (T —T„)/
T„=O.00042 over an "intermediate" angular range
in which the background is no longer important but
where a resolution correction is required. We
quote here the result of that analysis:

g= 0. 053+0.010. (4. 11)

In Fig. 8, we plot ln[(I —B)K ] vs lnK. The data are
shown along with the best-fit straight line given by
the equation

ln[(I- B)K ]=0.0531nK+ 0.91351n69. (4. 12)
I

The statistics on the individual points are not as
good as in the scan between —3' and —30', but the
angular step is 5 times finer, thus accounting for
the final small statistical error on g. We note the
surprising result that the two independent fits over
the ranges —3 to —30' and —3' to —9' give prac-
tically identical values for p. This seems to indi-
cate that the quasielastic approximation may well
hold far beyond the range of angles where it can be
directly tested by using the results of the inelastic
measurements (see Sec. VI1). In any case, by look-
ing at either set of data shown in Figs. 7 and 8, it
is clear that a horizontal, i.e. , q = 0, straight line

O.l—

O~

~ O.OI—

O.OOI '0.001 O.OI O. I

FIG. 9. Log-log plot of ~ vs (T-Tz)/Tz. Line is the
best fit to the data using Eq. (4.3). Closed circles
frere omitted in the fit for reasons explained in the text.
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FIG. 10. Log-log plot of y/A~ "~2 va
(T —T~)/T. Straight hne is the best fit
to the data. Closed circle was omitted
in the fit for reasons explained in the text.
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t 0. Ol1 and T& = (83.02+ 0.01)'K. Figure 9 is a log-
log plot of z against (T —T„)/T„ together with the
best fit obtained from the least-squares analysis.
Similar treatment of the data from Table I can be
used to evaluate y, the critical exponent associated
with the divergence of the staggered susceptibility.
gT is given by [A(T)/~ ]' " . If A(T) is well be-
haved in the sense that lnA/ln[(T —T„)/T]-0 as

gT can be written in the form [A(T)]' "~~

&& [(T—T„)/T] ", where y is the exponent defined in
(4. 2). A{T) is essentially constant as shown in
Table I and thus the exponent y is the slope of a
straight line in a plot of In(yT/[A(T)]' "~

Q vs
ln[(T —T„)/T] . A least-squares treatment gives
y = l. 3V9 a 0. 024 and TN = (83. 02 + 0.01) K and the fit
using these values is shown in Fig. 10. In the
analyses leading to the determination of y and v,
the lowest temperature point and the two highest
temperature points of Table I were omitted, the
latter because of significant inelasticity corrections
as calculated in Sec. VII and the former for reasons
given in the beginning of Sec. IV A. The analysis of
these inelasticity effects carried out in Sec. VII can
be used to correct the "quasielastic" values of y and

p and the results are listed in Table IG. Jasnow and

Wortis, ' using a series expansion for the pair-cor-
relation function, have calculated values for v and y

of 0. 70 and 1.38, respectively, which they consider
good to 1%. These values may be compared with
our final values of 0. 701+ 0.011 and l. 366+0.024.

The three critical indices we have measured are
related by the static-scaling law, y= (2 —g)v. This
relationship is implied in Eq. (4. 1) provided 0 is
temperature independent and A(T) is well behaved
in the sense noted above. The data of Table I shiv
that these requirements are indeed satisfied and
thus the scaling law is confirmed. The data for
A(T) given in Table I were corrected for inelasticity
and then fitted with an expression of the form
A[1+C(T- T~)/T]. Our best estimate of the slope
C is 0. 6+0.3. This may be compared to the value
0.49 calculated by Fisher and Burford' for the
Ising model. The agreement between the last two
columns of Table III, that is, between the experi-
mental values of 1' and (2 —q)v, is simply an indica-
tion of the constancy of the experimental values of
'g.

The coherent magnetic scattering just below Tz
was also measured in order to determine the crit-
ical exponent P which is defined by the expression

M- (T„—T)',

where M is the sublattice magnetization. The co-
herent magnetic scattering cross section is directly
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TABLE III. Critical indices for T ~ Tz.

3217

Quasielas tic
analysis

Inelastic
analysis

Origin of quoted values

Fit of full
scattering curve T &T~

"Noel temperature
high-q" measurement

"Noel temperature
intermediate-q" measurement

0.067 + 0.010

0.053 +0.010

0.044 + 0.010

0.707 +0.011 1.379 +0.024

(2 —g) p

1.367

Corrected exponents

Final value (average) 0.055 + 0.010

0.694 +0.011

0.701 ~0.011

1.354+ 0.024

1.366 +0.024

1.354

1.363

Calculated using the average value of g obtained from the inelastic analysis.

proportional to the square of M. There are, how-
ever, several experimental difficulties which pre-
clude the measurement of M, and thus P, over a
wide temperature range. As one approaches TN,
the Bragg scattering rapidly decreases while the
diffuse critical scattering becomes strongly peaked
about the Bragg reciprocal lattice point so that it
becomes increasingly difficult to make a correction
for the diffuse component. This sets an upper limit
to the temperature range over which M can be mea-
sured. The lomer limit is set at the point where
extinction causes the measured cross section to de-
viate significantly from proportionality to M . The
temperature limits were set experimentally as fol-
lows. The lower limit was fixed by making mea-
surements on the (111), (333), and (555) reflections
and utilizing the fact that the ratios of the cross
sections remain constant, as a function of tempera-
ture, in the absence of extinction. The onset of ex-
tinction can then be observed by noting the depar-
ture of the measured intensities from these ratios.
The fixing of the upper limit is somewhat more
arbitrary. The form of the cross section for crit-
ical scattering is known only in the hydrodynamic
regime, and so there is no good basis for estimating
the diffuse scattering. In addition, the single crys-
tal of RbMnF3 used in these experiments had a
mosaic distribution which produced a small Bragg
contamination in the wings of the diffuse peak, thus
making it difficult to reconstruct the diffuse scatter-
ing at the center from its value in the mings. The
procedure finally adopted was the following. We
assumed that the convolution with the resolution
function of I/(& +q ) provides, as v is varied, a
set of curves one of which mould represent a fair
apyroximation to the shape of the magnetic critical
scattering at a given temperature belom TN. The
shape of the magnetic coherent scattering is given
directly by the experimental resolution function and
its intensity is proportional to the unknown scale
factor M . We determined M by assuming trial
values and subtracting the corresponding coherent
scattering from the observed intensity and refining
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FIG. 11. Log-log plot of coherent scattering intensi-
ties vs Tz- T for the (111), (333), and (555) magnetic re-
flections. Solid lines are the results of the least-squares
analyses. Dotted line drawn through the (111)data, using
the best value of P, indicates the consistency of these re-
sults with this value as well as the effect of extinction on
the lowest temperature points. Intensity. scales for the
three sets of data, are individually. nopna&ized.

this value until the remainder had a shape similar
to one of the "critical scattering curves" described
above. The upper temperature limit was then set
rather arbitrarily by using, in the least-squares
analysis, only those data for which the estimated
critical scattering was no greater than 5/z of the
total scattering. Furthermore, only the (333) and

(555) reflections were used in determining P because
the (111)data are most affected by extinction. As-
suming the Noel temperature derived from the data
above TN, the average value of P determined from
the least-squares analysis is G. 32+ 0.02. The data
together with the least-squares results are shown
in a log-log plot of coherent magnetic scattering in-
tensity against (T„—T) in Fig. 11. In addition, a
line using the above value of P, is drawn through the
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(111)data to indicate the consistency of these re-
sults with 'P as well as the effect of extinction on the
lowest temperature points;

The measurement of P and that of v' (reported in
Sec. VIE) provide another test of static scaling
From the scaling. relations

(2-n) 1'=y'

y' = 3v' —2P,

where the primes indicate that these exponents re-
fer to T & Tz, one. finds that

2P = (1+n) 1'.
The measured value for v' is 0. 54+ 0.03 which
yields P equal to 0.285+0. 015 which is to be com-
pared with the observed value of 0. 32+ 0.02.

V. THREE-CRYSTAL RESOLUTION FUNCTION

Whereas the resolution function can be determined
experimentally in the two-crystal case using the co-
herent Bragg reflection, there is no suitable probe
for determining the three-crystal resolution func-
tion for arbitrary energy and momentum transfers.
We have, instead, calculated the resolution function
using the result of Cooper and Nathans' who show

that for an energy change K&d = (k /2m) (k, —kz), a
wave-vector transfer Q =kl —k&, and an instrumen-
tal setting (~„Q,), defined in terms of the most
probable values of the wave vectors Rr and kl, the
resolution function can be written

B(td.+5~, Q.+&Q)=.R.exp(- —2 M„x,x),2 Jtyl&1

(5. 1)

where X4= ~(d and X„X3, X3 are the components
of the vector &Q with respect io the following set
of orthogonal axes: the X, axis is antiparallel to

Q„ the X3 axis is contained in the scattering plane
and is directed towards the inside of the sphere of
reflection, and the Xe axis is vertical. ' 8, depends
on the setting ((o„Q,) and its explicit form will be
derived later in this section [see Eq. (5.11)j.

We shall be concerned with making quantitative
comparisons of intensities at different points in
Q-&o space and therefore consider in some detail
the dependence of intensity on resolution and cross
section. For a spectrometer set for an incident
wave vector kr and a scattered wave vector k&, the

probability of detecting neutrons whose wave vec-
tors deviate in magnitude and direction from these
most probable values, is given by the expression'

P(&k, , 6k', yl, yg, 51, 5g)

1 ' (bk, /kl) tan&„+y, l
(nkvd/kr) taneg -ya ~ 2 (bkl/kl) tanes+y, yg yg+'- — +-- + M+

2 Q Qo Q1 Qa

i i
2 (&kg/kr) tansy —yp

n
' 4sln'e g"+P' 'P~'~P' 4sln'8 q"+P'

where ~k& and ~k& are the deviations of A; and k&

from the nominal values kl and kz,' gz and q& are
the mosa, ic spread parameters of the monochroma-
tor in the horizontal and vertical planes, with simi-
lar definitions for the analyzer parameters q& and

g~,' y„and 6„are horizontal and verb. cal divergence
angles; o„and P„are the horizontal and vertical
Gaussian collimation parameters (standard devia-
tions); and the subscripts 0, 1, 2, 3, refer to the
in-Pile region, the monochromator-to-sample re-
gion, the sample-to-analyzer region, and the analy-
zer-to-counter region, respectively. I'& and P& are
the ref lectivities of the monochromator and analyz-
er for wave vectors kl and k&, & is the BF3 counter
efficiency, and I', is given by35

2%P—
4 sin~@ sine~

Po 4sin egqll P~ 4sin e~ tf~

The intensity of scattering is

@='t-'40 P ~kg, &ky, y, , ya,

d 4k& d &0& dyldyad5, d53,
do'

(5.4)

where 40 is the flux per unit of solid angle and per
unit of incident wave vector. & and 40 are slowly
varying functions of k+ and kl, respectively, and

essentially constant over the volume of integration.
For the usual case in which the cross section, ex-
cept for slows varying factors, ean be taken to be
a fllllc't1011 of Q alld (0 ollly, 1't ls collveniellt to 'tl'alls-

form coordinates from the set ~k) ~kg' /1 pa
6„.53 to a set such as X„X3, X3, X4, &k~,
The intensity expression can then be simplified by
integrating over the variables ~k; and 5„since the
cross section depends only on the X„. Thus, we
can rewrite (5.4) as
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x, I bkg, hQy, y), yg, 5), Og g gQ] gjf5).

xo (X„Xs,XI, X4)dX, dXIdXsdX4, (5 5)

where J' is the Jacobian of the transformation,
~/(Kk, k~ sin28), and o is an abbreviation for the
differential cross section in (5.4). The resolution
function is defined by the expression

P LA), hler, yq, y3, 5g, &g d 4k') d&q,

and reyresents the probability of detection in a scat-
tering process corresponding to given values of Q
and &o when the nominal spectrometer setting is Q„

The total detection efficiency, that is, the in-
tensity that would be observed for unit scattering
cross section, is given by

Do= s J B(Xg, Xm, Xs, Xg) dX)dXgdX~dX4, (5.7)

and mes, sures the siF.e and effjcienqy of the instru-
mental, "window" in Q-&u space. To exhibit this fac-
tor explicitly, we write the intensity in terms of a
normalized resolution function, so that

I= Dof8'(X), XI, Xg, Xg)

x r (X„XI,X3, Xq) dX, dXIdX, dX4, (5.8)

B(X„Xg,X~, X4)' Ja(X X X X)dX ax dX dX
'

(5.9)
Thus, if 0' is slowly varying, that j,s, if it is essen-
tially constant over the region, of Q-v space where
the reso&ution function is nonF@ro, the intensity is
given simply by Dsc. Equation (5. V) can in princi-
ple be integrated to otptain Bo using the expressions
for M&& given in Ref, 1 together with EII. (5. 11) for
Bo. A, simple and mqre direct procedure, however,
is to integrate the probability expression in (5. 2)
over tQe indicated variables. In this way one finds,
for a„, P„, and g„small compared to —,'v,

2sjn8„sin8& ~pz 4sin 8q rlz pq 4sinI8~ g~ ~

2 ' "' 1 1 1 1 1 1 2 ' -"'
x2vk&cot8& ~+~ I

~+ ~+~ ——+ — 2vk~cot8~ ~+ ~ ~+~+ ~ ——+-
co y, gg no ~A, O3 ~A 03 +3

4 sinI8 glmp pm p 4 s'ns8 rIIF pz p ' (5 10)

This expression is symmetrical in the monochro-
mator and analyzer texms a d, apart from the in-
strumental parameters, depends only on AI and Az.
In the usual. case of loose vertical cqllimation, one
has ps » 2 sin 8g 'Il g and po » 2 sin8g 'gg, and thus
DO~X: t P& P&k& k& co&8& cot&A. For the imyortantprac-
tical case of an energy scan at constant &ay cot~@is
genex ally essentially proportional to k& and, apart
from the energy dependence of the counter efficien-
cy and the analymqr ref lectivjty, D&= constxkz~. If
the cross section da/d(hkz) dymd53 is replaced by
(&kq/m)(d o/dA A&) and if we include the factor kz
coming frolic the density of final states" term, in
the cross section, the intensity is seen to be pro-
portional to k&. (kz is essentially constant over the
volume of Q-&o space where the resolution function
is nonzero and can be replaced by kz. ) The analyt-
ical expression (5.10) is particularly convenient
for calculating the effect on the intensity of varying
the instrumental parameters. Referring to Eq.
(5. 1), Do can be written as the product e 8, 4 V,
where &V is proportional to the product of the half-

t

widths of the resolution ellipsoid along its principal
axes and measures the volume occupied by the reso-
lution function in Q-&o space. Using the notation of
Ref. 1, we find that Bo and 4V are given by the fol-
lowing 8xpgessionsl

.gPgPg
2 sinHs sin8g kgk~g sin(28@) (sag+ Qgg) (A )

g8 +g8 )1/8
(2 )IAS ~

(28 ) (At)l/s ( 11+sfs)
Qgg ggg

2 &'- "'
&co«s

I
r+-I

I
-r+ ~+~ I-I + —

I

('Us o'0$ '8s 0 a&) I')s no/
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Note that It, and aV depend on Q„whereas the pro-
duct D0 does not. While D0 varies approximately
as kz for small a&, inspection of Eq. (5.12) shows
that the volume of the resolution ellipsoid increases
approximately as ki [since, for kz = kr, (A')'
= 1/kr]. For the experimental arrangement used in
the present work, the calculated value of ~ V in-
creases by a factor of about 160 in going from an
incident energy of 6. 6 to 47 meV.

The instrumental parameters required for com-
puting the resolution function were all determined
experimentally. The horizontal collimation param-
eters and the mosaic spread parameters were ob-
tained from suitable rocking curves as explained in
Sec. III in discussing the two-crystal resolution
function. For the case of loose vertical collima-
tion, the vertical parameters P„cannot be measured
directly, nor can they be calculated on the basis of
the geometrical aperture since other geometrical
features of the instrument may limit the vertical
divergence. Effective vertical parameters were
computed from the observed vertical resolution ob-
tained by rocking the sample about a horizontal axis
perpendicular to the scattering vector of the Bragg
magnetic peak. In this case where the geometrical
contribution to the vertical divergence is large
compared to that produced by the vertical mosaic
distributions of monochromator and analyzer, the
vertical part of the resolution function is propor-
tional to exp(--,' M»X, ) with

Effective values of P„were obtained by setting P„
= CP„', where P„' is the geometrical vertical aperture
of the nth collimator. The constant C is readily
determined from Eq. (5. 18) using the experimental
value of Mss and the nominal values P„'.

The resolution function was calculated using val-
ues of the instrumental parameters determined ex-
perimentally as indicated above. The result was
checked below the Neel point using the coherent
magnetic reflection of the sample as a probe, by
observing the intensity as the Bragg spot was moved
relative to the resolution function along all four axes
of Q-~ space for Q, = 2v7 and a&, = 0. Small adjust-
ments in the mosaic spread parameters were made
to obtain the best agreement between the calculated
and observed traverses. These adjustments were
assumed to compensate for the effect of sample
mosaic spread, which was very small and had not
been specifically taken into account. Final experi-
mental values of the parameters are listed in Table
IV. Vertical mosaic spread parameters for both
the monochromator and analyzer were assumed to
be the same as the horizontal parameters.

Observed and calculated half-widths for the reso-
lution function centered at Q, = 2'. and Cd, = 0 [that
is, at the Bragg magnetic (111)reflection and in the
neighborhood of zero-energy transfer] are given in
Table V for incoming neutron energies of 6. 6, 13.0,
and 47. 0 meV. On the left-hand side of the table,
widths are referred to the four-dimensional orthog-
onal laboratory coordinate system X» Xz, X3 X4y
where the energy axis X4 is in units of A (1 A
= 2. OV mev). The resolution ellipsoid can be trans-
formed to principal axes X„' by diagonalizing the
4&&4 resolution matrix M of Eq. (5. 1). For typical
experimental parameters, X', is almost along X»
Xz and X4 lie nearly in the X2-X4 plane, making
small angles with Xz and X4, respectively; and X3
coincides with X3. Widths referred to the principal
axes are given on the right-hand side of Table V.
The slope of the principal axis X4 with respect to
the X,-X2 plane is given approximately by 2kl A '.

The ". detection" system, consisting of the analyz-
ing crystal and the counter, has an energy-depen-
dent sensitivity which is the product of the counter
sensitivity & and the analyzer ref lectivity P&. This
product was measured directly for the energy
ranges of interest and for the actual configuration
of the "detection" system used in the normal opera-
tion of the spectrometer. A well-collimated mono-
energetic incident beam, provided by the monochro-
mating part of the spectrometer and monitored by
passing through a BF3 detector whose sensitivity
was accurately proportional to 1/v, was counted in
the "detection" system for varying values of the in-
cident energy. For each setting of the incident en-
ergy, the positions of analyzing crystal and counter
were adjusted for maximum intensity. The energy
sensitivity, which is the fraction of the incident
neutron Qux detected, is proportional to the number
of counts recorded per unit monitor count, multi-
plied by 1/v. In this measurement it is essential
that all neutrons passing through the monitor be
capable, aftez reflection by the analyzer, of passing
through the counter collimator and entering the

TABLE IV. Experimental resolution parameters.

parametera

A 0 ~ fv I ~ G 2 ~
0' 5

Po
I'. 1

g2

P3

Desc ription

horizontal collimator angle

vertical collimator angle

horizontal mosaic spread
(monochromator)

horizontal mosaic spread
(analyzer)

Value (radians)

0.002 74
0.009 09
0.015 27
0.01976
0.01976

0.001 98

0.001 98

aSubscripts 0, 1, 2, 3 refer to the in-Pile region, the
monochromator-to-sample region, the sample-to-analyzer
region, and the analyzer-to-counter region, respectively.
The collimator lengths in these regions are 36, 24, 16,
and 1.6 in. , respectively.



QUANTITATIVE ANALYSIS OF INELASTIC SCATTERING IN. . . 3221

Observed and calculated resolution function widths. Tabulated values are half-widths at half-m. axj~u~.

E& (meV) Observed
Laboratory coordinates

Calculated
Principal axes

(calculated)

x,{A-') x,g-') x,g-')'xg-') x,g-') xg-') x,Q-') x {A~) xg x2 x4

6.6
13.0
47. 0

0.0043
0.0056
0.010

0.001'7 0.0048 0.034
0.0016 0.0077 0.047
0.0014 0.0140 0.090

0.0044 0.0014 0.0046
0.0060 0.0014 0.0068
0.012 0.0014 0.0135

0.034 0.0044 0.0014 0.034
0.047 0.0063 0.0015 0.099
0.090 0.012 0.0015 0.716

0.034
0.047
0.090

~1 A-2=2. 07meV.

counter. This was ensured by placing the monitor
just before the analyzing crystal and reducing the
collimation before and after the monochromator to
one-half the angular aperture of the counter colli-
mator. The sensitivity is a slowly varying function
of the energy, but the experimental curve exhibits
dips produced by the occurrence of simultaneous
reflections in the analyzing crystal. These dips
can be minimized for a given range of neutron ener-
gies by rotating the analyzing crystal around its
scattering vector, but they cannot, in general, be
eliminated entirely. In an actual experiment, the
dips are less serious since the finite resolution of
the instrument effectively averages the sensitivity
over a range of energies. In most cases it is suf-
ficient to use an average sensitivity obtained by con-
voluting the measured sensitivity with the resolu-
tion function.

The integrations indicated in Eq. (5. 8) were per-
formed as summations over 10 points defined by a
four-dimensional grid in the principal-axis coordi-
nate system. The grid was constructed by subdivid-
ing each axis, from the origin of the resolution
function to the point where it reached 0. 5% of its
value at the origin, into five equal intervals. For
points selected in this way, the computations are
simplified since the values of the exponential factor
in the resolution function [Eq. (5.1)] at these points
are fixed and do not vary with the setting (Q„&u,).

VI. RESULTS OF THREE-CRYSTAI, MEASUREMENTS

We have measured the neutron scattering from
RbMnF3 in the vicinity of the Noel point and have
obtained the cross section as a function of wave-
vector and energy transfer. The data have been
analyzed quantitatively, including resolution and
sensitivity effects.

Our results strongly support the concept of dy-
namic scaling and agree well with specific predic-
tions of the theory. With this in mind, the experi-
mental data will be presented and analyzed within
the framework of dynamic scaling theory.

A. Dynamic Scaling

In a recent paper, ' Halperin arid Hohenberg pro-
posed a generalization of the static-scaling laws to
dynamic phenomena by making assumptions about

c"„(q,~) = „-— — c„"(q)f",- „(~/~„"(q)),
~s

where

C"„(q)= —t du) C"„(q, +)
w eo

and

o) (q)

&~ff,.(~/~. (q)) = -'.
+g ( qp -o)&(q)

(6.4)

The dynamic-scaling assumptions are the following:
(i) that. the characteristic frequency &u„(q) is a
homogeneous function of q and I(',

~.(q) = quan(q/&), (5. 5)

and (ii) that the form of the frequency-dependent
function f- „depends only on the ratio q/z and not
on q and K separately.

Note that C„(q, u) is related to the wavelength-
dependent susceptibility by the expression

Z(q)T= const&& 4o
&

coth C„(q, &u),
2kT hip

5' 2kT

which becomes, on expanding up to second order in
ff(o/kr,

the behavior of time-dependent correlation functions
near the critical point. Their theory leads to
specific predictions for the case of the "isotropic"
antiferromagnet, which is well represented in na-
ture by RbMnF3. They define a symmetrized space-
time correlation function for the Hermitian operator
A(r, t):

C"(r, t)

= —,
' (([A(r, f) —(A(r, f))], [A(0, o) —(A(0, 0))])),

(5. 1)
where the angular bracket is an equilibrium expec-
tatiori value and the curly bracket is an anticommu-
tator. The Fourier transform is then written for
wave vector q, frequency co, and inverse range pa-
rameter ~, in the general form
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FIG. 12. Represen&tioh of Hmiting regions in the
q-g jgane vrhere the Correls, tion function

y(q)T= const&& Ap t.„(,&u) 1-—-=-"-- /+g pe ~~~ I+ +eh ~

behaviox'

+„(q)=cq~ x'i aq. (6.9)

The exponent E in Eg. (8 5) is thus 1.5.ls us 1~ 5. In x'eglon
iqii(,' is a finite nonmexo constant the

fluency must therefore be yropor-

s ye ed about &u 0 with an energy width
inca the staggered magnet tt

is riot a constant of the motion. The chals on. e characteristic
ln s region, which can be rewritten in

orm&' 0'( x i
K ' for =0 sine

q, ls then expected to vary a
q- ines, from the foregoing, A'(

y as
q & has

T'he use of.a s mmetr'y rimed sya, ce- time correla. t'
unction intrododuces the thermal factor 2(1+e ""+r '

1' ion

in the e uati on fox' the cross section. ~ In terms of
the correlation function E . (2 1)th, q.

Theref Gx'e o ion0%ing to the fact that the condition K(d/
kT «1 is viell sati8fied by all Oux obsexved ' l

, we shall make use throughout the a e
the identification

y(q)T =constx C ( ) (6 8)

The scattering is convenienQ discu
e m mg regions of the q-s plans (Fi 12'
'

g yex'in and Hohenbex'g we designate by
region 1 the macroscopic regio|| of th

a '

gi e coi'respondp ase, fox' which q «x and T & T . Th
ing macroscopic region for T & T& in which

y . ese regions r&fex' to phenoII|ena
occurring over distances large compared to the
correlation lenlength ~ . The region in which

r — ~ or 2'& E& is labelled Q and has
been referred to b thy these authors, in a rest.ricted
sense, as the "critical" region to di8tinguiSh it
from the macroscopic or "h drod nx' P'naIQl. c ' regiOI18

n . Region II is the domain of phenoineIla with
iated distances ox' wavelengths that

but large compared to all the other relevant lengths
such as the lattice parameters. F al6r v ue8 of.q and

ca e on an arbiti ary line passing throu h th
e q-x plane, f, „ is a fixed function of the

normalized frequency &o/ru ( ).
sc e, the energy-dependent cross sections for such

Tile dynamic scaling a8suIQyt)Gns cc& be
ehavlOX' Gf the COrrelation funCtiOn 1n

the "critical" re ig on to tha, t ln the hydrody
regions above and below the c 'ti alrl c point. The
chax'acteristic frequency in th "h d odch e y x' ynamlc ' x'e-

gxon heiow 'E& (region 1) can h e s own to have the

(e. 10)

8. "Critical" Region

At T= Tg and forr values of q gx'eater than about
resolution corrections are small,

the observed uncorrected energy spectra of scat-
tered neutx'ons exhibit three unresolved peaks.

herefore, to ailalyze the data at T
pe s. %e

q terms of the dynamic correlation func-

C,, o(j, ~)
A

I &++ X&+ e+ a F3+ v —co

u here 4/q is the static part 8 'ax'
(e. 11)

ax'
p is a constant

c eterIQineS the xatio of the celltral peak
height to that of the si.deband, I"1 and I'z are the
widths of the central peak and sideband, res ec-

~, s the displacement of the sideband

peak from the center. In order t ti fosa sytheas-
y ion of dynamic scallIlg, the width F
, are taken to be proportional to the charac-

teristic fl'equency v ' ' ' venftiq which ln region II 18 given
y q, with yroyoxtionality constants C 6

y. 'All. fiequencies are expressed '

units of meV. )

sse ln

%'e have yerfox'med measurements at an incom'
neutron energ of i3.0y o . meV over a range of q ex-

an lncoIQlng

tending from 0.05 to 0. 25 A ' Inserting the form
iiform the correlation function into the' n n o he expres-

e cross section, arid using &=0.055 as
determined fro m zero- rystal d ta a, we have per-
formed least-Squares fits of the convolutef '

o e convoluted cross
e ata collected over the sestmeted
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TABLE VI. Least-squares fit of data at TN with 8 = 16.0~ and E =1.4.

0.11
0.15
O. 20
0.25

tb

(min)

7.0
7.0

14.0
28. 0

1.50+0'. 20
1.38 + 0.' 19
2.90 i 0.42
6.20+0. 92

0.214
0.197
0.207
G. 221

1.62 +0.28
2.05 +0.34
1.90 +0.35
1.81+0.35

9.90 +0.28
10.37 +0.42
9.79 +0.46
9.19+0.65

5.56 +1.08
4.73 +0.92
5.15 +0.98
4.44 +0.84

Residue

1.18
1.24
1.50
2. 84

~In units of meV A 'Counting time.

INCOMING ENERGY E; =15.0 mev
I I I I I I I I

q= .=0.25A '

200

Ioo
LU Iz

0
500 —

q =0,20A '

E

200

oo
I

0

500- q=

E

200—

0
800

600

g 400

200

0
600

E 4OO

(~() 200

0I- I500

Iooo

q=o

q=O.O7SA-'

I
I I

q=0.05K '

range, 0. 11—q —0.25. The observational error
used in the program was that given by counting
statistics. To increase sensitivity in the fit, D and
E were held fixed and the other parameters A, B,
C, and G were allowed to vary. The procedure was

q =0.075 A800—

G 600—
E

.400—
I-
D

I I

It

l& 2
I

l d 0

i dQ dfti

l
1

i~ ( 1

/
y f I

/

d20-
I

repeated over a range of D and E giving, as best
values, the set a=16.0+2. 0 and E=1.4+0.1. The
exponent E agrees well wi'th the value 1.5 predicted
by dynamic-scaling theory. Table VI shows the fit
obtained for the remaining parameters. The re-
sults suggest that a single set of parameters will
represent the data quite well although the progres-
sive increase of the residue appears to be a mani-
festation of the small-q limit of the dynamic-scaling
hypothesis. The best values of the parameters are
B= 1.82, C = 5. 00, G = 9.66, D = 16.0, and E = 1.4.
These values correspond to a characteristic fre-
quency law in region II given by the expression

to„o(q) = 16.Oq (6. 12)

The success of dynamic scaling can be seen most
clearly in Fig. 13 which shows the full set of ob-
served data taken at 13.0 meV together with calcu-
lated curves based on the best. set of parameters.
As can be seen from the scale in Fig. 13, there is
a factor of 100 between the peak intensities for
q=0. 05 and 0. 25 A '. This agreement has been ob-
tained using a single normalization constant for all
the calculated curves. The effect of resolution can
be seen in Fig. 14 which shows both the cross sec-
tion and the cross section convoluted with the reso-
lution function for q = 0. 075 A '. The three-peaked

500—

0 I I

-2 0 2 4
ENFRGY TRANSFER fthm(meV)

FIG. 13. . Calculated and observed intensities as a
function of energy transfer at Tz for different momentum
transfers q. Observed data taken w.'th incoming neutron
energy of 13 meV.

200—

0 —2 —I 0 I

ENERGY TRANSFER tu ( me V)

FIG. 14. Comparison, pf, raw data. for tf.=O:, 0/5 A, :with
the convoluted and unconvoluted cross section.
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300—

200—

100—

0

INCOMING ENERGY E.= 6.6 meV
I

I I I

q = 0.075 A

more evident with increasing q in the case of the
low-resolution data but at the same time the data
depart progressively from the calculated curves.
This disagreement at high q suggests that dynamic
scaling fails beyond q- 0. 3 A '. This is not sur-
prising inasmuch as the theory is expected to hold
for q small compared to the magnetic zone-bound-
ary value, which in this case is 0. 64 A

C. Hydrodynamic Region; T & T&

A second test of dynamic scaling was made in the
hydrodynamic region (q«a) above T„, where
C„(j, &o) is assumed to have the "diffusion" form

600—
&D

400—
O
K 200—

0

6000— q = 0.025A
00 ~

~ ( )
1 I'(j, a')

K 4 (gP+q8)1 8/8 F(II K)R 3

As noted earlier, dynamic-scaling theory predicts
that l"(q, «), the characteristic frequency, should
vary as ~"for q = 0. In making a measurement at

4000—
INCOMING ENERGY E.= 47 meV

I I

o-I
q=0. 5 A000—

0
0 0

0 ~ ~ + ~
0

2000—

0 - I.0 —5 0 .5
ENERGY TRANSFER cu(meV}

I.O

300-

200—

IOO—

0

~ ~

PIG. 15. Calculated and observed intensities as a
function of energy transfer at T~ for different momentum
transfers q. Observed data taken with incoming neutron
energy of 6.6 meV.

600—

400—

o-I
q=0. 0 A ~ ~ ~ ~

~0~ ~~ ~ ~ ~ 4'+ Q ~
0 0 ~ ~ ~ ~

~ ~~

structure is largely obscured by the instrumental
broadening a,t this low value of q; the characteristic
frequency, hog&ever, is not greatly changed.

Comparisons of calculated and experimental
curves have also been made, using the same values
of the parameters except for the normalization con-
tained in A, for high-resolution data (incoming neu-
tron energy of 6. 6 meV, Fig. 16) and for low-reso-
lution data (incoming neutron energy of 47 meV,
Fig. 16). Tile disagreement a't zero energy trans-
fer in the q = 0.025 data for E& = 6. 6 meV probably
results from the difficulty of making precise reso-
lution corrections when the cross section varies
extremely rapidly with q and ~. Otherwise, the
agreement is quite satisfactory and lends confidence
to the method of treating resolution effects. The
data taken at 4V meV have been extended further out
in q since the available intensity is higher at this
energy. Because of the low resolution it is impos-
sible to detect structure in the peak at q= 0. 20
whereas in the corresponding curve, taken at 13.0
meV, i.t is unmet:stakable. 'This str'ucture becomes

E 200—
V) 0 I

I Io
q=o.~ A

I 000—

~g«10 cote 1111

500—

4000—

I I

I I

q=0. 2 A

2000—

I I I I I

- 6.0 -3.0 0 5.0 6.0
ENERGY TRANSFER ~ (meV)

PIG. 16. Calculated and observed intensities as a func-
tion of energy transfer at T~ for different momentum
transfers q. Observed intensities taken with incoming
neutron energy of 47 meV.
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a nominal setting of q = 0, nonzero values of q are
simultaneously sampled because of finite instru-
mental resolution and hence the dependence of I on

q is required in order to perform the convolution
with the resolution function. To accord with the
theory of dynamic scaling and the expected analy-
ticity for q = 0, I'(q, v) has been taken to have the
form

0.6

l I I

I'(q, &) = I" (tc) [I+c(q/~)'], (6. 14)
0.4

where I o(v) is the characteristic frequency for
q = 0. Least-squares analyses were performed us-
ing values of v and p determined from two-crystal
measurements. The procedure is relatively insen-
sitive to the constant c and so this quantity was fixed
in advance at 0. 6 on the basis of a study of the de-
pendence of the characteristic frequency on both q
and ~ outside the strictly hydrodynamic region, as
explained below in Sec. VID. Figure 17 shows a
typical least-squares fit from which I'0(z) is ob- . .

tained at a given value of &. The values so obtained
were then fitted by weighted least squares using the
expression

I"o ——dP.
Figure 18 gives the observed I'0(v) in meV as a
function of K' together with the line drawn for the
best values of d and E which are 12.8+0.9 and
1.46+0. 13, respectively. The exponent E agrees
well, within the estimated error, with the predicted

I

Eo= 6.6 meV

q =0
h T=8.0 'K

=0.095 A

E 200—
(0

P-

O

IOO—

0 I I I

—l.5 —1.0 —O. 5
I

0 0.5
~ (meV)

I

I.O I.5

FIG. 17. Typical fit of calculated and observed in-
tensities, for q =0 and ET = 8'K. Data have been corrected
for the energy dependence of the analyzer ref lectivity
and counter sensitivity and the solid curve is a convolu-
tion of the cross section t.mq. (6.10)]with the resolution
function, using Eq. (6.13) and the best value of Fp.
Central ooints have been deleted because of the interfer-
ence of a weak nuclear reflection coming from a higher-
order contamination.

0.2

0.0

I 02 l.46

FIG. 18. Plot of I'p(K) the characteristic frequency
at q =0, as a function of ~ ' ~. Line corresponds to
lp(y)=d~ for the best values of d and 8, which are 12.8
and 1.46.

value of 1.5. As the Neel point is approached, w

decreases and the q values sampled by the instru-
ment no longer satisfy the hydrodynamic condition
q«w. This introduces a limitation on the range of
temperatures in which useful data can be collected
and explains the absence of data points in Fig. 18
between T„=83'K and the first point shown, which
was obtained at 87 'K.

Theoretical estimates of I'(q, tc) in the hydrody-
namic region have been made by Huber and
Krueger, ' who have computed the coefficients in
Eqs. (6. 14) and (6. 15) with exponent E equal to 1.5.
They find e = 0. 91 and give values for the parameter
d in Eq. (6. 15) ranging from 18.0 to 14.8. These
may be compared with our values, e = 0. 6 a 0.3,
which is the result of our analysis of general fre-
quencies in the q-wplane, discussed in Sec. VID,
and d=12. 8+0.9, coming from the treatment of the
hydrodynamic data.

D. Characteristic Frequency for General Values of q and v,

According to dynamic-scaling theory the shape of
the frequency spectrum is completely determined
by the ratio q/tc In Secs. .VIB and VIC, we have
considered the behavior in the q-~ plane along the
tc= 0 axis (region II) and the q = 0 axis (region III).
The latter case is characterized by a single-peaked
frequency spectrum, whereas the former exhibits
a three-peaked function. In between these two ex-
tremes, the shape changes slowly, as the ratio of q
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to & is changed. We have not attempted to deter-
mine the shape of the frequency spectrum as a func-
tion of the ratio q/v, but have obtained characteris-
tic frequencies for general points in the q-w plane.
These have been used to test directly the first as-
sumption of dynamic scaling; namely, that the char-
acteristic frequency is a homogeneous function of
q and It [Eq. (6.5)].

Characteristic frequencies, as defined by Eq.
(6.4), have been calculated from uncorrected data
by direct integration. The data used consisted of
43 points for which the resolution corrections were
negligible. (All the q = 0 data, for example, were
thus excluded. ) In this connection, it should be
noted that whereas the resolution function may
greatly alter the shape of a given frequency spec-
trum, the characteristic frequency is much less af-
fected. Following Halperin and Hohenberg, ' we
assumed a simple homogeneous form for the char-
acteristic frequency

tcg(q)=(aq +5q K +c q K +d K) (6. 16)

where a, b, c', d', and E are constants. The fit
to experimental data is very insensitive to the value
of d' because of the omission of the q=O data.
Hence the fit of data points to Eq. (6. 16) was car-
ried out by the iterative procedure explained below,
involving values d' obtained from an analysis of the
q=D intesnities by the method Sec. VIC.

For small q/lt, Eq. (6. 16) has the expansion

g
&c„(q)=d' ~'P 1+ —

„—,
— +. . . , (6.17)

where, referring to Eqs. (6.14) and (6.15), d'

=d and +Ec'/d' =c. Estimating a value of c from
the q dependence of the uncorrected frequency spec-
tra, a preliminary value of d was obtained from the
analysis of the q = 0 intensities. The constant d' was
obtained from d and inserted in Eq. (6. 16). The
remaining four constants in Eq. (6. 16) were eval-
uated by least squares and a new value of c was thus
obtained for insertion into Eq. (6. 14) for the q = 0
analysis. This procedure was repeated and found

to converge satisfactorily with values of c = 0. 6 and
d = 12. 8 (d' = 3. 47x 10 ). With d' = 3.47x 10, the
least-squares values for the remaining constants
in Eq. (6. 15) are: E=1.3 +700 Sa=(6.4+0. 5)
x10, 5= —(0. 95+0. 38)x10', c'= (0.86+0.46)x10,
where the errors are based solely on counting sta-
tistics and do not take into account the neglect of
resolution corrections. Figure 19 shows calculated
and observed characteristic frequencies. The four
uncorrected characteristic frequencies at q = 0. 10
A ' and 6. 6 meV which were thought to be subject
to larger errors because of incomplete data in the

wings, were omitted from the least-squares fit but
have been added to the figure. In addition, we have
added the resolution-corrected q = 0 data, making

2.0

15—
I NCI DENT
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0.5
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l
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FIG. 19. Comparison of observed and calculated
characteristic frequencies co„Pq) for T ~ Ts. Observed
frequencies are half-area values, uncorrected for reso-
lution, and are labeled by different symbols according to
momentum transfer and incident neutron energy. Calcu-
lated curves are labeled according to the value of q.

a total of 51 characteristic frequencies.
Expanding Eq. (6. 16) for q» It, gives the expres-

sion &c„(q)=a' q'sv+ ~ ~ for region II, with a' =a'37~s
=12.5 from the above analysis. This may be com-
pared with the result of the Noel point analysis dis-
cussed in Sec. VIB. To make the comparison we
adjust the proportionality constant in (6. 12) to take
into account the small change in exponent from 1.4
to l. 37 and obtain a' = 15.0.

The zero-degree homogeneous function f(lt/q)
= a&„(q)/&oc(q) has been calculated by Rdsibois and
Piette ' starting from the kinetic equations obtained
by De LeenerandR6sibois. 9 In Fig. 20, wecompare
their result directly with our experimental values
for f. For larger values of v/q we have included
points (open circles) obtained from the q= 0. 025A
data, in spite of the relatively large uncertainty
arising from contamination by higher-order neutrons
as indicated in Sec. VIB. The agreement between
theory and experiment is excel.lent over the entire
range and even at large values of It/q there is no
discrepancy within the errors. The experimental
points tc„(q)/~, (q) were obtained from the observed
values shown in Fig. 19, using pairs of frequencies
corresponding to the same neutron incoming energy.
The q= 0. 025 A ' data for smaller K/q have been
omitted because the uncertainty in f becomes pro-
gressively worse as lt/q decreases The .q= 0. 10
0
A ' data were also omitted for reasons given pre-
viously in the discussion of Fig. 19.
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FIG. 20. Plot of the dependence of u&„(q)/&so@ on v/q.
Solid line represents the calculation of Rdsibois and
Piette {Ref. 22). Open circles are derived from the q
=0.025 k t data and have relatively large uncertainties
{see text) compared to the solid points obtained from
data at higher q values.

limit, that the characteristic frequency, which is
one-half the energy separating the spin-wave peaks,
is given by Eq. (6.9). The constant c appearing
in this equation was determined directly from the
uncorrected dispersion curve inasmuch as trial con-
volutions of the spin-wave cross section with the
resolution function did not appreciably alter the
position of the spin-wave peaks. A log-log plot of
c against T„—T gives v' as shown in Fig. 23. The
least-squares value for the slope v, determined
for the range 0& T„—T&6 is 0. 54+0. 03. The line
drawn in Fig. 23 corresponds to this fit but passes
through the remaining points as well. The fit for
the entire range 0 & T~ —T & 21' gives, in fact,
v =0. 534+0.014. The value v =0. 54+0.03 appears
to be significantly lower tha, n the value v= 0. 701

INCOMING ENERGY E. =6.6 meV

The results of this section can be used to investi-
gate the progressive breakdown of the hydrodynamic
(Lorentzian) form for the cross section above T„
with increase in the ratio q/K. In the case of a
Lorentzian distribution, the half-half-width is by
definition the characteristic frequency and thus the
correlation function (6. 13) can be computed for
general values of q and K using the &o„(q) values
given by Eq. (6. 16). The suitability of the Lorent-
zian form for the energy dependence can thus be
tested without at the same time treating the half-
width as an adjustable parameter which can artifi-
cially improve the agreement. Figure 21 shows a
comparison of computed curves and experimental
data for q= 0 at different temperatures. In compar-
ing with experiment, Eq. (6. 13) has been convoluted
with the resolution function. The agreement is en-
tirely satisfactory and is to be expected on the basis
of the discussion in Sec. VIC. Figure 22, on the
other hand, shows the gradual failure of the agree-
ment for increasing values of q/x. In Fig. 21, the
central points have been deleted because of the in-
terference of a weak nuclear reflection coming from
a higher-order wavelength contamination. This
interference is not present in the data of Fig. 22
where q is different from zero.

E. Inverse Range Parameter for T & T~

Two-crystal data can be satisfactorily interpreted,
as we have seen, to give the inverse range param-
eter z and temperature index v above T„. The cor-
responding analysis for 7 & T„ is difficult to carry
out, largely because of the interference of the Bragg
magnetic peak. The index v for T & T„can, how-
ever, be determined indirectly from three-crystal
data using the hydrodynamic analysis of Halperin
and Hohenberg. They find, in the long-wavelength
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FIG. 21. Calculated and observed intensities as a func-
tion of energy transfer at q =0 for different temperatures
above Tz. Observed intensities are in counts per 6 min of
time and refer to an incoming neutron energy of 6.6 meV.
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INCOMtNG ENERGY E; =6.6 meV
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FIG. 23. Log-log plot of ~x vs Tz- T. Solid line is
the result of least-squares analysis carried out using the
five data points within the temperature range of 6 deg
from Tgo

for which the analysis is simpler. A number of
conclusions of a general nature are obtained, which
are not substantially altered by finite resolution.

1. Eorrnulatt'on

Figure 24 shows a schematic diagram of the scat-
tering geometry in reciprocal space for a two-crys-
tal scattering arrangement. Since we are consider-
ing the case of perfect resolution, the only neutrons
which are detected are those scattered through the

0 I I I I I I I

—I.5 —I.Q -0.5 0 0,5 I.O I.5
ENERGY TRANSFER (me V)

FIG. 22. Calculated and observed intensities as a
function of energy transfer showing progressive failure
of the hydrodynamic (Lorentzian) form for the cross sec-
tion with increasing q/r. Incoming neutron energy 6.6
meV; intensities in counts per six minutes of time.

+0.011 obtained for T& T„. A recent calculation
by Helmso for the Ising model and the simple cubic
lattice gives v'=0. 50 and v=0. 78.

VII. APPROXIMATION METHODS FOR TVfO-CRYSTAL
INELASTK SCATTERING; ANALYSIS OF QUASIELASTIC

APPROXIMATION

In the interpretation of the two-crystal data de-
scribed in Sec. IV, use has been made of the quasi-
elRstlc approximation. BecRuse of the quRntitatlve
character of the information we wish to extract
from the data, we examine in this section the gen-
eral problem of the interpretation of two-crystal
inelastic scattering and furnish estimates of the
inelasticity corrections in the case of RbMnFS.

A. Case of Perfect Resolution

We discuss here the ease of perfect resolution,

FIG. 24. Schematic diagram of the scattering geome-
try in reciprocal space for tvro-crystal inelastic scatter-
ing with perfect resolution. A process is represented
which involves a definite energy transfer from the neutron
to the sample. kr- is the wave vector of the incident neu-
trons and g& is the direction of the scattered neutrons.
All neutrons scattered in the direction f& are detected.
Yo every value of the energy transfer I~ there corre-
sponds a definite value of the final wave vector k&, deter-
mined by the conservation law Ru = (5 /2m) gq -k~).
M~(kl) is defined by the relation k&=kg~- dX~. q(z) is
the corresponding wave vector transfer measured with
respect to the reciprocal lattice spot 2g7", namely, q(+)

kI ~E(GO~ 27&T
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fixed scattering angle 28 = 28~. I et i ~ denote the
d1x'ectioQ def1ned by this constant-28 condlt10Q. If
kl is the wave vector of the neutrons incident on
the sample, then to evexy value 5 of the neutxon-
to-sample energy transfer there corresponds a def-
inite value of the final wave vector ks given by ks(~)
=is(klan —2nl&/tI)lls. The momentum transfer is
defined by g(M) =kl-kz(~) and we denote by q{&)
the momentum transfer relative to the reciprocal
1Rttlce spot 2%1 ) tlla't ls) q((d} =t)1((()) —2III'. If we
substltllte ks((())) Q((d)~ q((()) illto tile dlffel'entlal
scattering cross section {6.10), we obtain

= const &&

k ~f(4(&))
~

'
I ~~i) r C,(q(~), &) ~

I
(v. I)

This equatioQ gives, for any value of energy trRns-
fer, the differential. cross section for neutrons
scattexed with constant scattering angle 28 = 283.
Note that this "constant-angle" cross section be-
comes, in the limit E,- ~, a constant-Q cross sec-
tion [Q=Q(0)j as a consequence of the relation

kI —ks(~) = k,h'~/2E, + higher-order terms . (V. 2)

The observed intensity is obtained by integration
of (V. 1) over final neutron energies; namely,

&(I(o)l" ~ (1(0))=f~~ „0„(1(~),~)

This equation is a line integral in reciprocal space
along the xadial path that has origin in 0' and passes
through the point q(0). We then formulate the quasi-
elastic approximation for the intensity by the state-
ment

do'

~ (q(0)) = d& ~ d~ (q(~), ~) =co»t&«, (q(0)).
d. o

(V. 4)

Sufficient conditions on N& under which this equation

l

hoMs can be given as follows: If h+ is sufficiently
sIIIR11 compared to E; so tllRt, uslllg Eq. (V, 2}, 'tile

"static approximation" conditions

k„(~)=k, (V. 5a)

Q(~) =0(0), (v. 5b)

q(&) = q(0) (7. 5c)

Rle SRtisf led; Rnd furthermore, lf

then it foBows from Eq. (V. 2) that

f(q(0))= constx f d(u C„(q(0), (u)

and, using the sum rule (6. 3), that

f(q(O)) = const&& C„(q(0))

(V. 6)

{V.V)

(V. 6)

This is the quasielastic approximRtion as formulated
in Eq. (V. 4). Note that condition (V. 6) is quite a
weak requirement since C(q, 4&) is even in ~, and
tlllls lt follows f1 0m (V. 3) that col'I'ectlolls to ths
quasielastic approximation are of order highex than
the first in tt(d/kT. The same, however, cannot
be said for the "static approximation" (V. 5); while

Q(0) and k, can easily be large compared to &k), ((d)
= kI —ks(&), this is hardly true of q(0). In fact, in
the case of two-crystal measurements, the constant-
q approximation (V. 5c) is rarely satisfied, so that
the applicability of Eq. (7. 4) to the measurement
of the static parameters x, v, and g requixes fur-
ther justif ication.

2. Qussielastic Approximation in Region 11 (q»»)

a. EailIII's of const(Int-q aPPI"oximation. We are
going to make use of the dynamical properties of
the cross section in region II, as determined in the
three-crystal measurements, in order to calculate
the energy-dependent "constant-angle" cross sec-
tloIIS (V. 1) Rnd using tllese the corresponding 11118

integrals (V. 2). These calculations are carried
out with experimental parameters E& and 2pv' ap™
propriate to oux' two-crystal experiment. Using
the results of Sec. VIB for region II (»=0 and hence
q/»= ~), we write

~here @=0.055, a=j..82, C=G. OO, C=9.66, D
=16.0; and, in addition, E;=48.0 meV and 2m''
= 1.2876 A '. The computed line integrals will be

compared with Co(q(0)) to determine to what extent
the quasielastic approximation (7.4) is satisfied in
our two-crystal measurements in region II. It
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FIG. 25. Illustration of the failure of the constant-q approximation in a hvo-crystal ("constant-angle" ) experiment.
8olid lines represent the "constant-angle" energy dependence of the cross section for the actual two-crystal experiment
(E& =48.0meV; 2~1 is the range of AI covered over the indicated range of M). Dashed lines show the corresponding
energy dependence in the ideal case in which the constant-q requirement is satisfied; namely, in the limit E& —. Two
sets of curves are shown fox several positive values of q(0). A positive sign for q(0) corresponds to the experimental
arrangement shown at the top of the figure; namely, with the reciprocal lattice spot lying inside the &=0 sphere.

should be noted (see Fig. 24) that the same value of
I j(0) I can be obtained for iwo symmetric positions
of 2m' relative to the Bragg position 0=8~. We
shall distinguish them by labelling as —

I q(0) I, the
arrangement in which the reciprocal lattice spot
lies outside the & = 0 sphere, and as + I q(0) I, the
opposite one. With this convention, the calculated
line integrais do/d& are functions (do/d&)(q(0)},
where q(0) ranges from negative to positive values.
The above distinction is necessaxy when discussing
the quasielastic approximation because, for the
calculated line integrals, one obviously has, in

~ (q(0)) &
~~ (-q(0)) .

The first resu]. t of these calculations is that the
"static" conditions (V. 5), introduced in the preced-
ing section to derive the quasielastic cross section,
a1e fal from fulf111ed. T1118 1s shown 1n Flg. 25.
The solid lines represent the "constant-angle" en-

ergy dependence of the cross section for the param-
eters used in the actual bvo-crystal experiment.
The dashed lines show the corresponding energy
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I sating for faiLure of constant-q condition. The
quantity measured in the two-crystal experiment is
the area under the curves in Fig. 25. If one com-
pares the area under the "constant-angle" cross
sections to the area under the corresponding con-
stant-Q cross sections, one finds that a mechanism
of compensation is operative, which tends to balance
the discrepancy for 5 & 0 against that for 8&&0.
Further insight into the origin of the above mecha-
nism is gained by introducing in the integration
{V.3) the new dimensionless variable x, defined by
the differential relation

1dx= (~( ))
d~ . (7. 11)

0 l [

2 I

I l I l l

0 -2

FIG. 26. Illustration of the "energy-averaging" mecha-
nism, discussedin the text, compensating for the failure
of the constant-q approximation. Plots represent the
"constant-angle" cross sections d o/dQ (f(: defined by the
relation

fdic&

d2c/dQd&u = fdic d o/dQ dx, where x is the
variable defined by Eq. P.11). Solid lines are calculated
cross sections for the parameters used in the actual two-
crystal experiment g& =48. OmeV), while the dashed lines
correspond to the ideal case in which the constant-q re-
quirement is satisfied; namely, the limit E& ~. Differ-
ence in the areas under the solid and dashed curves is
1.6% for q(0} =0.01 K t, and 18% for q(0}=0.30 L ~.

&L(r = u, Ltd)(&(q(0))/2E, (7. 1o)

Thus one can see that the condition q(&) = q(0) is
hardly satisfied even for the most favorable case
[q(0)=0.01A'j represented in Fig. 25, where Akz
= 0.0012. Therefore, the breakdown of the "static"
approximation actually is brought about by the fail-
ure of the constant-q condition (V. 5c). In spite of
this failux e, however, the quasielastic approxima. -
tion (V. 4) remains satisfactory for mally two-crys-
tal experiments because of the existence of certain
compensating mechanisms which are discussed be-
low.

b. "Energy-averaging" mechanism comP en-

dependence in the limit E& -~, in which case the
static condltlons are obviously satisfied. Com-

parison of the paired curves shows that under the
conditions of the actual experiment the "static ap-
proximation" breaks down. That this should be so
in the present case, as in most two-crystal experi-
ments, is apparentfrom the magnitudes of ~k&, the
"0 inelasticity" of the scattering in reciprocal
space. nlrb can be estimated from Eq. (V. 2) by re-
placing (() with the characteristic frequency (()()(q(0)),
glvlng

The characteristic property of the new variable
thus defined is that equa1. intervals dx correspond
to different energy intervals d, depending on the
point where they occur on the energy axis. Specifi-
cally, these intervals d are proportiona1. to the
width &0(q((d)) assigned to the shape function f at
that point. Note that in general xo(d/(do(q((c)) be-
cause {do is not constant. In fact, by logarithmic
differentiation of (d/&(){q(a))) one obtains

d[~/~, (q(~))l - d~ = - - din ~a(q (&))
(()0 q (()

dq(&)
~.(q(~)) q( )

(V. 12)

(V. 13)
A measure of the difference between q(+) 'and q(0)
is given by 4L'tz, the "k inelasticity" of the scatter-
ing in reciprocal space defined in Eq. (7. 10). The

After changing variable in Eq. (V. 3), the resulting
integrands can be pl.otted as a function of x, and
we obtain the curves of Fig. 26 for the two extreme
cases q(0)=0. 01 and 0. 30A'. Comparing constant-
angle and constant-Qcross sections in Fig. 26, we see
that the over-all area compensation results from a
point-by-point compensation of equal, and opposite con-
tributions at +x, and -x. The difference in the two
areas is only 1.6% in the q(0) = 0. 01 A ' example and

does not exceed 18% even in the extreme case q(0)
= 0. 30 A '. The mechanism ill.ustrated above by
direct computation for the case of our particular
experiment, actually arises from a general property
of the integrand. In what follows, we present an
analytical. formulation of this property, leading to
the definition of a parameter for estimating the in-
elasticity corrections to the quasielastic approxi-
ma, tion.

Assuming for simplicity that, , among the condi-
tions (V. 5) and (V. 6), only the requirement q(&)
=q(0) is not met, we obtain from Eq. (V. 3)
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percentage difference of the integrand of (7. 13) from
its constant-q value is, in region II, proportional
to

d lnC, ( q(0)) B Inq(~)
d lnq(0) Bs

(V. 21a)

c = Akz/q(0) (7. 14)
8ln

and this is therefore a convenient parameter in
terms of which to study the deviations from the
"static approximation, " Using Eq. (7. 10), s is
given by

d lnf [(u/u), (q((u))] B [u)/(u, (q((u))]
d [~/~0(q((d))]

I ))ro, (q(0))
)a'k, q(0)

(7. 15) d»f-(x) B[~/~0(q(~))]
dx Be

Since = 0 corresponds to the "static approxima-
tion, " one has, setting q((d) = q(0) in (7. 11),

(u= (do(q(0)) x . ('I. 16)

(() = (()(x, z) . (V. iV)

The & dependence of q((d) —q(0) for &-0 can be
easily obtained as follows: From Fig. 24, one sees
that q((d) —q(0) =[kz —ke((d)] cos8() and hence, using
(V. 2) together with (V. 16), one finds

For general c, Eq. (V. 11) implicitly defines the
change of variable, (d - x, as an & -dependent trans-
formation, because q(ru) —q(0} is a function of s;
thus, effectively, one has

Equation (7. 21a) is odd in x by virtue of (V. 18),
since dlnCO(q(0))/dlnq(0) is a constant. As for
(7. 21b), one finds that it too is odd because f„(x)
is even in x and so is f B[&u/(()o(q((d))]/Bs] c o ac-
cording to Eq. (V. 19). Thus, if one compares val-
ues of the integrand of Eq (V. 2.0) at + x and —x,
one finds that corrections to the constant-Q cross
section, f(x) Co(q(0)), cancel each other up to first
order in s.

As a consequence of the above analysis, one
finds that

—(q(0)) 2 «f-(x) C (q(o)) [1+o(s')]
dO 0

- const xxc (z- 0).
q(o)

Applying this result to (V. 12), one obtains

(V. ie) = Co(q(0))() + 2 dx f (x) (c~))0, (7. 2R)
0

d[(d/~0(q((d))]-dx-const x xd(x&) (c-0) .
(7. 19)

Let us now introduce the new variable x into Eq.
(V. 13) by means of the transformation defined by
Eq. (7. 11) and formally represented by (V. 17).
Expansion of the integrand of (V. 13) at constant x
around & = 0 then yields

~~ (q(0))

8 lnCp

m OO
QG

= const x «Co(q(0)) 1+ — s +
p=0

x f„(x) 1+ " B+... (V. 20)
Bin f„

c=o I

where the values off and Co at the point B = 0 have
been obtained using q((()) = q(0) together with Eq.
(V. 16). The partial derivatives in Eq. (7. 20)
are functions of x. In fact, one can show that they
are odd functions of x as follows:

(
B lnCO d lnC() (q((d)) B lnq((d)

Bc ~ 0 dlnq((()) Bs e 0

and thus that the inelasticity corrections to the
quasielastic cross section are in general of order
c; that is,

I I Kro,(t)(o)))'
q(o)

(V. 23)

This is a convenient parameter for estimating the
validity of the quasielastic approximation. For the
two cases shown in Fig. 26, the values of c are
0. 016 for q(0) = 0. 01 A ~ and 0. 25 for q(0) = 0. 30 A ~.

In order to have a quantitative picture of the ap-
plicability of the quasielastic condition (7.4) in our
two-crystal experiment, we have made explicit
calculations of the cross sections, (do/d&) (- I q(0}l)
and (do/dO) (+ I q(0) I ), namely, the areas under the
solid-line curves of the type shown in Fig. 25, and
compared them to their quasielastic values,
1/lq(0) I "())=0.055) for the range 0. 01 A '& Iq(0) I

& 0. 31 A '. The result of this comparison is shown
in Fig. 27 together with the Ornstein-Zernike form
1/I q(0) I . Calling any of the above four functions
I, what is, in fact, plotted is ln(lq(0) I "I), with I
normalized to a fixed value at q(0) = —0. 01 A '. In

this plot the deviations between any pair of curves
gives directly the percentage difference between
the corresponding functions. The departure of
dv/d 0from the quasielastic value is small over a wide
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FIG. 27. Comparison of the two-crystal cross sections,
{da'/dO) f+ t q{0) I ] and {do/dQ) f- ) q{0) ) ], calculated using
g = 0.055, with the quasielastic approximation to them,
1/I q{0) )

2 ". Inadditioncomparisonis shownwith the Orn-
stein-Zernike form 1/) q{0) ) . Calling any of the above
four functionsI, we have plotted ln[lq{0) ) "I], where I has
been previously normalized to a fixed value at q(0)
=-0.01k . In this plot the deviations between any pair
of curves gives directly the percentage difference between
the corresponding functions.

range of I q(0) I. Note, that if one wishes to de-
termine g using the quasielastic approximation, the
deviations of do/dQ from the quasielastic value
1/ Iq(0) I

s " must be small compared to (1/ I q(0)
—I/Iq(0)~"). The curveforI=1/Iq(0) I has been in-

cluded in Fig. 27 to make this comparison possible.
An important detail in Fig. 27 is that (do/d Q)

x (+ I q(0) I) and (do/dQ)(- I q(0) I ) are represented
by solid lines, which go over into dashed lines for
higher values of I q(0) I. Only a qualitative signifi-
cance is to be attached to the curves over the range
of I q(0) I covered by the dashed lines. This caution
is justified because, the larger I q(0) I becomes, the
greater is the inelasticity of the scattering and
hence the larger is the range of q covered in the line

I

integration do/dQ. Going out in I q(0) I thus brings
us out of the range where either theoretical or ex-
perimental information on the dynamical properties
of the cross section is available. In fact, we have
verified that the line integrals do depend critically
on such knowledge as the variation with q of the
characteristic frequency &uo(q). Therefore, when

making actual use of calculated two-crystal cross
sections in order to fit experimental two-crystal
intensities (see Sec. VIIB), we will restrict our-
selves to the smaller I q(0) I range covered by the
solid lines in Fig. 27. The upper limit of this range
has been conservatively set at 0. 076 A '. The
range of q and co which is involved in the line integra-
tion at I q(0) I = 0. 076 A ' can be characterized in
the following way: The line integral Jda) d o/dQ d(d

calculated between the I~ limits —5. 5 and + 5. 5

meV, converges to 99% of its total sum and the
largest q in the above range is 0. 35 A .

c. "q aver-aging" meckanism compensating for
failure of constant-q condition Insp. ection of Fig.
27 reveals immediately the presence of a second
mechanism of compensation, in addition to the "en-
ergy-averaging" mechanism, which favors the
quasielastic approximation. One sees there that,
even though at higher values of I q(0) I the individual
constant-angle cross sections (do/dQ) (+ I q(0) I) and
(do/dQ) ( —

I q(0) I) differ appreciably from
1/ Iq(0) I

", nevertheless, the average values of each
pair are consistently in very good agreement with
the quasielastic cross section. This "q-averaging"
mechanism results from a general property of the
cross section and can be given the following analytic
formulation. We have shown in the previous dis-
cussion that, if the integrand of Eq. (7. 13) is ex-
panded at constant x, around c = 0, one finds that
the coefficient of the first-order term is an odd
function of x. If we denote this coefficient by tt(x),
this equation can be rewritten as

—(q(0))o(: a C()(q(0))I 1+2 dxf„(x) tt(x) s+ ~ ~ ~ + a C()(q(0)) 1 —2 dx f„(x)p(x) s+ ~ ~ ~

dA o +&0 Q ao&Q:

(7. 24)

In the previous discussion, the effect of the thermal factor was neglected. Inclusion of this factor up to
first order in k(d/kT yields

(q(0))~ —,
'

C()(q(0)) II+2 dx f(x) t((x) 0+ ~ ~ ~ (I+K(d(x)/2kT+ ~ . .)dQ o co &0

+ —'C (q(0)) 1 —2)~ dx f„(x) p.(x)s+ ~ ~ ~ (I -II (d(x)I/2kT+ ~ ~ ~ )
tal ( (I

= ('0(i(0)) (&" &&( (&) p(&) Gl)/rd(X)) /aT+ ),
0
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&* = &bt/ ) q(0) [ [1+(K/
~
q(0)

~ ) ] . (v. 14')

The final result-of, this generalization can be sum-
marized by the equation

—(+ I q(o) I ) + —(-'I 'q(o)
I ))

l do. do

where, as in the previous discussion, the term that
is first order in 8 and zeroth order in 1{d/bT, drops
out. Now, if we examine t'he "constant-angle" dif-
ferential cross sections in a "+

I q(0) I" arrange-
ment, such as in Fig. 25, we note that the dominant
contribution to the total area is shifted to the posi-
tive side (ru& 0). This is due to the fact that, in a
"+

I q(0) I" arrangement, as (d runs from negative
to.positive values, q(a&) decreases in magnitude
(see Fig. 24 and vector diagram in Fig. 25); this
results in a corresponding enhancement of the posi-
tive side of the differential cross section and de-
pression of the negative side because of the factor
1/(q(a&))« " in the correlation function C{)(q(~)).
Tllus 1{ )q{0)I(x) & 0. Exactly the opposite is true
in the "—

I q(0) I" arrangement; namely, the domi-
nant contribution to the total area is shifted to the
negative axis so that Il, ),{0)((x)= —tl I (0)I(x) Tlllls,
one sees that on averaging (da/dO) (+ I q(0) I ) and
(do/d&) (- I q(0) I) the leading correction term to the
quasielastic cross section drops out. One can
check by direct calculation that the thermal factox'
1/(1+ e ""i«r) is the main source of the asymmetry
between + I q(0) I and —

I q(0) I which appears in Fig.
2'7. If the thermal factor is suppressed in the cal-
culation, the difference between (do'/{gl) (+ I q(0) I )
and (do/dQ) (- I q(0) I) drops from 33 to 6% at the
largest value of I q(0) I, 0. 31 A l.

The immediate consequence of the averaging ef-
fect described above is that, if a least-squares fit
of the calculated two-crystal intensities (Fig. 2V)

is carried out using the quasielastic cross section,
the correct static correlation is obtained over the
whole range, I q(0) I

~ 0. 31 A 1, provided both
"+

I q(0) I" and "-
I q(0) I" intensities are si)nultane

{)usly used in the fit. Furthermore, Fig. 2V shows
that the quasielastic approximation does not ap-
preciably alter the value of g and that a cross sec-
tion with q=O is clearly ruled out.

3. Quasielastic Approximation at a General
Teste t'et@pe

a. Compensation mechanisms for T & T„. The
analytical formulation of the two compensation
mechanisms, which was carried out in the preced-
ing section for the case of region II, can be easily
extended to general temperatures by suitably gen-
eralizing the expansion parameter c defined in Eq.
(V. 14). Henormalizing t),k& by means of q "(K)
= Iq(0) I (1+K /Iq(0) I3) one obtains

C„(q(O)) [1+O(s*')+. .. ] . (V. 26)

Thus, in general, the parameter that must be small
compared to 1 in order for the quasielastic approx-
imation to hold at a given instrumental setting q(0)
is

I otq.{t)(o))q(o))'
2tt'E&» + q'(0) (V. 2V)

In a q(0) scan at a given temperature, a represen-
tative value 1'„ for the inelasticity of the scattering
is the inelasticity associated with q(0) = «, so that

1'„=(o„(K) . (V. 28)

In the same way one can define for such a scan a
representative value u for the parameter c*a, that
lsd

Bh E (v. 28)

L Inelasticity corrections to I4,
' and v. The use

of the quasielastic approximation to determine the
correlation range x from two-crystal measure-
ments gives rise to a systematic error 5»/K as a
result of inelasticity. It is important, however,
'to llo'te 'tlla't tile 1'elative 81':1'ol' bv/v lll tile de't81'1111-
nation of v over a range A, is related to the change
d(5«/»), in 5«/K, through the relation
5v/v = d(5»/K)/d ln«. Thus, the error in v for a
finite range of ~ is given by

l5V (f (5»/K)
v . dlnK

(v. 3o)

In order to estimate the magnitude of 5»/K (and
therefore bv/v) we have used information on the
dynamic correlation function C„(q, &u) obtained from
our three-crystal measurements. We put

1 (d„(q)C.(q ~)"(,«, «)1-.~3 ( (=))3, s,
where (d„(q) is the experimentally determined q-
and K-dependent characteristic frequency (6. 16),
and calculate, for increasing values of w, the two-
crystal cross sections (V. 3) for the experimental
parametex s used in our two-crystal experiment.
Then, for each value of ~, a least-squares fit of the
calculated "constant-angle" cross section,
(der/dA)(q(0)), is performed using the quasielastic ex-
pression 1/(K' + q (0))' "i ()7= 0. 055) and a "best
value" for ic' is determined. The error ax ising
from the inelasticity (5»/» = «'/» —1) is thus ob-
tained. The result of the calculation described
above is shown in Fig. 28, where the semilog plot
of 5»/» vs «corresponding to E, =48. 0 mev, is
represented by the full curve. The calculated error
ranges from+2. V%, at »=2. 45x 10 ' p 1 (T=83. DV

'K), to + 12. 5% at K = l. 135x 10 ' A ' (T = 93.02).
If we now apply Eq. (V. 30), the resulting error in
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.12—
5K 5K—= —(u)

K K
(7. 32)
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We assume first that contributions to the cross sec-
tion that are of second-order in h(u/kT can be ne-
glected and secondly that, among the "static" con-
ditions (V. 5), only the requirement j((u) =q(0) is not
met. The two-crystal cross section (V. 3) can then
be taken to be

&&
(q(0))= t'Dnstx fdec. (t)(td), td)

1 QP= constx d()t) Cz q 4)

(7. 33)

FIG. 28. Semilog plot of the calculated inelasticity
correction gt(/Ic vs z for E& =48meV. Curve corresponds
to the calculation carried out using the experimentally
determined characteristic frequency function (th Q(q/»).
Points represent the results of model calculations for
O(q/e) =1+4(q/f()2, for the indicated values of A. Each
point is labelled by the corresponding A used in the calcu-
lation.

Making use of the static- and dynamic-scaling rela-
tions

C.(q) = »"g (q/») (7. 34a)

(u„(q) = (u„(0) Q(q/») = I'„Q(q/»)/Q(1), (V. 34b)

and introducing the dimensionless variables

q= q/» (7. 35a)

v (5v/v) over the given range of » is 1.9/g.
The function (u„(j) used in the above calculations

is consistent with dynamic scaling, i.e., it is of
the form (u„(0)Q(q/») and, as mentioned above, has
been determined experimentally from our three-
crystal measurements. We have also investigated
the dependence of 5»/» on (u„(j) and have concluded
that the inelasticity corrections depend critically on
the specific function Q(q/») applicable to the ma-
terial. As an illustration of the effect of changing
Q(q/»), we show in Fig. 28 results of calculations
using functions of the form 1+(q/») A for various
values of A.. Note that while a function of this form
is expected to provide a good representation of the
characteristic frequency in the hydrodynamic re-
gion, it turns out that, with A. =O. 45, it represents
the experimental frequencies in RbMnF, very mell
up to q/» =4. Calculations such as these indicate
clearly that adequate knowledge of Q(q/»), either
experimental or theoretical, must be available in
order to obtain reliable inelasticity corrections.

4. Turo-Crystal Method for Minimizing Errors
in v Arising from 1nelasticity

Equation (7. 29) defines a parameter ()( that must
be small compared to 1 in order for the quasielastic
approximation to hold in a two-crystal measure-
ment of K. We now show that, if static and dynamic
scaling are applicable to the material, then, under

(u = (u/r„,

we obtain

dQ (q(0))
d0

(7. 35b)

1 (uQ(1)
onstx d cog Q' (d ~ q( )

(7. 38)
where K" has been absorbed in the constant. Fol-
lowing the sign conventions for q(0) introduced in
Sec. VIIA2, me have

(q((u))s = q(0)s+ (kz —kz((u)) —2cos8 q(0) (kz —kz((u)) .
(V. 37)

If we now substitute for k, —kz((u) its expansion to
first order given by Eq. (7. 2), we obtain

(q((u))'= q(0) +-,'(u m/E, —cos8s q(0) (u(2m/E, )'~' .
(V. 38)

Finally, smitching to the dimensionless variables
(V. 35), we find

q((u) = q(0)a+4u(u' -4 costs q(0) (u (n)'ts,
(7. 39)

where the expression (7. 29) for n has been intro-
duced. Equation (7. 38) together with (V. 39) gives
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FIG. 29. Log-log plot of the inelasticity correction gg/y
vs e =(m/8I ~8&) gZ„/K)2.

the tmo-crystal cross section. If the effect of the
variation of coses is neglected (and this is the third
and final assumption in the present derivation),
then the tmo-crystal cross section depends only on

The quasielastic approximation to this cross
section is given by g (q(0)) and thus the difference
between the two expressions, as mell as the dif-
ference between the values of v derived from them,
depend on a alone. This is just the result contained

Eq. (V. 32). Let us illustrate the dependence of
5v/tc on the parameter u in the case of RbMnFS.
This function can be evaluated explicitly owing to
the fact that the functions 0 and g have been ex-
perimentally determined. In the calculations which
foQom me have made none of the three approxima-
tions mentioned above. Thus 5s/s was evaluated
following exactly the same procedures used to ob-
tain the plot in Fig. 28, mith E& fixed at 48. 0 meV,
and u was obtained from ~ using the definition
(V. 29) and the characteristic frequency function
(6. 16). A log-log plot of 5~/a vs ct is shown in
Fig. 29 and corresponds to the range of v repre-
sented in Fig. 28. This diagram provides the in-
elasticity correction to z; not only in RbMnF3, but
in all closely related systems, for example, MnFq
in which a similar Q(q/~) is expected to apply.

The relation (V. 32} implies that if, as the tem-
perature (i. e., v) is varied, the parameter n is
maintained approximately constant, the change in
5z/s, and therefore 5v/v, can be made zero or
minimal. This can be accomplished by suitably
varying the incoming neutron energy E& as a func-
tion of II.". A specific prescription for this varia-
tion, based on the dynamic scaling relationship
l„~v is given by n=constxz2' "/E, . With this
sealing assumption, the "constant-a" procedure
thus provides a col rect evaluation of v ln a tmo-
crystal experiment in spite of the inelastic nature
of the critical scattering and even in the absence
of yrelIminary three-crystal data.

I=const' d+
&& q v, v (V. 40)

O. I 2—
I I I I I I I I

0.08—

0.04—

.OOI
I I I I I l l I I

O.OI

t~ (A )

O. I

FIG. 30. Semilog plot of the correction &I(/I(; vs g for
the hypothetical experiment at constant 0, described in the
text (solid line) and for the actual experiment at constant
E~ gong-dashed line). Short-dashed horizontal line cor-
responds to the ease of an "ideal" experiment at constant
6 ~

Again, let us illustrate the above procedure for
the case of RbMnF3. The lower limit of the range
of I(; covered in our tmo-crystal experiment is equal
to 2. 45x10 s A ' (Fig. 28). In the actual measure-
ment E, was 48. 0 meV, and this corresponds to ~
= 0.00134. We could have chosen, for example,
to set E, equal to 6. 6 meV mhich gives n = 0. 00975,
and as x increased, to increase E& so as to keep
n constant up to say E; = 87. 1 meV corresponding
to ~= 0. 08 A '. In such a hypothetical "constant-
&" experiment, 5a/s would be expected, on the
basis of the plot in Fig. 29 and if Eq. (V. 32) held
exactly, to be a constant and equal to 7. 5/o. The
dashed horizontal line in Fig. 30 represents this
"ideal" case which would give 5v/v= 0. The solid
line in Fig. 30 represents the actual 5~/s-vs-~ de-
pendence calculated without introducing the three
approximations on which Eq. (V. 32) is based. Com-
parison of these two curves gives a measure of how
effectively, in our practical example, Eq. (V. 32)
can be used and the "constant-a" procedure ap-
plied. In particular, by applying Eq. (V. 30) we find
that the inelasticity correction 5v/v associated with the
"constant-&" procedure is down to 0.45%, in com-
parison to the 2. 4%%uo value associated with the con-
stant E; procedure over the same range [see dotted
curve in Fig. (30)].

8. Case of Finite Resolution

j.. General

a. Formulation of the quasielastic approximation
for finite resolution. In the case of perfect resolu-
tion, the observed intensity is given by Eq. (V. 3),
which simply adds uy all the contributions to the
scattering coming from the different possible en-
ergy transfers; namely,
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The formulation of the quasielastic approximation
is then contained in Eq. (V. 4):~ ~

~ ~d{{) — (q(())), {d}= const' C„(q(0)). (V. 41)

However, in any real experiment, the observed in-
tensity is given by a more complex integration than
Eq. (V. 40) (see Appendix for a general treatment
of inelastic scattering in the two-crystal experi-
ment). One must take into account that, for a gen-
eral energy transfer I~, the experimental arrange-
ment allows not only the momentum transfer kl
—kg({{)), but a spread of momentum transfers 1n

Q space axound the most probable one. The detec-
tion efficiency over the above region is described
by the "inelastic two-crystal resolution function"
R(x, y, s, ur) [Eq. (AQ)] in terms of a set of coordi-
nates (x, y, s) which, for given &e, defines the vec
tor separation of a point in Q space from the posi-
tion where the detection efficiency is maximum.
Hence, the total observed intensity is obtained by
summing up the scattering cross sections associated
with the different scattering events, each one
weighted with the proper value of the detection ef-
ficiency; namely, [Eq. (A8)],

I= constx dxdg Qg d4) R g» g» g» 4)

X (q ({())+xig+yjs+ &is, {{)) {V,42)

where q, (&o) = kz -ks({{))—2)Tr is the most probable
q associated with energy transfer I&a and (is, j&, l&)
is a set of orthogonal axes with origin at q,(~) (Fig.
32), The quasielastic approximation for finite res-
olution, on the other hand, .can be formulated as a
convolution of the static correlation function with
the elastic resolution function only; that is,

I= constx f dx, dy, ds,

x R(x„y„s„0)C„(q,(0) + x,iI, + y,jr+ s, lr),
(V. 43)

grhere the subscript e indicates that coordinates are
referred to the axis system with origin at q,(0},
the nominal instrumental setting for elastic scat-
tering.

We now examine the conditions under which the
exact expression (V. 42) can be replaced by the ap-
proximation (V. 43). In the Appendix, we have de-
rived an "elastic resolution function" approxima-
tion to Eq. (V. 42). This result is expressed in
terms of line integrals of the form

J d{d d~d {q,(0)+ r) q, + (k{ — k)ti {tb q~, k{, 5{),({)) .

Figure 33 shows the integration path in reciprocal
space associated with a general integral of this
type. The vector iz is the direction of the path and

q,(0)+ & q, is the point on the path where k&= (k,
—2m'&/h) ~ is equal to k& (i. e., ~=0). We find
that if

d~ d~ ~ (e(Q) ~ & q, + (0, —kI)i~(&q„k„ I!),(a)

fdic)

(t)(D)+ i q. + [0, k~(~)] i~ (at4, )|„0-),.a ),
(V. 44)

then Eq. (V. 42) becomes [Eq. (A2V}]

dg dy gg g g y g Q d(g q Q +Qq + Q Q (g j gq Q Q

Finally, in order to obtain (V. 43) from (V. 45), one must require in addition that

Combining (V. 44) and (V. 46) we can state the conditions for the quasielastic approximation in the case of
finite resolution in compact form:

~g{j(0)'+aq„kg, 5i) fdsi ~g~ {q(o)+aq ~ (kg-ki)iI{i q h, , 5), (a)=c( i(o)+„aj) .t (V. 4V)

Equation (V. 4V) is the generalization of Eq. (V. 4)
to the case of finite resolution.

L Practical method for aPPlying "elastic reso
lution function" approximation to inelastic analysis
of two-crystal data. The intensity can in principle
be calculated exactly from Eq. (V. 42) in terms of

d o/dA d(d, by using the inelastic resolution func-
tion R(x, y, s, &u) derived in the Appendix. This is
a formidable computational problem since the con-
volution requires that the resolution function be
calculated at each point of Q-u& space. Consider-
able simplification can be achieved by invoking the
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"elastic resolution function" approximation (V. 45)
since only the ~=0 resolution function is required
and this can generally be obtained directly from
experiment. In spite of this simplification, how-
ever, Eq. (7. 45) requires that for each point b, q,
in the elastic resolution volume, a different line
integral (do/dfl) (q,(0)+ &q„kr, 0) be calculated.
A significant saving of computer time can be real-
ized using a further approximation which relates
the general line integral to the integral along the
most probable path, but which is nevertheless still
far weaker than the quasielastic approximation
represented by (7. 4V). The approximation is the
following:

(q, (0) + 4 qq) s kr s 0) (q (0), k&, 0)

the static correlation function C„(q,(0}+b, q,).
Equation (7. 48) becomes

(r(a q, ) C(a q, )
(r(0) C(0) (V. 48')

Let us write

(r(~ q, ) = C(& q.) II+ (5(r/(r) (&q.)],

(r(0) = C(0) [I + (5(r/o} (0)],

(V. 49a) .

(V. 49b)

a(b q, ) C(b, q,) 5o
( )

(r(0) C(0) o

where 5o/o represents the error introduced by the
quasielastic approximation. Dividing (V. 49a) by
(V. 49b), we obtain

= C„(q.(O}+n q,)/C„(q, (0)), (7.48)

that is, the ratio of the line integrals is approxi-
mately equal to the ratio of the quasielastic approx-
imations to these integrals. A necessary and suf-
ficient condition for (V. 48) to hold is„that the change
in the quasielastic error over the elastic resolution
volume be small compared to unity. To see this,
let us introduce the notation (r(4 q, ) for the line in-
tegral (do/d 0) (q,(0)+ 6q„kr, 0) and C(b, q, ) for

where d(5(r/(r) is the change in the quasielastic er-
ror over the resolution volume. Thus, Eq. (V. 48)
is equivalent to the condition

d (5(r/(r) «1 . (V. 50)

This condition is inherently less stringent than that
for the quasielastic approximation itself and there-
fore one would expect the approximation (V. 48) to
have wide applicability. Inserting (7.48) in the in-
tensity expression (7. 45) leads to the final result

l(q. (0))=zssstz„(q(0), qz, q)f dz, dz, dzR( z ,zS„„)Cq(q.(0)zdq, )/C„(q(0)). (V. 51)

This formula provides a practical method for car-
rying out the inelastic analysis of two-crystal data.
Note that (d(r/d0) (q,(0), kr, 0) is identical with the
line integral ((fo/d 0) (q(0)) defined for the case of
perfect resolution in (7. 8). Thus, Eq. (V. 51) can
be looked upon as a perfect-resolution intensity,
corrected for the effect of finite resolution. The
correction factor is the ratio of the quasielastic
intensity expressions for finite and perfect resolu-
tion. An application of this method is presented in

Sec. VIIB2.

2. Inelastic Analysis of Trio Crystal Data for-
RbMnF, in Iiegion II (q»«)

In Sec. IVA, we have described several deter-
minations of the parameter g of the static correla-
tion function, and have quoted results of an in-
elastic analysis of "Neel-temperature intermedi. -
ate-q" data. This inelastic analysis was based on

Eq. (7. 51) and is described in detail in the present
section. It is applied to data obtained in region II,
where two-crystal measurements are most sensi-
tive to q, and where the energy dependence of the

scattering is known from three-crystal experi-
ments.

The data were taken at T = 83. 055 and with an in-

I

coming neutron energy equal to 48 meV. In the
three-crystal experiment described in Sec. VI 8,
we have measured the differential scattering cross
section ds(r/d 0 d&u under the conditions

q»x,
q && q~B

(V. 52a)

(7. 52b)

where q» is the magnetic zone boundary which,
for the (111)direction, is 0. 64 A '. This deter-
mination of the cross section does not distinguish
between values of g in the range 0-0. 1 because of
the limited accuracy of three-crystal data, so the
measured d (r/d 0 (f&u can be considered to contain

g as an unknown parameter within that range. Us-
ing d (r/d& d&u, we can now compute the line inte-
grals (d(r/d&) (q,(0)) in Eq. (V. 51) as a function of

In order to satisfy condition (V. 52b) over the
range of these integrations, we limit the maximum
value of I q,(0) I in this experiment to that obtained
for line integrals of this type in Sec. VIIA2, where
we investigated their convergence for the particular
value of q = 0. 055, and set a conservative upper
limit for I q,(0) I of 0. 076 A . The lower limit to
I q,(0) I was set, in accord with (7. 52a), as 0. 018
A, which is approximately 10K at this tempera-
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I I so high with respect to the background that it too does
not play any role. (In fact, the background has been
estimated to be of the order of 30 counts on the
scale of Fig. 31.) Thus, the only free parameters
used in the above fits mere g, the zero shift, and
the normalization. factor.
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FIG. 31. Plot of in/'p+") vs p(g=0. 044). I is the total
intensity and P is the misset angle of the sample from the
Bragg scattering position. $ scales are lagarithmic.
Solid curve is the result of a least-squares fit to the ex-
perimental points carried out using the practical method
for inelastic analysis of two-crystal data discussed in the
text(Eq. 7.51); the resulting value of q is 0.044. Note the
asymmetry of the data. This asymmetry, as one can see,
is fully reproduced by the calculated intensity curve ob-.
tained by means of the experimentally determined elastic
resolution function.

APPENDIX: INELASTIC SCATTERING IN TWO-
CRYSTAL EXPERIMENT

A, Definition of Two-Crystal Inelastic Resolution
Function

Figure 32 is a diagram of the scattering geome-

ture. Thus, for the combined range —0. 076 & q,(0)
& —0.018 A t, 0. 018 & q,(0) & 0. 076 A i we compute,
in terms of q, the two-crystal intensity pattern
(7. 51) and perform a least-squares fit with q as a
free parameter. The result of the fit is shown in
Fig. 31, where the range of angles corresponds to
the range of q,(0) indicated above. The best value
is q = 0. 044 + 0. 008.

A conventional quasielastic fit of the same data
has also been performed, giving g = 0. 060 + 0. 008.
We conclude therefore that inelasticity causes an
overestimation of the value of g determined in the
quasielastic approximation. This conclusion is
consistent with the result of direct inspection of
Fig. 2'7. Here it is evident that if one tries to "fit"
(do/d &) (+ I q, (0) I ), for I q,(0) I & 0. 076 A ', with a
single quasielastic curve I q,(0) I" a, with ii as a free
parameter, one will obtain a value of g greater than
that which was originally fed into the calculation of
d(r/d Q.

Finally we wouM like to point out that the data
in Fig. 31 provide a rather direct determination of

In the general case, z and the background must
also be determined, together with g, in order to fit
the raw data. Unfortunately, these quantities are
strongly correlated mith g and therefore contribute
additional uncertainty to the determination of its
value. However, in the measurements we have
just described, we see that (a) since q» v, v does
not play any role (actually, we have verified that
leaving ~ as a free parameter does not alter the
result); and (b) since we are essentially performing
a small-q experiment (q«qza), the intensities are

FIG. 32. Vector diagram in reciprocal space for a
two-crystal inelastic scattering experiment. Figure
shows processes involving a definite energy transfer hz
from the sample to the neutrons. Vectors drawn with a
dashed line represent a general event whi1. e the ones drawn
with a full line represent the most probable process. k&
is the most probable wave vector in the in-Pile collimator,
kr the most probable wave vector in the monochromator
to sample collimator, and Q~ themostprobable scattering
vector for the Bragg reflection in the monochromator;

A
furthermore iz is the optimum direction in the sample-to-
detector collhnator and jr a direction orthogonal to it.
We define kz((d) = iz(kr- 2m ~/I) ~ Q~(&) =&I-kg(&) is
the most probable among the wave vector transfers occur-
ring in the sample with energy change ~. Each k vector
labelled with a lower-case subscript refers to a general
process and its meaning is identical wi.:th the one defined
above for the corresponding vector labelled with a capital
subsc. ript.
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try in reciprocal space for a two-crystal scatter-
ing experiment in the neighborhood of the recipro-
cal lattice point 2m7. Neutrons passing through the
in-Pile collimator (collimator 0) are scattered first
from a monochromator (scattering angle 28„);
then, after passing through the monochromator-to-
sample collimator (collimator 1), they are scat-
tered through an angle 28~ by the sample into the
sample-to-detector collimator (collimator 2). ks,
k&, and k& are in-Pile, incident-on-sample, and
final wave vectors, respectively, in a general
scattering process. k~ is the most probable wave-
vector incident on the sample and i„ is the optimum
direction in collimator 2. yo, y~, and ya are the
horizontal divergence angles with respect to the

optimum directions in collimators 0, I, and 2;
60, 5z, and 52 are the corresponding vertical ones.
In addition, we define bk» = k, —k~. Q„ is the most
probable scattering vector for the Bragg reflection
from the monochromator; P»» and P»» measure the
horizontal and vertical divergence angles, respec-
tively, of the general scattering vector with respect
to the optimum direction. Let Po(ys), P&(y»), Ps(ys)
be the horizontal transmission functions for the
three collimators, and P»'»(6»»), P»(6»), Ps(ls) the
corresponding vertical ones, Furthermore, let
P»»(»t »») and P»»(p»») be the probability functions de-
scribing the horizontal and vertical mosaic spreads
of the monochromator. + The total observed in-
tensity is then given by

I= Jd6»» dk» db» dy» dys d5s dk& (1/2 sin 8»») Po(80) P»» (kr (6» 50)/'Q»») P»'(6») Ps(5s) P»» ({nk»/k») tan'0»» + y~)

x P,(2(nk»/k, ) ta 8„+y, )P, (y, ) Ps(ys) (do/dy, df, dk, ) (k» -k, -2m~, (ks» - ks) ks/2m, k„~,), (Al)

where do/dys d6s dk& is the inelastic scattering
cross section which is defined in terms of
d o/kdQd(u by the relation

In order to define the resolution function we now

introduce a new set of variables. If S~ is the en-
ergy transfer (5 /2m) (k„—k&), we define the vector
function ks(~) = is(k» —2m&0/5) ~ which is the most
probable final wave vector for processes involving
an energy transfer equal to 5cv. Then, defining
the wave-vector transfer in the sample as Q-=»I

+2»»v -=k, —k~, the vector function Q, (&u) -=»I, (&o)

+ 2sr = k» -ks(&o-) will be the most probable wave-
vector transfer associated with an energy transfer
Na&. Let us put b»I=»I —»I,(&u) and consider the com-
ponents of hq with respect to the two horizontal
axes iz and j~, as well as the vertical axis l~.

A

We define x, y, and z by b,q=xi&+yjz+zlz. We
now change variables in the integrand of E»I. (Al),
from the set (5»», k, , 6», y», ys, 5s, k&) to the set
(5& k„5&, x, y, s, &s). If y„y„5„5sare small
angles, so that contributions of order higher than
the first can be neglected, then the equations which

I

I

transform one set into the other are

x= -y» k»sin28s+Ek»cos28s —ky(k», (d)+kg(»s),

p = —y» k»cos28s CLk»sln2'8 s+kj(k», td)ys,

s=k» 5g —ks(k», »s)5s,

where

k&(k», »s) = (k» —2m&v/k) ~

(AS)

Assume the inelasticities in the scattering to be
small enough to satisfy the condition

240] kq (A4)

thus implying that bk»/kz « I and allowing the sub-
stitution ks —k&= —h, k» kz/ks. Then E»ls. (AS) be-

x = —y» k» sm2 8 s —nk» [k»/ks((0) —cos28 s]

y = - yg kg cos28 s —nk» sin28s + ks((u) ys, (AS' )

s = k» 5» —kg(»s) 6s .
Solving with respect to y&, y2, 52, we obtain

y» = f —& —nk» [k»/ks(&) —cos2 8 s ]] /kr si"2 8 s -=f» {bJh» ~ x &s) ~ (Asa)

0

ys=
y+ ' ' + ' (—x —nk» [k,/ks(»s) —cos28s] I

= [3' —cot(2'8's) +]/ks(&)+ [nk»/ks(&)](sin28 s —cot28s [k~/ks(ur) —cos28s]) =fs(dk», x, y, (u),

os={ s+ks 5»)/kp(»s)-=-fs(&x, s, (u) ~

F1Ballyy 1f we put

(bk»/k~)tan8»»+f»(bk», x, (jo) =f»»(hk», 5, (d),

(A5b)
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2(bk»/k») tan 8»» +f» (&k» )x )e) -=f()(rN», x, &u),

changing variables in the integrand of Eq. (A1) gives

I~ J d5() dk» d5& (fx dy dz d(() (I/k»»n e»»»n(2e2)k» ((d)) Po(6o) P»» (k»(6& —~o)/Q»») P», (&») Pa (f2(6» y zy ~))

3241

(A6e)

xP»» (fj»(&k», x, ~))P()(fp(nk», x, &))P»(fj (&k», x, (d)) Pa(fa(&k», x, y, &)) («/(fra d62»fk f) (qo(+) + n (b +y k» I 6») .
(A6)

Now, if the cross section satisfies the condition

dg do'

(f d5 dk ' ' " d (f6 dkYz 2 f Y2 2 f

I

Eq. (A6) becomes

I»x dxdp ds d(d

then, with the definition

do' ~ dg'

d'Yz 2 y 'Yz 2 y
(q, ()))=d d6 dk (4 (a), ks, 0),

(AV) {f
xR(x, y, z, (d) (q, (&o)+x»» +y1'» +z/g, (d),

(As)
where we have used the relation (A2) and have de-
fined the resolution function by

R(xy, z, v) f, d&odl &1&AD . . &o( o) ))()»lr(~)s ~o)l))w)) ((~g)
k»sin &„sin 2»» 2 k», &

&& Pa( fa (&», z, (()))P»»( f»»(bk», x, (d)) Pp( f()(rA», x, (d)) Pa( f~(&k», x, (d)) Pa( fa()a k», x, y, ()))) . (A9)

The resolution function R(x, y, z, +) represents
the detection efficiency at a definite position in Q-
(d space. The set (x, y, z) gives the vector sepa-
ration from the position of maximum detection ef-
ficiency for events occurring with the same energy
transfer I+.

P1(61)"exp [ —2 (61/ +»)'],

2(ra) ~ exp[ - 2(ra/(22) ]

Pa(62) exp[ —2(&2/~2)'],

B. Evaluation of Two-Crystal Inelastic Resolution
Function

In order to evaluate the resolution function de-
fined in Eq. (A9) we assume a Gaussian form for
the probability distributions Pp Pg P2 Pp Pj,
Pz, P„, and P„'; that is,

Po(ro) exp[ —a(ro/&()) 1,

Pl(62) "exp[ —a(&a/~a)'],

Pl(r»)" exp[ —2(r»/&»:) l,

P„(»t»») ~ exp[ a(»t»»/»)»»-) ] )

P„(4„') exp[--,'(y„'/q„')'] . (A10)

The first six equations above define the character-
istic horizontal and vertical angles, Qp, Q&, Qz and

Qp, Q&, Qz, of the corresponding collimators; the
last two equations define the horizontal (g»») and
vertical (»I»() mosaic spread parameters of the
monochromator. Substitution of Eqs. (A10) into
Eq. (A9) gives, after integration over 6(),

1 1 f„(nk„x, (d)))(x, y, z, (a) Cf d).') d5g .
( (

exp

f()(bk», x, (()) f»(hk», x, (()) fa(hk», x,y, (d)

(
fa(~» z &) '

+ + I2 ~ 3 I2 + IT + I
Qp Qg Qz 4qM san 8„+Q,

where
(A9')

sin gM Q~ol 4nIM2sln28M
(A11)

The resolution function can be split into two factors, a horizontal one and a vertical one; namely,
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R(x, y, a, (d)=Rz(x, y, (d)Rv(a, (d), (A12)

where

Ra{(x,y, {d) ),f (et„x,g) ' tg(»g, x, g) ' fg(eeg, x, gg)
' fg(»„x .t, gg)I)'

}dA'] . exp —
p + + +

kg sin(28 a)Ikat((d) f/(I( Qo az eq j
(A13a)

fa(5it at (d)
II (g, gg) Cf teg, .=; ext ——,g . g e+ ~g

kp(N j 2 4 g~ sin 8@+Qo Qg Q3 (A13b)

fs(LA(, x, (d) =C)ag((d) Eked +Raa x,
fa(hkq, x, (d) =a()g((d) 4kg+C(m x,
f,(ak„xt (d) =Sqq((d) &k)+ega x,

(AI4a)

(A14b)

(A14c)

fa(nk( I x, y, (d) =8tag((d) 4kg +Caa x+Saa((d) y t

(A14(i)

Let us evaluate the horizontal term first. Accord-
ing to Eqs. (A5), the functions f„, fa, f„an(i fa
are homogeneous and linear in x, y, and hk;; that
is~

t

ega =C()a =Spa = —I/kg sln2 8a,
&N((d)

= 2 tan 8g/kg —(1/kg sin2 8a) [k~/ka ((d) —cos28 a],
egq((d) = —(I/O, sin28 a) [kJ/k„((d) —cos28a J,
&ai((d)

= [I/k~((d)] fsin2 8a —cot28 a [kz/k„((d) —cos2 8 a]],
eaa((d) = —cot2 8a/ka ((d),

&aa(~) = I/ka ((d) . (A15)

&s~((d)

= tan8„/k, —(I/kz sin28 a) [kz/kz((d) —cos28a],
If we substitute E(ls. (A14) into Eq. (A13a) we ob-
talQ

R„(x,y, (d)cc .
(2

dk& pex{-I/2[2k& L((d)+2k, M(x y t(d)t+ R(xt yt (d)] j t
1

k~sxn 28' kg (u ~

where

Lg ((d) =
Qsg ((d)/))l)a +8(a ((d)/(a()

+Cga�

((d)/ Qaa +Gag ((d)/Qa

M(x, y, ~) = [2&~~((d)&xa/ex+ 2&&(~)&sa/na+ 2@~((d)&sa/&~ + 2(ta1(~)(taa(~)/a2] x+ [2&al(~)&aa(~)/&a] y,

I)) (x, y, (d) =a'„a (I/q'„+ I/u()+ I/(a', ) x'+ (I/(aa') [aaa(~) x+aaa((d) y]' .

Finally, integration of Eq. (A16) gives

(A17)

1 1 M (x, y, (d)

k~ sin(28 a) kJ((d) [I((d)]'~a 2 ' ' 4L((d) (A18)

Let us now evaluate the vertical term R„(z, (d). If we substitute E(l. (A5c) into E(l. (A13b) we obtain

t)t(g, gg) cf teg exp( ——'[ I,'( )egMge'( geg) ggx{eIII )g])ge, ',
ka (d

(A19)

1 1 1 kg
( 4gas 8 +fa ~tY +IT k {~) t

Mt(a, ~) = —Zak, /cata k,(~),

1V'(z, (d) = za/naa kaa ((d) .

Integration of E(l. (AIQ) gives

C
)t( t (d)

k ( ) [I t( )p/a

(A20)
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x exp —— N'(r, , (d) —,' . (A21)

The complete inelastic resolution function is given
by (A12) using (A18) and (A21). It is a hypersur-
face in Q-&o space whose constant-~ sections are
ellipsoids in x, y, and z.

C. "Elastic Resolution Function" Approximation

x, = -ylk, sin28 ~+ &k,(cos28~ -1),

y~ = y~ k» cos2 8s —~&» sin2 8s + k» y2 y

z, = k, (81 —8,) .
(A22)

We now change variables, in the integrand of Eq.

Equation (AS) permits the calculation of the ex-
pected intensity pattern in the general case in which

inelastic scattering is observed with a two-crystal
arrangement. Such a calculation makes use of the
assumption of a Gaussian mosaic spread for the
monochromator and Gaussian transmission functions
for the three collimators. We now derive, drop-
ping the Gaussian assumption, and retaining only
the symmetry properties of the probability func-
tions, a simplified form of Eq. (A8) which, under
certain conditions, will allow the intensity to be ex-
pressed in terms of the elastic resolution function,
which can be measured directly.

Let us consider Eq. (AS) for the case of elastic
scattering, that is, ro equal to zero, thus defining
three functions of k„5&, y&, y2, 52 which we shall
call &ey ~ey and ~ey given by

A

I

I

FIG. 33. Representation of the integration path in re-
ciprocal space associated with a general energy integral
of the type defined in Eq. (A23). Vector z& is the direction
of the path and q~(0) + Aq is the point on the path where
k& =k» (i.e. , cu = 0). From the figure one sees that q p(h))

+a@=@.(0)+~+ 0»-k~)i~.

(Al) from the set (60, k&, t)I, yl, y~, 5z, k&) to the
set (50, k, , 51, x„y„z„u&)and obtain, using
(AV),

I~ d50dk» cÃg dx&, dyzd8 3 .— — . Pg 50 Py ki 6g —&0 g Pg g P2 '
2 &g, z&, 0 Pg g &k», x&, 0

kI sin 8l( sill 2 8 g

d2
x p()'(sk„x„o)),(f ( kg, x„o))p(f (rN, , x„y„o))fd(o (q(~)+at(, u)), (A23)

where 4q is, of course, a definite function of k»,
&~, &„y„s„~whose components are

x=x, + n.k, +kr(a)) —kI(k„~),

y = [k,(k„~)/k, ] y,

—[kI(k, , ()))/k, —1](x, cot28 ~ —nkI tang s),

to energy is to be performed. This path is a
straight line that, for v = 0, passes through the point

q, (0)+b, q, (where&q, = x, l'I, +y,j~—+z, II, ) inadirec-
tion i&(4 q„k, , 51) (see Fig. 33). Lk, and 5I cause
i& to deviate from the value corresponding to &k»
= 51=0 by an amount (nya,

nlrb)

which can be ob-
tained from Eqs. (A22), giving

&y), = tan(8, )nkI/O, ,
z = [ky(k, , ()))/k, ] x, —[kg(kI, (()) —k, ] 51 . (A24)

652=5~ .
(A25)

These equations, taken together with q, (())), describe
parametrically, as a function of (d, the path in re-.
ciprocal space over which the integral with respect

We now assume that this dependence of the integra-
tion path on 4k& and 6& can be neglected, so that
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Here we have used the relation q,(e)+ Aq= q,(0)
+ 4q, +(k, -kz)iz (Fig. 33). [Note that in the case
in which the quasielastic approximation holds, in
the sense defined by Eq. (V. 4), the condition (A26)

is satisfied automatically since both integrals are
given by C„(q,(0)+ d q,).] Finally, if we consider
Eq. (A23) and remove the dependence of the energy
integral on 0, and 6, by means of (A26), we obtain

d+ed~ed~e+ +ey 3 ev ~ex 0 d(d dg y ~o 0 + +qe+ ~I ~& + ~I ~q.e~ ~» 0 ' +

where we have applied Eq. (AQ), with u& set equal to
zero, to define the elastic resolution fmction. The
vector i&, which gives the direction of the path in
reciprocal space over which the energy integration

t

is performed, can be obtained directly from Eqs.
(A22) by setting M, and 6t equal to zero. We shaB
refer to Eq. (A2V) as the "elastic resolution func-
tion" approximation.

~Work performed under the auspices of the U. S. Atomic
Energy Commission ~

*Present address: CSN Casaccia CNEN Rome, Italy.
fPresent address: Centre d'Etudes Nucleaires, Greno-

ble, France.
'M. Z. Cooper and B. Nathans, ActaCryst. 23, 357

(1967); A24, 481 (1968); A24, 619 (1968).
2S. J. Pickart, H. A. Alperin, and B. Nathans, J. Phys.

25, 565 (1964).
3D. T. Teaney, V. L. Moruzzi, and B. E. Argyle, J,

Appl. Phys. 37, 1122 (1966).
C. G. Windsor and R» W. H. Stevenson, Proc. Phys.

Soc. (London) 87, 501 (1966).
D. T. Teaney, M. J. Freiser, and R. W. H. Stevenson,

Phys. Rev. Letters ~9 212 (1962).
B. Nathans, F. Menzinger, and S. J. Pickart, J.

Appl. Phys. 39, 1237 (1968).
L. Van Hove, Phys. Bev. 95, 1374 (1954); J. Als-

Nielsen, Q. W. Dietrich, W. Marshall, and P. A. Lind-
gard, Solid State Commun. 5, 607 (1967).

See, for example, W. Marshall, in Critica Phenomena,
edited by M. S. Green and J. V. Sengers (U. S. GPO,
Washington, D. C. , 1966).

9H. Y. Lau, L. M. Corliss, A. Delapalme, J. M.
Hastings, B. Nathans, and A. Tuceiarone, Phys. Rev.
Letters 23, 1225 (1969); J. Appl. Phys. 41, 1384(1970).

B. I. Halperin and P. C. Hohenberg, Phys. Rev. 177,
952 (1969). See also R. A. Ferrell, N. Menyhard, H.
Schmidt, F. Schwabl, and P. Szepfalusy, Phys. Rev.
Letters 18, 891 (1967); Ann. Phys. (¹Y.) 47, 565 (1968).

~IP. Bksibois and C. Piette, Phys. Bev. Letters 24,
514 (1970).

D. L. Huber and D. A. Krueger, Phys. Bev. Letters
24, 111 (1970).

3M. E. Fisher and B. J. Burford, Phys. Bev. 156,
583 (1967).

~4D. Jasnow and M. Wortis, Phys. Bev. 176, 739
(1968).

~5We are indebted to D. Cox and J. Hurst of Brookhaven
National Laboratory for carrying out the plastic deforma-
tion.

~6D. R. Beaucage, M. A. Kelley, D. Ophir, S. Ranko-
witz, B. J. Spinrad, and R. van Norton, Nucl. Instr.

Methods 40, 26 (1966).
' B. 0. Loopstra, Nucl. Instr. Methods 44, 181(1966).
~SCenter for Materials Science and Engineering, Massa-

chusetts Institute of Technology, Cambridge, Mass.
Designed by B. L. Chase, Brookhaven National

Laboratory.
See, for example, 0. W. Dietrich and J. Als-Nielsen,

in C~itica/ Phenomena, edited by M. S. Green and J. V.
Sengers (U. S. GPO, Washington, D. C. , 1966).

2lCooper and Nathans have chosen the opposite conven-
tion for Q, namely, Q=fc&-%&. Note that in spite of the
change in definition, zenith the present choice of axes X„
the expressions given by these. authors for M» remain
formally unchanged, both for the two-crystal elastic case
and for the three-crystal case.

M. J. Cooper, Acta Cryst. A24, 624 (1968).
V. L. Sailor, H. L. Foote, Jr. , H. H. Landon, and

B. E. Wood, Bev. Sci. Instr. 27, 26 (1956).
24The reason for making the high-q measurements on

the minus side is that the next (ill) reflection is farther
away when rotating the sample in the negative direction
than when the rotation is made in the opposite direction
[see Fig. 3{b)].

We are indebted to B. Dorner for pointing out that the
expression for P, given in Bef. 1 is in error and must, be
multiplied by the factor 1j{4sinH~sin84). This pointwillbe
discussed in a forthcoming publication by Dorner.

We use q and y in place of E and ( ~ for wave-vector
and inverse-range parameter in order to conform to usage
in neutron scattering. The superscript A, indicating the
operator to which the correlation function refers, will
henceforth be omitted for simplicity; in the presentpaper
this operator is always the staggered magnetization. It
is to be noted, also, that 5' has been set equal to unity
throughout.

'C&(q, ~) can be related to the Fourier transform S(q, ~)
of the unsymmetrized pair-correlation fmction appearing
in Eq. (2. 1) by the expression S(q, ~) =2C„(q, co)/
(1+@""~~~) [L. P. Kadanoff and P. C. Martin, Ann. Phys.
(N. V. ) 24, 419 (1963)].

288. I. Halperin and P. C. Hohenberg, Phys. Rev. 188,
398 (1969).

2~M. De Leener and P. B6sibois, Phys. Bev. 178, 819



QUANTITATIVE ANALYSIS OF INELASTIC SCATTERING IN. . .
(1969).

3 M. Helm, Phys. Letters 33A, 513 (1970).
'lt has been shown in the discussion of the "q-averaging"

mechanism in Sec. VII A 2 that the first-order term in
5~/AT does not contribute to the average of (do/dQ)
(+ Iq(o) t) and (do/d~) (- Iq(0) I ), and is therefore omitted
here.

32In this Appendix we use a notation which is a natural
extension of that employed in Ref. 1 for the elastic two-
crystal case.

~3We adopt the convention that iz, jz, and l J; form a right-
.handed system and that positive rotations of the angles
6„give rise to positive components along lz.


