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further enhanced, but finite, conserving suscepti-
bility at T=O.

Without doing the calculation, all we may do is
speculate what the results will be. However, our
experience with the zero-width calculation indicates
that the computational problem involved is stupen-
dous. Some approximation, such as a I.orentzian
shape to the low-frequency modes, 4' wiQ be es-

sential before such a calculation can be contem-
plated.
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The Kadanoff theory of scaling near the critical point fox an Ising ferromagnet is cast in
differential form. The resulting differential equations are an example of the differential
equations of the renormalization group. It is shown that the Widom-Kadanoff scaling laws
arise naturally from these differential equations if the coefficients in the equations are ana-
lytic at the critical point. A generalization of the. Kadanoff scaling picture involving an "ir-
relevant" variable is considered; in this case the scaling laws result from the renormaliza-
tion-group equations only if the solution of the equations goes asymptotically to a fixed point.

The problem of critical behavior in ferromagnets
(and other systems) has. long been a puzzle. ' Con-
sider the Ising model of a ferromagnet; the parti-
tion function is

zoic a)=E exp zZEs, s,.;+esp),
(s)

where E= —J/kT, J isa coupling constant, sl is the
spin at lattice site n, P& is a sum over nearest-
neighbor sites, and h is a magnetic field variable,
The spin s; is restricted to be + 1; 5, ~,&

means a
sum over all possible configurations of the spins.

T is the temperature, and k is Boltzmann's con-
stant. The partition function is a sum of exponen-
tials each of which is analytic in K and k. There-
fore one would expect the partition function itself
to be analytic in K and h. In fact, however, the
partition function is singular for K=0, and h=O,

where K, is the critical value of K. To be precise,
the singularity occurs only in the infinite-volume
limit, in which case one calculates the free-energy
density

J'(Ã, k) =lim —lnZ(K, k),1
(2)

y V
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where V is the volume of the system.
Because of the infinite-volume limit there is no

formal contradiction in the result that E(K, h) is
singular at %=K,. The problem is that the methods
one has for calculating sums such as (1) do not
easily lead to singular behavior, so it is extremely
difficult to get a good understanding of critical
singularities working directly with the sum of Eq.
(1). What one would like to do is to transform the
problem of calculating E(Ã, h) into a form where it
is natural for J' to have singularities at K=K„and
where one may hope the nature of the singularity
will be more easily seen than from Eq. (1).

In this paper it will be suggested that an appro-
priate reformulation is in terms of a group, namely,
the renormalization group. It has already been
suggested that the renormalization group is impor-
tant for understanding critical phenomena. The
function of this paper is to explain what the re-
normalization group is and what the assumptions
are that make it useful.

The renormalization group is a nonlinear trans-
formation group of the kind that occurs in classical
mechanics. The equations of motion of a classical
system with time-independent potentials define
transformations on phase space which form a
group. The finite transformations of the group are
the transformations induced by a finite translation
in time; the infinitesimal transformation is de-
fined by the equations of motion themselves. It
wi1.1 be shown how a translation group can arise
in the analysis of critical behavior. This group is
called the renormalization group for historical
reasons (the connection with renormalization will
be explained at the conclusion of paper II4). The
infinitesimal transformation of the renormalization
group is analogous to an equation of motion, and

we shall use the language of differential equations
rather than the language of group theory in the re-
mainder of this paper.

The advantage of a reformulation of Eq. (1) in
terms of the differential equations of the renormali-
zation group is that it allows the singularities of
the critical point to occur naturally. Before set-
ting up these differential equations we shall show
with a simple classical example how singularities
can be generated from an equation of motion. Con-
sider the equation

dx—= ——(x)
dx

where V(x) is the function shown in Fig. 1. One
can think of this equation as describing the motion
of a ball rolling on a hill with height given by V(x).
Equation (3) is not strictly speaking the equation of
motion for said ball, but qualitatively the solution
of this equation is similar to the solution of the
second-order equation one should write down (this

l

A xc
t
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FIG. 1. Potential V(x) with minima at x& and x& and
a maximum at pc.

is true in particular if there are frictional forces
which prevent the ball from rolling back and forth
in the valleys near x„and xp of Fig. 1). Let xc be
the location of the maximum of V(x), i.e. , the top
of the hill. If the ball is released at any point
x & xc (on the left of xc) then the ball rolls down to
the point x& and stops. If it is released to the
right of xt.- it rolls to x~ and stops. This means
the final position of the ball is a discontinuous
function of its initial location. To be precise, let
the position of the ball at time t be x(t, xp) where
xp is the initial location (at time 0). Then the
function x(~, xp) is a discontinuous function of xp.
There is nothing mysterious about this disconti-
nuity, it is just that a small change in the initial
condition, from xo slightly less than x~ to xo slight-
ly greater than x~, can be amplified by the pas-
sage of time until for very large t the difference in
position is the difference in. xa - x&. With an infi-
nite length of time available one can get an infinite
amount of amplification, thus leading to a dis-
continuity in x(~, xp) as a function of xp whereas
x(t, xp) for finite f is continuous. It is assumed
here that the potential V(x) is analytic in x, as in-
dicated by Fig. 1, 'so the discontinuity in x(~, xp) at
xp= xc cannot be blamed on any singularity in V(x)
itself.

The basic proposal of this paper is that the sin-
gularities at the critical point of a ferromagnet can
be understood as arising from the t=~ limit of the
solution of a differential equation. In order to de-
velop an understanding of how one relates critical
behavior to a differential equation, we shall set up
Kadanoff's scaling picture in differential form.
Kadanoff 's original hypothesis which led to the
Widom-Kadanoff scaling laws was that near the
critical point one could imagine blocks of spins
acting as a unit, i.e. , all spins in a block would
be up or down simultaneously. Kadanoff then
argued that one could treat all spins in a block as a
single effective spin, agd one could write an effec-
tive Hamiltonian in the Ising form for these effec-
tive spins. He then showed how these assumptions
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F(K& lz) = L F(Kz& hz) . (4)

In the Kadanoff picture one can also compute the
correlation length using the block Hamiltonian.
Let $(K, fz) be the correlation length for the original
Hamiltonian in units of the lattice spacing. Then

lead to scaling laws.
The idea that blocks of spins act as a unit near

the critical temperature does not stand up to close
examination; in fact only very near zero tempera-
ture (K»Kc) is it true. ' The reason for discussing
the Kadanoff hypothesis is that it leads to a very
simple set of dnferential equations. By studying
these differential equations, one builds an under-
standing of how critical singularities can emerge
from a set of equations of motion. In Paper II we
will discuss a generalization of the differential
equations which can be more realistic than the
Kadanoff block hypothesis. The intuitive picture
of how the critical singularities arise from the
differential equations will not be changed by the
generalization, although a wider range of critical
singularities is possible with the generalized
equations.

In short the Kadanoff block picture, although
absurd, will be the basis for generalizations which
are not absurd, and it is helpful to understand the
Kadanoff picture in differential form before study-
ing these generalizations.

Imagine an infinite cubic lattice divided into cubic
blocks L lattice sites on a side. Each block con-
tains L lattice sites. The total spin in a block is
the sum of the L spins in the block. According to
the Kadanoff block picture, all the spins in the
block are aligned together, so the total spin has
only two values, +L or -L3. The blocks of spins
themselves define a lattice of spins, but the lattice
spacing of the blocks is L times the spacing of in-
dividual spins. Introduce a spin variable s'-

associated with block m. Normalize s'» so s@=+1,
i. e. , s„'- is L x(total spin in blockm). The
interactions between blocks involve only nearest-
neighbor blocks, and the magnetic field couples to
each block separately. This suggests that the in-
teraction energy of the blocks can be expressed in
Ising form [Eq. {1)]except that one must substitute
new constants K~ and h~ for the original parameters
Ka d I.

Kadanoff proposes in particular that the total free
energy of the original Ising model is the same as
the free energy of the blocks calculated using the
block parameters. In practice this equivalence is
expressed in terms of the free-energy density
rather than the total free energy. Let F(K, h) be
the free energy per lattice site of the original Ising
Hamiltonian of Eq. {1). The free energy per block
of the block Hamiltonian is simply F (Kz, , hz, ). If
the total free energy is the same for both, then

$(Kz„hz, ) is the correlation length of the block
Hamiltonian, in units of the block spacing. For the
two to agree, one must have

$ (K, Iz) =
L )(Kz„ lzz, ). (5)

The Kadanoff picture is, in summary, that there
exists effective coupling parameters KI, and h~ such
that Eqs. (4) and (5) hold, for any L. Kadanoff al-
so requires that correlation functions for large
distances be calculable through the block Hamil-
tonian, but this will not be assumed here.
Kadanoff's picture requires that L be an integer,
but we shall assume that L can be a continuous
variable, in order to be able to write differential
equations in L. Kadanoff restricts L to be much
less than g(K, Iz); we shall allow L to be arbitrary.

The differential equations of the renormalization
group will be, in the Kadanoff picture, equations
for EI, and h~. So far nothing has been said about
how to compute KI, and h~. Kadanoff proposed
definite forms for the dependence of KI. and h~ on
L, namely,

Kz =Kc &L

h, =aL',

where

&=K, —K (6)

Vfe expect u to depend only on hr, owing to the sym-
metry of the Ising Hamiltonian for hr, --h~. The

and Eqs. (6) and (V) are valid only for L «$( ,K)I.z
Here we shall first derive differential equations for
KI, and h~ and show later that the solution of the
differential equations has Kadanoff 's form.

To obtain the general form of the differential
equations for KI, and h&, we note the following. The
constants K» and h» are functions of K~ and AI.
but not of L separately. The change from KI. and

hr, to K» and h» is equivalent to making new
blocks of size 2L out of old blocks of size L. Each
new block is a cube containing eight old blocks.
But in writing an effective Hamiltonian with con-
stants K~ and 0&, one has substituted a lattice for
the old blocks; having made this substitution the
Hamiltonian does not know what the size L of the
old blocks was. Regardless of the value of L, the
change to 2L is simply a matter of combining eight
lattice sites to make the new block, so K» and

h» must be the same function of K& and h& for any L.
This continues to be true if one goes from L to

SL, L to 4L, etc. Generalizing to the continuous
case, we assume this is true also for going from
L to (1+5)L, for small 5. This means 6LdK~/dL
can depend on K~ and h~ but not L separately:
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analogous equation for h& is

-~ = I.-'a, v(K„I,') .dJ (10)

dhr 8F(K~, h~) (11)dI ~h

0=L Kr„hr der, 8 EJ., h~ dh~ 8 KI, h~

(12)
These equations can be solved for dK~/dI. and

de�/dI, to give Eqs. (9) and (10), with

.(»., a, ) =(s»(»„a, ) '„' (»,», a, )y Lehh Lj E

.((»., a, ),'„' (»„a,
))

ajar
(Kz„hr„) „(K~,h~)

&$ BF— „(»„a.),„(»„a,))'

and a similar formula for v(K~, g~~). 9 Note that
u(K~, h~) does not depend on I, (except through K~
and &~), a,s expected. This result means that one
has an explicit formula for the function u(K, /P) in
terms of F(K, h) and ((K, h) and their derivatives.

The differential equations thus obtained may not
be very interesting. The reason is this. The idea
of converting the Ising problem into a group was
that the singularities at the critical point should
result from solving the group equations. This
makes sense only if the differential equations are
themselves free of singularities at K,. Referring

Equations (9) and (10) are the renormalization-
group equations suggested by the Kadanoff block
picture. Because of the questionable validity of
this picture one would expect the differential equa-
tions to be equally questionable. Actually this is
not so; there is another way to derive the differen-
tial equations which involves only minimal assump-
tions, such that the differential equations become
essentially a, tautology. Namely, let us define K~
and h~ to be the solutions of Eqs. (4) and (5). That
is, we assume that one has found the exact solution
of the Ising model, as a function of K and h, and
regard Eqs. (4) and (5) as giving implicit definitions
of EI, and hr, for any I. Assume that these equa-
tions have a unique solution for any I. The dif-
ferential equations are now trivial to obtain: Dif-
ferentiate both Eqs. (4) and (5) with respect to L,.
One gets

3
( )

dKI, 8F(KI„ki)
L. " ''dz, eZ,

back to the analogy of a ball on the hill, the func-
tion V(x) can be analytic 111 x and still have x{~,xo)
be discontinuous ln xp Analogously we wouM like
u(K, h ) and v(K, JP) to be analytic at the critical
point. The trouble with Eq. (13) is that it express-
es u(K, h2) in terms of F(K, h) and $ (K, h), both of
which are singular at the critical point, implying
that u is singular also. Most previous formula-
tions of the renormalization group used equations
such as Eq. (13) to define the functions u and v

which appear in the renormalization-group equa-
tions. This has been the cause of much confusion
about the purpose of the renormalization group.

The Kadanoff block hypothesis suggests that
u(K, h ) and v(K, h ) will indeed be analytic at the
critical point. In the block picture one should be
able to construct E~ and hr just by adding up inter-
actions of individual spins within a block or across
the boundary between two blocks; it is hard to see
how this simple addition over a finite region can
lead to singular expressions for K~ and hL, as a
function of K and h, if I. is fixed. More generally
this process should give K„I.andh„r. as analytic func-
tions of Kz, and hr for fixed n; specializing to n= 1
+ 0, the functions u and v should be analytic. How-
ever, in the spirit of the Kadanoff approach one
does not try to get specific forms for u{K,h') and

v(K, h') because this would require that one take
literally the idea that all spins within a block act
as a unit. An explicit realization of the renorma-
lization- group equations will be presented in Paper
II. '

Another feature of the renormalization-group
equations suggested by the Kadanoff block picture
is the following: In classical physics it is usually
easier to write down the equation of motion, such
as Eq. (3), than to write down the solution of the
equation. Typically the potential V(x) is a simple
function, or easily approximated by a simple func-
tion. The solution of the equation ean be much
more complicated, especially if one has coupled
differential equations to solve. The Kadanoff
Mock hypothesis suggests that the renormalization-
group differential equations will also be simpler
than their solution. This is because the smaller
I. is, the fewer the interactions that have to be
summed to give I|".I. and hL, . It is not immediately
obvious that I.= 1+5 is easier to compute than
I.= 2, but this is not the point. The point is that
I.= 2, 3, or 4 is much easier to compute than
1.=10000; one expects I =1+0 also to be easier
than I = 10000.

If it is true that the renormalization-group equa-
tloQ ls easier to write down than its solution then
it is natural to try to solve the Ising model by first
obtaining the renormalization-group equations and
then trying. to integrate them. 8peclallzlng to the
problem of critical behavior, what one thinks of do-
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u(K„O) = 0 . (i4)

Comparing this result to the classical analog of
the ball on the hill, the point K= K, is analogous
to one of the points of equilibrium for the ball
(x=x„, or xs, or xc).

Now let K and h be near the critical values K,
and 0. For small values of L, namely for L
«$(K, h), the effective correlation length $(K~, hl, )
will be large and KL and hL will also be near the
critical values. For this range of L one can use
a linearized form of the renormalization group
equations to compute KL and AL. The linearized
equations for KL and hL are

' =—(K, -K.)y, (15)

Lx & (16)

ing is integrating the equations until L is of order
When L is of order $, $(KI,, hz„) is of order 1

[by Eq. (5)], which means K~ and h~ must be well
away from their critical values; then it is easy to
compute $(K~, hz, ) and F(K~, hz ) by other means and
reconstruct F(K, li) and $(K, k) from Eqs. (4) and
(5). This integration procedure can be carried out
for K and h near their critical values, and if N(K, h)
and v(K, h) are analytic at the critical point, one
obtains immediately the Widom-Kadanoff scaling
laws.

To make the calculation precise, let us proceed
as follows. Imagine that one is at a temperature
slightly above T,. This means K is slightly smaller
than K,. As L increases KL must decrease, so as
to go away from K, . This ensures that $(K~, h~)
decreases as I. increases, as required by Eq. (5).
Pick a value for K~ well away from K„say K,/2;
let us integrate the renormalization-group equations
until a value of L is reached for which K~ = K,/2,
then stop and compute F(K, 0) and f (K, I) from Eqs.
(4) ~d (5).

If K and h have exactly the critical values K, and
0, respectively, then one must have KL = K, and
h~ =0 for all I,. The reason for this is that $(K„O)
is infinite; therefore &(K~, h~) must be infinite for
all L. For $(K~, h~) to be infinite, K~ and h~ must
have the critical values. Hence KL =-K, and hL =0
must be a solution of the renormalization group
equations, which is true only if

so

K, /2=&L'

L = (K,/2e)'~',

(i9)

(2o)

which is a scaling law for L as a function of c.
For this value of L, AL is

h, = h(K,/2~)"" .
Hence one can compute F(K, 8) and $(K, h) to be

F(K, a) = (K, /2e) '"F[K,/2, @(K,/2~)""], (22)

$(K, h) = (K, /2&)' ' &[K,/2, &(K,/2&) ~'l . (23)

These formulas are scaling laws; the functions
F(K, h) and $(K, h) depending on two variables have
been reduced to explicit powers of e (i.e. , 7 —T,)
multiplying functions depending only on the single
variable h&

" '. For consequences of these laws
see Ref. l.

To be accurate we should have integrated the
nonlinear equations once KL —K, became large.
What can one say about the solution KL and AL in
this case'P One can say the following: Let

K =Q(L, h),
h~ =P(L, Q)

(24)

(25)

be the solution of the exact equations (9) and (10)
over the range 0& L & ~ satisfying the boundary con-
ditions

Q(l, ho) =K, /2,
$(l, h~)=Q,

(26)

(2V)

that is, boundary conditions well away from the
critical point. For L «1 this solution should be
near the critical point. Hence for L «1, KL and

hL should be solutions of the linearized equations,
giving

predicted from the Kadanoff block picture. Using
the linearized equations of the renormalization group
is analogous to replacing V(x) by a quadratic form
when x is near x~.

The solutions of Eqs. (15) and (16) are the form-
ulas (6) and (V) proposed by Kadanoff. Assume
that this approximation is valid until K~ = K,/2.
Then one can solve for the value of L giving KL
= K, /2:

where x and y are constants:
p(L, ho) = Q(Q)L'+K, ,

g(L, ho) = p(ho)L"

(26)

(29)

y= —, (K„o),

x=v(K, , O) . (is)

In writing these equations we have assumed that
u and v are differentiable at the critical point;
this is how one uses in practice the arialyticity

for I, «1 where P(Q) and $(ho) are constants depend-
ing on ho. Now the exact renormalization-group
equations have translational symmetry when written
in terms of lnL, just as the classical equation (3)
does. Hence the functions

K =P(aL, h ),
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(31)

are solutions of the renormalization-group equations
where a is any constant. For al. «1 this solution
reduces to

X~ = $(ho)(aL)'+K, ,

hI, = $(ho)(aL)" .
(32)

(33)

This solution can be matched to any given initial
condition for K and h; if K and h are near their
critical values then K and h can be matched to the
asymptotic forms (32) and (33), giving

~ = a'Q (II,),
h= a"P(Q) .

This means that

h~ " '=q(h, )/[y(h, )]' '

(s4)

(s5)

(35)

which is an implicit equation for ho; ho depends only
on the single variable hc " '. Then, from Eq. (34),
we have

a = [~/y(a )]'" (3'7)

But now the value of L for which KI, =K, /2 is L
= a ', from the boundary condition on Q [Eq. (26)];
and for this value of L, III, = ho [Eq. (2V)]. Using

Eqs. (4) and (5) one again gets scaling laws for F
and (, for example

$(K, h) = [&/$(ho)] '~' $(K, /2, ho), (38)

where IIO depends only on he "~'. This scaling law
is the same as (23) except for a different functional
dependence on the scaling variable hq " '.

These results can be related to the classical
analogue of the ball on a hill. Consider only the
case of no magnetic field (h= 0) in which case hI, =0
for all L and one has left a single dependent varia-
ble K~. With h=0, ho is zero also; Q(0) is a con-
stant $0 and the formula for $(K, 0) is

where $0 is $(2K„O) .
The point K= K, is analogous to the top of the hill

(x=xc). This is because if K is different from K,
then KL, —K, increases as L increases, and this is
analogous to the ball rolling away from the top of
the hill. In other words the point K=K, is analo-
gous to a point of unstable equilibrium in classical
mechanics. %hat is the analogue of the correla-
tion length $(K, 0)? From Eq. (5), $(K, 0) is.pro-
portional to L where L is chosen to make K~ = K, /2.
This is analogous to computing the time t»~ for
the ball to roll half-way down the hill. As the initial
location xo of the ball approaches the top of the hill,
this time t»2 increases, becoming infinite as xo
—xc. The scaling law for $ is obtained by computing
the dependence of L on K- K, for K near K,. This

dKI,
I s qI & ~I ) (40)

IV(KI, q gI, ~ llI, ) i
dq~ 1

(41)

dhl, kJ V(KJ p qgp kI ) (42)

The initial values of KI, qI, , and kI, (for L = 1) are
denoted K, q, and h. We assume the same rules
for computing the free energy and the correlation

is analogous to finding the dependence of t»p on

xo —x&. Most of the time t»& is spent near the
top of the hill, and so the dependence of t, &2 on

xo —x~ can be determined to a good approximation
from linearized equations about the unstable equilib-
rium point x~.

This completes the discussion of the simplest
renormalization-group equations following from
the Kadanoff block picture. One sees from this
how the idea of differential equations with analytic
coefficients leads to singularities at the critical
point satisfying the %idom-Kadanoff scaling laws.
The critical point corresponds to an unstable equi-
librium point of the differential equation, and the
singularity at the critical point is a consequence of
the infinite time required to move away from a point
of unstable equilibrium.

The problem with the simple renormalization-
group equations discussed earlier is that there is
at present no hope of showing that the functions
u(K, h2) and v(K, h ) are analytic at the critical
point. Without the analyticity, the renormaliza-
tion-group equations become a tautology, as ex-
plained earlier. Instead of trying to prove that
u and v are analytic, one can try to generalize the
renormalization-group equations in the hope that
analyticity will be easier to establish for the gen-
eralization. The generalizations which the author
has been able to construct are rather complicated,
involving an infinite number of L-dependent coupling
constants. To prepare for these generalizations
it is worth discussing the nature of the renormali-
zation-group equations whenthey involve one addi-
tional coupling constant q~. The initial variable q
will be an "irrelevant" variable in Kadanoff's lan-
guage. ' It might be the coefficient of a second-
nearest-neighbor coupling, for example. The vari-
able q will prove to be irrelevant only in certain
respects that will be explained later.

Imagine that the renormalization-group equations
involve three L-dependent variables K~, ql, , and

hl, . %e think of K~ and @ as coefficients of first-
and second-nearest-neighbor couplings which are
even to the exchange s-'- —s-' while h~ still multi-
plies the spins s-' themselves which are odd to this
exchange. Hence one expects the form of the re-
normalization-group equations to be



length as before, namely,

P(E, q, I ) = I.-'P(E„q„a, ),

t(E, q, a) =r, t (E„q„I,).
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y = —(K„q„0),

Bq
~d

x =v (K„q„o).

(58)

We now expect there wiQ be a line of critical
points; for each value of q there should be a criti-
cal value K, (q) for K. If the initial values of K,
q, and h lie on the critical line (K= K,(q), h = 0)
then the solution EI, , qL, ,h& must lie on the critical
line for all I., in order that g (E~,q~, hz ) be infinite
for aII I.. Hence, if E=K, (q) and A =0 one can
write K~ =Ko (@)and hl, =0; the equation for
qI, becomes

(45)

dE~
L „~ =su«~-Kc}+via(qi -n},

~
d~ =~ai«~ -K.)+~i~(qi-q. ) ~

&qI.

dA,~I — = xhL, ,

eu
y =eE(-' "

eu
yi3=—(Ks& qadi o)

eq
ceo (K„q„o),8E

(50)

m, (qz, ) =w(E, (q~), q~, 0) .

This is a one-dimensional equation of motion,
which is directly analogous to the classical equa-
tion of xnotion for the baQ on a hill discussed eax'-
lier. In the limit L -~ there is the possibility
that ql, approaches an equilibrium point of the dif-
ferential equation. This is not the only possibility;
it is alsopossiblethat q~ -~ as L- ~. We shall study
only the ease that qJ. approaches as equilibrium point,
this being the case that is easiest to study. This
means we wiQ not give a completely general dis-
cussion of the solution of the renormalization-
group equations. In fact a general discussion is
very complicated and becomes hopeless when the
equations are genexalized further.

Let the equilibrium point approached by q& be
q„and let g (q, ) be g. If one chooses q =q, and
E=E„ then qJ. -=q, for aQ I,, E-=E, for aQ I. so
one has an equilibrium point of the full renormal-
ization-group equations.

I.et us study the solutions of the renormalization-
group equations in linearized form about the equi-
librium point E„q,. The linearized equations are

EL K L qL q r I.z

One of these solutions must be decreasing as
I -~, since if the initial value of E is E, (q) the'n

X~-E, and q~ - q, as L - , and this is not pos-
sible if both y and z are positive. I.et z therefore
be the negative exponent. The exponent y must be
positive so that K~ goes away from K, if EW E, (q).
%hat this means is that the point E„q, must be
analogous to a saddle point in classical mechanics
which is stable from one direction but unstable in
the orthogonal direction.

One can set up a classical analog to the coupled
equations fox El, and q&. Consider only the case
h& = 0, fox simplicity. A classical analog is the
pair of equations

dt"'=-eK' q'

dt &q
—(f) =- (E, q) (58)

This is not as general as Eqs. (40) and (41), since
it is not true in general that two functions u and se

can be written as the gradient of a potential. But
we can illustrate the idea that E„q, define a sad-
dle point with this example. Think of Eqs. (5V) and
(58) as describing the motion of a ball on a two-
dimensional terrain, with V(K, q) being the eleva-
tion at the point (E, q). It is convenient to illus-
trate V(E, q) by a contour map, as in Pig. 2. Fig-
ure 2 shows a depression at the point Pz (the
origin); Ps is the top of a hill and Po a saddle
point. There is a ridge going down the hill to the
saddle and a guQy from the saddle to the bottom of
the depression. qo is an ax'bitrary value of q. If
one starts the baQ at coordinates qo and a small
value of E', it wiQ simply xoQ to the bottom of the
depression. If one increases the initial value of
E, the ball will still roll to I'&, until one starts at
the point P& exactly on the ridge. In this case the
ball rolls to the saddle point I'z and stops. If one
starts just short of P&, the ball roQs almost to
I'~ and then goes down the gully to P&. The baG
moves very slowly when it is near P& and a large
time elapses before it moves an appreciable dis-
tance down the gully.

There will, in general, be two linearly independent
solutions of the first two equations behaving as a
power of I, say'

E~ -E, =L,', q~ -q, =x„I.'



q~ = q, —& r„L' +qxgL',

hl, =hI",
(60)

where z and q depend on the initial values K and q:

r,(K K,) —(q —q,}

r„(K-K,)-(q-q, )

PIG. 2. Potential VN, q) plotted by contours of con-
stant V. The minimum of V is at the origin (P&); the
maximum is at Pz and Pc, is a saddle point. The ridge
line is the trajectory going to Pz,. the gully line is the
trajectory from Pc to P~. Unmarked lines are contours.
The dashed line marks an arbitrary value (qo) for q.

One is on the critical line if c =h =0 Rnd q 40, for
then Kl. K„q& - q, when I - . One is near
the critical line away from K, and q, if e «q and

k is small. Then for I.- 1, the g term dominates,
and since z is negative, KL, and q~ approach K,
and q, (i.e. , the ball is rolling down the ridge to
the saddle point}. For large enough I. the e term
doIQlDates RDd Kg RDd qg IQove RwRy fx'oIQ Kc RDd

q, . The g term continues to decrease and can be
neglected. Since g measures the initial location
along the critical line, independence of q is
independence of the initial location on the cx'itical
line. One can now compute the value of L, for
which K~ =K, /2, giving

ol
K, /2 = &I' (04)

The ridge line is analogous to the critical line
K= K, (q) and the saddle point P, is analogous to the

point K„q,. Note that the initial location can be
anywhere along the ridge line, and stiQ the baQ
will roll down to the saddle point Pz, or if one
starts just short of the ridge line, the path of the
ball wiQ just miss P~ and go down the guQy line,
independently of where along the ridge line one
started. It is in this sense that q is an irrelevant
variable. To be fairex, there is one relevant and
one irrelevant variable in the pair (K,q) but whether
K or q is caQed the irrelevant variable does not
matter. If one looks at the functions Kl, ,qr, start-
ing from an initial point close to the critical line,
then as L increases (K~,q~) approaches the saddle
point (K„q,). By L = 5 or 10 one should be close to

K„q, (unless z = 0 so the rate of approach is slow).
Then KI, and ql, change very little until I becomes
of order of the correlation length g (K, q), at which

point KI, and ql, move away from the saddle point.
In the classical analog, the lax ge L part of the
curve KJ. ,qJ. is the guQy line, and this is indepen-
dent of the irrelevant variable. Also the value of
I at which Kl, =K, /2 should be essentially indepen-
dent of where along the ridge line one starts; how

large I. is is determined by how far fxom the ridge
line oIle starts

Returning to the solution of the linearized equa-
tions, the general solution is a linear combination
of the three simple power solutions, namely,

K~ =K, —&I."+qI',

as before. For this value of L,

The important property of these formulas is that

q~ is a constant independent of h, e, or q, while

hI, again depends only on the ratio h& "~'. So
from Egs. (43) and (44) one gets the same form of
scaling laws for E(K, h, q) and $ (K, h, q) as was ob-
tained earlier when there was no irrelevant vari-
able q. Since K=K, (q) for e =0, it follows from
Eq. (62) that & is proportional to K- K,(q), which
is proportional to T —T,(q). Hence no matter what

q is, e is the customary temperature variable
T -T, apart from a meaningless normalization
factol o

So far nothing has been said about initial condi-
tions below T„ i. e. , K&K,(q). This is easily
handled by the same analysis except that when

Kl. moves away from K, it increases instead of
decreasing. Hence one cannot compute the value of
I for which Kz, =K,/2. Instead one can find the
value of L, for which KL, =2Ã„say. In the classical
anlaog, when K& K, (q) the ball rolls down the
oppos1te side of the hlQ fx'oIQ the guIlyy RIll one
measures the time required to reach the line
K= 2K, instead of the time to reach K, /2. It must
be noted, however, that for K &K,(q) and h = 0 one
is on the boundary between the two low-temperature
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phases (the two phases corresponding to positive
or negative magnetization). As I. increases K~
moves away from the critical value K, (q), but h~
is still zero so one is still on the boundary between
the two phases. So for the renormaliztion group
to be useful below T, one must be able to calculate
the free energy and correlation length by other
methods on the phase boundary well below T, .

It was important in the analysis that z be nega-
tive. If z were positive one would have a point
like P~ unstable in all directions instead of a sad-
dle point. The only way to reach P~ is to sit on it
to start with which means fixing both E and q. In
general a fixed point with both y and z as well as
x positive is still a critical point but one which re-
quires fixing three thermodynamic quantities in-
stead of two. ' An exceptional circumstance arises
when z = 0; the analysis of this case is complicated
but still feasible. The principal results are that the
critical point may or may not require fixing a third
thermodynamic variable, and there can be logarith-
mic violations of the scaling laws.

The above calculations used the liqearized form
of the renormalization-group equations, but the
conclusions will not be changed by using the non-
linear equations.

To summarize the results of this analysis, one
starts with values of E and q near the critical line
K=K, (q). The functions A~ and q~ have an initial
transient behavior in which El. and q& adjust to the
critical values E, and q, . In other words, while
the initial Ising Hamiltonian can have an arbitrary
fraction of second-nearest-neighbor coupling, by the
time one has gone to a block Hamiltonian with rea-
sonably large block size the couplings have become
essentially fixed at E, and q, . The Hamiltonians
for larger I. are therefore independent of the initial
fraction of second-nearest-neighbor coupling, and
the critical behavior of the theory is likewise in-
dependent of the initial fraction.

In fact the parameters of the critical behavior
such as the exponents x and y are determined by the
renormalization-group differential equation, rather
than the initial Hamiltonian. If one knows the form
of the functions u, v, and se, one can calculate the
exponents x and y by finding the saddle point E„q,
of the differential equation and then solving the
linearized equations about the saddle point. In
principle one then has two choices for how to find
the exponents x and y, one choice being as just

described, the other choice being to compute the
partition function directly and extract the critical
exponents. However there is a difference in the
two approaches in that the first choice (working
from the differential equation) is a well-posed
problem, while solving for the partition function is
not. Solving for a saddle point of the differential
equation is a well-posed problem in the sense that
small modifications of the functions u, v, and u
make only small changes in E„q„and x and y;
in other words one can get approximate values of
E, and q, by requiring that u and so only vanish ap-
proximately. In contrast, to get the singular part
of the free energy requires a calculation to infinite
precision since the singular part approaches zero
as K- K,(q) and one must know how it approaches
zero; the singular term exists underneath a finite
nonsingular term which is why infinite precision is
required.

Clearly, if the renormalization-group picture of
critical behavior is correct, it is important to
derive the differential equation of the renormaliza-
tion group and try to find the critical saddle point
of the equation. Extrapolating from the analysis of
this paper, it is clear that the renormalization-
group equations can involve any number of coupling
constants, not just two or three; one will still get
the Widom-Kadanoff scaling laws provided the
solution of the equations approaches a saddle point
when one is at the critical temperature. If there
are n coupling constants instead of three, the only
change will be that there will be n —2 linearly inde-
pendent initial transient solutions of the linearized
equations, instead of one, and hence n —2 irrelevant
variables. However the equations with n variables
are complicated, if n is large, and it is not at all
certain that critical behavior would be caused by a
saddle point. The solutions of the renormalization-
group equations might instead approach a limit
cycle' or go off to infinity or go into irregular
oscillations (ergodic or turbulent?) as I;~. So
while generalized renormalization-group equations
are capable of reproducing the Widom-Kadanoff
theory, they are also capable of producing more
challenging types of behavior.

I have benefitted from many discussions with
Professor M. Fisher, Professor B. Widom, Pro-
fessor L. Kadanoff, Professor D. Jasnow, Pro-
fessor M. Wortis, and many others in the field
of critical phenomena.
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