
PHYSICAL REVIEW 8 VOLUME 4, NUMBER 9. 1 MOVE MBER 1971

Magnetoexchange Branches and Spin-Wave Resonance in Conducting and
Insulating Films: Perpendicular Resonance

T. Wolfram and R. E. De Wames
North American RockaoeEl Science Center, Thousand Oaks, California 91360

(Received 26 April 1971)

Spin-wave modes in thin ferromagnetic metallic plates or films are characterized by a wave
vector k„parallel to the sample surface in addition to the standing spin-wave mode number n
which designates the number of half-wavelengths across the sample. The dependence of the
spin-wave frequency on k), is principally due to dipolar effects similar to those encountered in
magnetostatic theory. Analytic expressions for the frequencies Q„(k))) of the spin-wave modes
including the effects of exchange, dipolar interactions, eddy currents, and phenomenological
relaxation are derived for the case in which the applied magnetic field is perpendicular to the
film surface and the spins are pinned. The dispersion branches Q„(k))) (for fixed n) are re-
ferred to as magnetoexchange branches since they are both magnetostatic and exchangelike in
nature. The magnetoexchange dispersion for an insulating sample is also obtained and shown
to be quite different from that of the metallic case. A general theory for the surface imped-
ance Z(, k))) is developed which reduces to the usual surface impedance when k)) 0. Simple
analytical expressions for the spin-wave resonance power absorption peaks of thin metallic
films are obtained. The intensity I„of the spin-wave peak absorption is shown to be indepen-
dent of n in the absence of phenomenological relaxation. For nonvanishing relaxation, I„oc1/n .
The "peak-to-valley" difference of the derivative 8I„/BH~» behaves in the same way. Small
variations in film thickness lead to the result that 8I„/BH~ ~1/n4 instead of 1/n . Simple
analytical expressions are also obtained for the surface impedance of thick films. The fer-
romagnetic resonance (FMR) peak is shifted upward from the magnetostatic result Q= Qz. Ex-
pressions are given for the dipolar dispersion of the FMR peak as a function of k„. The curve
is linear for small k), with a slope much smaller than that of an equivalent magnetostatic branch
in an insulator. The power absorption associated with the right-hand circularly polarized ~
component has a deep minimum at (d =jH,» which is associated with the phenomena of trans-
mission resonance in metallic films.

I. INTRODUCTION

Ferromagnetic resonance experiments on metallic
ferromagnets have received considerable attention
since the initial experiments by Griffiths' and
Yager and Bozorth. ~ Such experiments gave valuable
information concerning the g factor and magnetic
relaxation. 3 Rado and Weertman and Ament and
Hado' demonstrated experimentally and theoretically
that the exchange interaction leads to a measurable
shift in the ferromagnetic resonance (FMR) peak.
This "exchange shift" was used to calculate the ex-
change stiffness or exchange constant for the
metallic ferromagnet. Ament and Hado' suggested
that the name "spin-wave resonance" was ap-
propriate since the exchange interaction plays a
vital role.

Standing spin waves in thin ferromagnetic films
were first observed by Seavey and Tannenwald
and subsequently by numerous other workers. ~

These spin-wave modes are characterized by the
number of half-wavelengths n across the film with
the wave vector k„parallel to the film surface
zero. Theoretical analyses of these spin-wave
resonances have been given by many authors.

The purpose of this work is to investigate the
dependence of the spin-wave frequencies on k„ for

metallic and insulating films. General expressions
for the power absorption for k„&0 are developed
and analyzed. The k„=0 surface impedance is
analyzed in great detail and a number of (hopefully)
useful approximate expressions are derived.

It is well appreciated that the microwave ab-
sorption spectrum is dependent upon the details
of the boundary conditions'Oy "satisfied by the
magnetization. We have chosen here to treat in
detail the particular situation in which the rf
magnetization vanishes at the surface of the sam-
ple (i.e. , the spins are pinned). For metallic
ferromagnetic films a high degree of spin pinning
appears to be a frequently occurring experimental
situation. y

8

We refer to the dependence of the spin-wave
modes on k„as dipola~ dispersion, since for small
values of k„ the dipolar energy dominates the ex-
change energy. The importance of dipolar disper-
sion has been illustrated for insulating films such
as yttrium iron garnet (YIG). Recent experi-
ments'2 on epitaxial YIG films have been reported
in which a series of resonances associated with
quantized values of k„was observed. The dipolar
dispersion of YIG deduced from these resonances
is in qualitative agreement with theory. ' The quan-
tized wavelengths associated with the modes are

3125



3126 T. WOLFRAM AND R. E. DE WAME S

approximately multiples of the sample width N
and length I.. The spectrum agrees well with

kI (11171/W pv/I'») where m and p are integers. In
contrast to the usual spin-wave resonances in thin
metallic films the YIG resonances correspond ap-
proximately to a uniform spin excitation amplitude
across the film. In this ease n is not agood quantum
number for the magnetostatic modes. 13

Evidence for dipolar dispersion and geometrical
quantization of k„ in metallic ferromagnets has
been reported recently by Phillips et al. They
observed spin-wave resonances in small single-
crystal dendritic platelets of ¹1and ¹1-Fealloys
whose dispersion appears to be principally mag-
netostatic in origin.

In Sec. II, a set of equations for a conducting
ferromagnetic plate is obtained from Maxwell's
equations and the equations of motion for the
magnetization. This set of equations includes the
dipole-dipole interactions, exchange interaction,
conduction processes (eddy currents), and phe-
nomenological relaxation of the magnetization.
The general equations are then expressed as a
symmetrized matrix equation and the fundamental
vector solutions are given. In Sec. III, the syin-
wave eigenvalue pxoblem is discussed. Solutions
for the ease in which the applied magnetic field is
perpendicular to the sample surface and the spins
are pinned are derived. The spin-wave modes are
characterized by g the number of half -wavelengths
across the film thickness and by k„ the "in-plane"
propagation vector The. dispersion curve A„(k„)
for the spin-wave frequencies as a function of k„
for fixed n is referred to as a magnetoexehange
branch. For small k„ the dispersion of A„(k„) is
principally due to dipolar effects (dipolar disper-
sion). Analytical expressions for the magnetoex-
ehange branches of both metallic and insulating
films are derived. For metalH. e samples all
magnetoexchange branches possess an iriitial linear
dependence on k„. In insulating films only the odd
modes (n =odd integer) have a linear slope. The
even modes have a quadratic dispersion for small

For pinned boundary conditions the usual
magnetostatic branch of the insulator does not oc-
cur.

Section IV addresses the problem of the micro-
wave absorption in a uniform rf linearly polarized
magnetic field. General expressions for the power
absorption are derived from Poynting's theorem.
A generalized surface impedance Z(&u, k„) is defined
to treat the case in which k„&0. The properties
of the 4„=0 surface impedance are derived. In,
Sec. V the characteristics of the power absorption
spectrum are discussed. The absorption is re-
solved into a FMB, background including eddy cur-
rents plus a spin™wave resonance contribution.
Simple analytic expressions are derived for each

contribution for thin samples. The intensity of the
spin-wave resonance I„and the derivative of the
intensity aI„/sH„, are discussed.

It is found that the I„is constant for varying g
when magnetic relaxation is absent but varies as
1/n when relaxation is present. The derivative
BI„/BH,» behaves in the same fashion. The "peak-
to-valley" difference in sI„/sH, » varies as 1/n'
for a uniformly thick film. Variations in film
thickness as small as 1% lead to a 1/n4 dependence.

The characteristics of the FMR peak are studied
for thick specimens. Simple expressions are
derived for describing the FMR peak and its de-
pendence on 0„. The FMR peak shifts linearly with

k„ for small 0„. At high frequencies an absorption
mln1mum oecu1s at (d = /Hay. This antlresonanee
is related to the phenomena of magnetic transmis-
sion resonance. "

H. GENERAL THEORY

A. MaxmeH's Equations

In this section we develop the equations for the
spin-wave modes of a metal ferromagnetic plate
or film.

The metal ferromagnetic sample is infinite in the
x and y directions and extends from —d/2 to +d/2
along the z axis as shown in Fig. I. A static ap-
plied magnetic field B„,&4', directed along the

z axis leads to a static internal field Ho= Jr,»
—4' „where I, is the saturation magnetization.
The total field II is Ho+A where A, is a small time-
varying component (in the x-y plane) transverse
to IIO. In egs units, Maxwell's equations are

(2. 1)

8
& &«= ———(h+m), (2. 2)

Bg

where e is the electric field and the transverse
magnetization m includes the usual factor of
4w (111= 471m)). Tile quaIltltles o a11d c al'8 tile elec-
trical conductivity and the velocity of light, re-
spectively. Using Eqs. (2.1) and (2. 2) one obtains

—V h+V(V'- h)+(2i/5 )(h+m)=0, (2.3)

if the fields vary as e'"' in time. The parameter
5 = (c /2vvu&)'~ is the classical electromagnetic
skin depth.

For the geometry considered here the fields are .

of. the form e""~""~"'f(k„,z) = e""»'"f(k„,z), where
the propagation vector k„and the position vector
p lie in the x-y plane and f varies spatially with

z but depends only parametrically on Ik„l. From
Eq. (2. 3) we obtain the equations

pa+ p~» $3 g
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0 1I ~ E„2. m„24
Bpp' s

K„=5k„, K„=5k„, K =5~(k„+k„) . (2.8)

The quantity D/4m, the exchange constant, is dis-
cussed below. The fields h and min Eq. (2.4) are
functions of k„and z. The 5,, component has been
eliminated in obtaining Eq. (2.4) by using the rela-
tion

(2.8)

derived from Eq. (2.3).
8. Magnetization Equations

The equations of motion for the magnetization in-
cluding the phenomenological I.andau-Lifshitz
relaxation terms~6 are

[],,x (I,x~„,)], (2. 7)
yM, ta

where y is the gyromagnetic ratio, ]., is a unit
vector in the g direction, and wq and 7', are phe-
nomenological relaxation times. The effective
field 6 is given by

R„,=h —
4

' +(&M„)' m+(~0)', rn . (2.8)4', ~8

The product (e5)2=D/4m is the exchange constant
for the magnetic medium. It is related to the
Landau exchange stiffness A by the relation D/4v
= 2A/4wM, '. Equations (2.V) and (2.8) yield the
relations

82
2 (m, -Im„)+(iQ+lQr) m„—Qrtn„+k„-lk„=0,

(2. 8)
8

(ypg„+$yg„) —(iQ+I Q„)m, —Qrm„+Ik„+k„=0,et'

FIG. 1. The coordinate system (upper) for the ferro-
magnetic plate. The external applied magnetic field H~~
and the saturation magnetization are oriented along the
Z axis. A schematic Oower) of the dependence of the
spin-wave frequencies on the number I of half-vrave-
lengths across the thickness of the plate. Dipolar effects
lead to a thickness dependence. When d is large com-
pared vrith the skin depth g the dispersion curve has a
mlnUnum frequency Qg.

termine the h and m fields. These equations may
be combined into the matrix equation

1 2 -8 f=O, (2.11)

where f is a four vector whose components are
fg =k„~ fg= ky~ fg=ttt„, f4=tply, and 1 is a 4x4 unit
matrix. The matrix B is

+(~ek„)',
(2. 10)

g
' 0 ~'(K„'+ 2i). ~'K„K„

0 g' ~'K„K„~'(K2 + 2i)

-1 0

0 -1

(2. 12}

r=(&5) 'g .
C. Symmetry Reduced Equations

The four equations, Eqs. (2.4) and (2. 9), de-

where Q = Q/(I+I ), Q~= Q~+iQ, and ga=&~(2i+K ).
In obtaining Eq. (2. 11) we have factored out the
matrix
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10O o

O1O 0

0 0 1

00-l 1

(2. ia}

-K„K„O 0'K
0 0 K„K~

(2. 14)

0 0 -K,
where K= (K„+K„) ~ . We then obtain the matrix
equation

(2. iS)

where the components of f = U'f are I&„', f&„, m„',
and m„and

g2 0 g2 p

C =U'8 U=
p +2 0

p Q~ jQ
(2. 16)

~ I I
0 —1 -sA Qp

The quantity a = 2i&2 and g = n+ &'K'. Equation
(2. 15) explicitly displays the proper symmetry.
The rotated fields are

in order to diagonalize the second-derivative opera-
tor.

From the planar symmetry it follows that the
fields depend only upon the magnitude of K and not
on its individual components. This feature is not
obvious from the B matrix. If we rotate our co-
ordinate system in the x-y plane the symmetry can
be made explicit. We accomplish the rotation by
a unitary transformation U defined by

K„K~ 0 0

A. Boundary Conditions

The usual boundary conditions must be imposed
on the fields. This requires that h„and h„and h,
be continuous across the surfaces. We consider
two cases in which the boundary conditions are
symmetrical. In the first case, the eigenvalue
problem, the sample is not driven and the fields
outside the sample may be derived from a scalar
potential f' '

(0& &k(( &&. k(( I gl

(3.i)
h&"=vy'" .

In the second case the sample is driven by a uni-
form rf magnetic field h„. The fields outside the
sample are then h ' '+h„. In addition we must
specify boundary condition on the magnetization
at the surface. We shall treat in detail the case
for which the spins are "pinned" so that m„=m„= 0
at both surfaces.

For the eigenvalue problem the fields outside
decay exponentially as lz ( -~. According to Eq.
(3. i), at ~=~d/2,

6a„=gC„y "&, 6a, =fK„y"& 6a =+Kg'" . (3.2)

The boundary conditions may be expressed in terms
of the primed fields using Eqs. (2. 17) and (2.6) so
that the new boundary conditions at z = a d/2 are

~

~ ~

~1a ~ —A„=O, h~ =0. (3.3)

For the cases of pinned spins the rf magnetization
vanishes at the surfaces, m„' = m,

' = 0 at ad/2.
When the boundary conditions are symmetric, as
we have assumed here, then the solutions are
"odd" or "even". In this case the boundary condi-
tions at +d/2 are redundant and we need only im-
pose them at one surface. We shall use the boundar
conditions at z = d/2. They may be expressed in
matrix form

(2.1V)

(
81+ 7 1„—f ' = 0,

a~g
(3.4)

The solution of (2. 15) is very simple in matrix
form,

where the 1&& matrix elements are zero except for
the 1, 1 element which is unity. Using Eq. (2. 18)
we obtain

A A

f (r) = coshrC f, + sinhrC f, (2. 18) 1+ —
2 1&~CtanhxC cosh' f, =0 3.5

gA/2
where f, and f, are constant vectors whose com-
ponents are determined by the boundary conditions.
The construction of the matrices cosh~C and
sinh~C will be discussed in a later section.

III. SPIN-WAVE MODES

and

A Pa

1+~ lqq C cothyC sinhyC f,
c=d/2

B. Eigenvalue Problem

=0 . (3.6)

In this section we derive the frequency-versus-
wave-vector dispersion relations for a metallic
or insulating ferromagnetic plate.

Equations (3.5) or (3.6) can be satisfied provided
the determinant of the matrix vanishes. This yields
the eigenvalue conditions'7
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+(Ctanhr, C j»=0 (3.7)
(C cothr, c]». Using Eqs. (3.12) and (3.13}we
find that the K=O poles are determined by

for the odd modes and (n + X„)M~gi+ @Mes= 0, (s. 18)
2
—+{Ccothr, C]» =0 (3.8)

The frequency versus wave-vector k dispersion
of the spin-wave modes is determined from Eqs.
(3.7) and (3.8). In order to determine the disper-
sion we need to calculate the matrix elements
(Ctanhy, C]» and (C cothy, C]». A convenient
method for constructing these matrices is a partial
fractions representation. VFe make use of the ex-
pansions

Ctanhr, C= —g C'(C'+X„i)-,
+8 Pl=1

(Qdd)

(s.s)

C cothr, C= —+ —Z C (C +X„I) ', (3.10)
( even)

where

~„=n'v'(D/4v) (i/d)' (s. ii)
and the notation (odd) and (even) in Eqs. (S.S) and
(3.10) indicates a sum on the odd or even integers.
One advantage of these representations is that they
involve only the matrix C and not C. The C ma-
trix is given by Eq. (2.16). One finds that

40

(odd)

where

M»=(g +A.„) [(Q~+X„) —Q' ]+o.(Q„+X„) (3.13)

M,",= (g'+ ~„)(Q,'+~„)+o .
Further we have that

(C cothr, C)» = —+ —Z1 2 g (Mgg+Mg~)

&s &a n-2 + &n gg+g
(evea)

(3. i4)

(3.18)

D.
k~~

= 0 Spin-Wave Modes in a Metal

As k„- O, K- 0 but g - e and therefore the first
term of Eqs. (3.7) or (3.8) becomes arbitrarily
large. In order to have solutions of the eigenvalue
equations the second terms must be arbitrarily
large. Thus the k„=0 spin-wave eigenvalues are
at the poles of the functions (C tanhr, C}» and

for the even modes. Iri Eqs. (3.7) and (3.8),
( j» indicates the 1, 1 element of the matrix product
enclosed and x, is the value of r evaluated at
z =d/2.

C. Representation of Matrix Elements

where n is any nonzero positive integer. This
equation is easily solved for the eigenfrequencies
Q„(0) using Eqs. (3. 13) and (S.14). We find that

Qg(0) =((d„+2i[2i +nr (5/d) ] ] (I+i I),
&u„= QH + X„. (3.17)

Each standing spin-wave frequency consists of an
exchange contribution A.„, an internal field contri-
bution 00, and a dipolar contribution. The factor
(1+@) accounts for the magnetic (phenomenological
damping) losses. This loss is proportional to the
frequency.

The real part of the frequency,

Q„„(O)= ~„+[4 - 2«' v'(8/d)'](4+ [n'&'(n/d) ]Q-'
(s. is)

is the frequency for spin-wave resonance. The
imaginary part of Q„(0) is

Q = Q + ~'~' [3&8 +(—')"']—8+ Y Sq8
(s. 2o)

provided that l «E - . For perrpalloy e ranges

Q~(0) = I &@ „+2[n' w'(5/d)'+ 21](4+ [n'm'(5/d)']'] -',
(3.19)

which is the spin-wave linewidth due to phenomeno-
logical damping and eddy-current losses. The
linewidth as measured in a FMR experiment is dis-
cussed in Sec. V. The term Q„z(0} is a measure of
the linewidth. %e note that the eddy-current con-
tribution [i.e. , Q„z(0) for I = 0] is largest for the
low-frequency modes (small n), while the pure-
magnetic-loss contribution /&„ increases with n.
In addition, there is a contribution to Q~(0) in-
volving both eddy-current losses and magnetic
losses which is largest for the low-lying modes.

The general behavior of the real part of the fre-
quency is not simple. Vfhen d «6 the frequency is
dominated by the exchange contribution and Q„„(0)

In this limit the spin-wave modes are or-
dered with the frequency increasing monotonically
with n. In this case the linewidth is dominated by
magnetic losses.

If d» 5 then the magnetostatic energy dominates
the exchange energy and the spin-wave mode or-
dering is inverted with the lowest modes near
OH+1. As n increases the frequency tends towards
0„. Finally when z is very large the exchange en-
ergy becomes dominant and the frequency begins
to increase with n. These features are shown
schematically in Fig. 1. The minimum frequency
or turning point 0, becomes independent of thickness
for large thickness. The minimum of Q~(0) with
respect to n calculated from Eq. (3.18) is
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FIG. 2. Numerical calculation
of the magnetoexchange branches
of a thin insulating film with pirined

(left) and unpinned (right) boundary
conditions. The heavy solid line
on the right rising linearly from
0 =0„ is the magnetostatic branch
for the unpinned case. The hori-
zontal. branches are standing spin-
wave branches. The inserts are
graphs of the distribution of mag-
netization at the indicated fre-
quencies. The left-hand graph
shows the spectrum for the same
insulating film with pinned bound-
ary conditions. The heavy solid
curve is the lowest magnetoex-
change branch. The first, third,
. . . branches initially have linear
slopes while the even-numbered
branches are quadratic. The first
branch has a slope of 2/m ~0.2.
The slope of the magnetostatic
branch is 1/4. The parameters
used are d = 0.61x 10 4 cm, D/4m
=2.6x10 cm, 4' =1750 Oe,
and )=0.

H&
I

2.004—

H
0.0

I

O. i

Kd

0.2 0.0 O. i

Kd
0.2

for n = 1, 3, 5. .. and

-( 3 (k„d)„(k)= a„+a.,+~„+— ", , (1+gf) (3.35)2n''
for ~=2, 4, 6. .. .

The term linear in k„ in the odd-mode frequen-
cies and the quadratic term —,'(k d)/~2 va '

the
even-mode frequencies are due to dipolar eff tec s.

e erm 0,„+X„is the total exchange energy as-
sociated with the even modes. Equations (3.33)
and (3.34) are valid if k„d «1 and the mode spacing

that
is large compared to the dispersion. Thxs requires
that m nX„»k„d. The character of these modes is

illustrated in Fig. 2 for a YlG film with a thickness
d =0.61&&10-4 cm. The dispersion curves in Fig.

were obtained by numerical solution of the exact
eigenvalue equation. The parameters used were
D/4m=2. 6&10 ", 4vM, =1750 0e, and 1=0. The
linear dispersion of the odd levels and the quadratic
dispersion of the even levels for small k„d con-
firms the expressions derived here.

For comparison, the spectrum for the unpinned
case (&m„/Sg and &m, /Sz vanish at the surfaces) is
also shown in the right-hand figure of Fig. 2. The
heavy approximately linear curve rising from
0 = 0„is the magnetosta'tie' branch frequently ob-
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served for insulators. This branch has a slope of
4. In contrast, the left-hand figure of Fig. 2 for
the pinned boundary conditions does not have a
branch starting from Q~. The lowest branch begins
at 0= 0„+(D/4v)(v/d) =H, . The initial slope of
2/m is about 20%%u(( lower than that of the magneto-
static branch. The linearity of the lowest (pinned)
magnetoexchange branch is destroyed by the strong
interaction with the third magnetoexchange branch
which starts at Hz= 0„+9(D/4m)(v/d) '~

A discussion of the insulator modes for the
pinned and unpinned boundary conditions for per-
pendicular resonance and also for parallel resonance
has been given elsewhere. "

IV. MICROWAVE POWER ABSORPTION SPECTRUM

In this section we calculate Poynting's vector for
a metallic ferromagnetic plate driven by a uniform
h~. The power absorbed by the specimen is pro-
portional to the normal component of Poynting vec-
tor integrated over the entire surface. Our de-
velopment differs from the usual calculation of the
surface impedance in a number of respects. First,
we develop expressions which are valid for k„40.
Second, we present a very detailed analysis of the
k, =0 absorption spectrum. Simple analytical for-
mulas are derived which describe the standing spin-
wave resonances absorption peaks and the deriva-
tives of the absorption peaks with an accuracy of
a few percent including the effects of magnetic
damping, exchange, and eddy currents.

A. Response to a Uniform Field

If the effects of displacement currents are ne-
glected then the response of the sample to a uniform
rf magnetic field h~(t) = exp(i~f)h„may be easily
calculated by modifying the boundary conditions.
I.et us assume that h„ is linearly polarized along
the x' axis so that the boundary condition of Eq.
(8.8) becomes

+ 111~tanh v,

(4. 4)

-1
=h~ (CTanhr, C) 1+ ~ 1„Ctanhr, C

- 11

The elements of the inverse matrix are

qK A,

1+ + l»Ctanhr, C

1
1+ T11

~12
1+ T11

1
0
0

~18
1+ T11

0
1
0

~14
1+ T11

0
0
1

, (4. 5}

where

gK th

TM = p {Ctanhr, C (4. 8)

Using this result we find that

can satisfy Eq. (4. 2). When h„= 0 this is simply
the statement that modes having an integral number
of wavelengths across a ferromagnetic film are not
excited by a uniform rf field. By using
f ' = (coshrC)fz we find the response amplitude in-
side the sample at the surfaces + d/2 is given by

1
qg -1 0

fz —=h~(coshr, C) ' 1+ ~ l&, Ctanhr, C

o/
(4. 8)

The fields (h„')* and (9/Sr)h„' will be needed for the
calculation of the power absorbed by the sample. They
are

1+ —h„'=h~,
(4. 1)

1+&11 '*y
(4. 7)

at z=ad/2. We then obtain from Eq. (2. 15) the
matrix equation

—h —=h . T —(1+T )
8 g d -1

x 2
H' l1 ~K 11

B. Power Absorption

EK- 8 l, 0I + p' I» s If I.~iz=hrf (4. 2)

The power absorbed by the sample can be calcu-
lated from Poynting's theorem' which states that
the power flow P per unit surface area into a region
(averaged over a cycle) is given by

where the components f' are now the fields gen-
erated in response to h~. Since the driving field
is symmetric about x = 0 the sample modes of re-
sponse must also by symmetrical. The h field at
+ ~ is + rather than zero as in the eigenvalue
problem. As a result only the cosh-type solutions

1p = —((e (e x h" ) e de)2S
(4. 8)

In Eq. (4. 8) the integral is over the entire bounding
surface whose inboard unit normal is n and whose
surface area is S. For our planar geometry Poynt-
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ing's vector e&&h* is uniform on each surface and
changes sign on going from s=+d to z= —d. Since
n also changes sign we find that the power absorbed
by the sample is

P„=—Re(e && h*)g
~ g~ i(, , (4. g)

since e&&h*=e'&&(h')* and k,'=0 at z=d/2. The ex-
pression for I', reduces to

4m'' 5g
(4. 10)

It is convenient to define a generalized complex
surface impedance Z((d, k„) by the relation

.=u(2
(4. 11)

f'.((u, k„)=
( )

— Re[Z((u, k„)] . (4. 12)

The function reduces to the usual surface impedance
function when k„=0. The poWer absorbed per unit
area divided by I h„ I averaged over a cycle is
given by

It is informative to have a representation of T»
in terms of the propagation vectors in the ferro-
magnetic medium. Such a representation can be
obtained by diagonalizing the matrix C and then
constructing the matrix Dtanhr, C in terms of the
eigenvalues of C. The eigenvalues c, of C are re-
lated to the propagation vectors in the medium k„.
by the relation

(f?/4(()k'„= —c( (i = 1, 2, 3, and 4) . (4. 14)

An alternate procedure is to resolve each term of
Eq. (3.12) into a sum of terms by finding the roots
of the denominator. The individual factors may be
summed to produce trigonometric functions of the

The details of such procedures mill not be
presented here. The result for k„=0 is

Now we can make use of Eq. (4. '?) to derive the re-
sult

+ 2Z 711

The function T» = (eK/g )(Ctanhx, C]» may be cal-
culated by using Eq. (3. 12).

C. Trigonometric Representation of T» at kg 0

z((d, k„=0) = z"+ z'-',

(,) k,'" tank,"'d/2 —k,"' tank,'"d/2+ (i5'/2)k,"'ka" (kg" tank,"'d/2 —k,'" tank2 "d/2)
i6[(k,'")'- (k,'")']

(4. 15)

The quantities k,"' and kz(" [denoted by k„ in Eq.
(4. 14)] are the propagation constants for the ferro-
magnetic metal

—(a(",)'=(" )+ (~ ) +(n —1)a
1/2

(4. 16)

where g = Q' —QH, QH = Q~+ iQ', and n = 2i& . The
quantities k~( 2 may be obtained from Eq. (4. 16)
using q = Q'+ 0„'. The quantities with the (+ ) sym-
bol correspond to right-hand circularly polarized
waves and the ( —) quantities to left-hand circularly
polarized waves. Since our source field h~ is
linearly polarized the system response is the sum
of the two circularly polarized responses. An ex-
pression for T'„similar to Eq. (4. 5) was derived
and discussed by Pincus.

V. CHARACTERISTICS OF THE POWER ABSORPTION
SPECTRUM

The microwave power absorption spectrum may
be qualitatively described as consisting of a smooth
ferromagnetic resonance background (FMRB) which
is peaked at QH = Q+2& plus a series of spin-mave
resonance peaks (SWRP). The theoretical power
absorption spectrum for a 5000-A. Permalloy film

is shown in Fig. 3 for several values of the mag-
netic-loss parameter l. In metallic ferromagnetic
films the amplitude of the FMRB increases relative
to the amplitude of the SWRP as the sample thick-
ness. increases. In films whose thickness d «5
the amplitudes of the SWRP are large compared to
the FMRB amplitude, while for d» 5 the converse
is true.

The FMRB is principally due to eddy-current
losses. The magnetic losses (phenomenological
damping) also contribute to the background and
broaden and diminish the SW'RP. The peak in the
FMRB is due to the large increase in the magnetic
susceptibility of the ferromagnetic medium near
Q= QH. In fact, in the absence of the exchange in-
teraction, the susceptibility and hence the power
absorption would be infinite at Q= QH. Ament and
Rado ' and Pincus showed that the effect of ex-
change was to shift the FMR peak by an amount
proportional to & = (D/4v6 )' . This "exchange
shift" has been used to determine the exchange
stiffness in thick samples. The amplitude of the
FMR peak is proportional to q . When magnetic
losses are considered both the exchange shift and
the peak height are changed. When Ql » &, the fea-
tures are governed by Ql rather than &. The FMR
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absence of absorption of the right-hand circularly
component of the rf field. The type of effect has
also been observed in recent ferromagnetic trans-
mission experiments" in which maximum transmis-
sion of microwave energy through a sample occurs
at n, =n-i.

In this section we shall extract these features
from the theoretical results derived in the preced-
ing sections. We derive simple and convenient ap-
proximate expressions for the absorption spectrum
and also for the derivative of this function since this
is the quantity frequently measured in resonance
experiments.

A. Ferromagnetic Resonance Background

008 010 012 014 016 018
QH

FIG 3 The k~~ =0 surface impedance for a 6 x10~
Permalloy film as a function of ) the phenomenological
relaxation parameter. Vfhen E =0 the peak height of the
spin-wave resonance is the same for all of the standing
spin-wave modes. The odd spin-wave modes 3-13 are
labeled with the appropriate number. The m =1 resonance
is obscured by the ferromagnetic resonance peak. When
l &0 the peak height of the higher modes decreases as
1/nt. The parameter 0 =0.18666 corresponds to a fre-
quency of 6 GHz.

It is evident from Fig. 3 that the power absorption
spectrum consists approximately of a background
which increases as (0 —0„) ' [provided (0 —0„)
» q =1.454&10 ]. The origin of this effect can be
seen from Eq. (4. 16). When 1»q» I n I

= 2&a, then

0=1.5

v = 48.219 0Hz

c = 7. 11 x 10

6 = 3 x 10 cm
-3K=10

10 = I I I I I I I I I 1 I '~ I I I
2E

peak also depends upon k„. The peak shifts to
higher frequencies (or lower 0» for fixed 0) as k„
increases. For (8/4v)ks«1 the k„dispersion of
the FMH peak is due to dipolar effects. We shall
refer to this dispersion as "dipolar dispersion. "
The SWHP also show diyolar dispersion as dis-
cussed in Sec. III G. When d» 5 the SWHP cannot
be resolved and only the FMRB is evident. The
dipolar dispersion of the FMH peak depends upon
6k, and hence for d& 5 is independent of the sample
thickness. This is in sharp contrast to the behavior
of the magnetostatic dispersion of the main reso-
nance in an insulating ferromagnet where the dis-
persion depends upon k„d. The SWHP in the metal
and insulator also depend upon k„d [see Eqs.
(3.32)-(3.34)]. However, in the metal when d» 5

the SVRP cannot be resolved because the mode
spacing is smaller than the eddy-current linewidth
and the FMHB is much larger than the amplitude
of the SWHP.

Another important feature of the absorption spec-
tra is the "antiresonance" which occurs at
0„=0 —1 (yH„, = a&). The antiresonance is a min-
imum in the FMRB. In the case of perpendicular
resonance, this minimum is associated with the
right-hand circularly polarized component. The
nature of the antiresonance is shown in Fig. 4. It
is evident that the antiresonance is produced by the
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FIG. 4. The k)I 0 surface impedance for thick films
showing both the ferromagnetic resonance peak (0 —QH

=2e) and the antiresonance (Q- Q&=1.0). The heavy
line is the total surface impedance (Z=Z ' +Z ) and the
dashed lines are the right- (Z ' ) and left-hand (Z ).

circular polarization contributions. The resonance peak
(antiresonance) is associated with a maximum (minimum)
in Z ' . Z' ~ is approximately constant. The insert
shows the dependence of the antiresonance on the thick-
ness. The 60-p, heavy curve is the sum of the two dashed
curves.
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( a)2 +Q —QH= D4. (5. 1) 5 n(M11+M12)
d (n+~„)M,",++M,"2 (5.5)

(5.2)

The quantity k, corresponds to the exchange wave
while k2 is the wave vector for the eddy-current
wave. We note that k; is very large compared to
k2 since D/4v -10 2 to 10 2 cm while 52- 10 2

cm 2. We use this fact to derive from Eq. (4. 15)
the approximate relation

-5, , d d
~FMRB 2

$2t~k2
2

+ ~2 tank2 (5. 3)

Re[Z-„„,(~, k„=o)]=Re (k;) +(k;)5d, 4

48

(5.4)

where k2 is given by Eq. (5.2).
In deriving Eq. (5. 3) we have neglected terms of

the form (tank,'d/2)/k, '. These terms are not small
when k',d/2- (2n+ I)v since then tan(k;d/2) -~.
The exact expression for k; contains an imaginary
part so that tank, d/2 is always finite. However, in

neglecting these terms we ha, ve eliminated the
PVRP. Thus the expression derived represents
the FMRB due to eddy currents. It follows from
Eq. (5.2) that I k2l -1/5 so that if d «5 we may ap-
proximate tan(k', d/2) by the first terms of its power
series expansion. In this way we find that

ZFMRB (+t k11

u I ~l r„
2wRP d y (

2 Q2)tt r2

where

(5.6)

(5. V)

This expression is valid for A. 1
—A.„&2(Q„—cu„)

»„—X„,for each resonance provided (Q —Q„)» e.
We see that the resonance linewidth I'„ increases
with Q. Since ~ o. I && Q (because of the skin depth
dependence) I'„ varies as Q2.

The total pow'er absorbed is the sum of the two
contributions

o la) r„
ztttaal +(tka 0) 4 Q I 2 2%2 2

where ~=2i& and M&&, M», and A.„have been de-
fined previously. The neglected terms contribute
a background absorption which is approximated by
Eq. (5.4). Before proceeding let us establish the
magnitude of the various quantities. For a
5000-A Permalloy film with a skin depth of 3x 10 4

cm, exchange stiffness g = 0.9 && 10 ' erg/cm,4', =10.9&&10' Oe and for a frequency of 6 GHz
we find that &=1.454&&10, A.„=0275&10 n,
Q=O. 18655, l a I =4. 2282&&10 2, and 5/d=6. We
shall assume that the phenomenological damping
parameter l & 10 ' or that 1/1 & 3&& 10' sec '. Using
the inequalities I a l «A.„, I n I «0, and Ql « ~„, we
derive the expression

This equation is valid only when (Q —QB)» 2.
Therefore, the FMR peak is not described by this
result. As we commented earlier the FMR peak
is controlled by the exchange interaction and not
by the eddy currents. However, we shall show
later that when Ql » e then the peak is controlled
by magnetic losses. In this case Eq. (5.3) is valid
when Eq. (5.2) is used for the propagation con-
stants. Note that Q„'= QB+iQL/(1+I ) enters in Eq.
(5.3) and not simply QB.

B. Spin-Wave Resonance Peaks

Next we derive approximate expressions for the
SWRP contribution to the power absorption spec-
trum.

When d«6 it is easily verified that the major
contribution to T1, (C coth1, C}» comes from a
single term in the partial fractions expansion of
Eq. (3.12). From Eq. (3.18) we see that the nth
spin-wave resonance occurs at an applied field
~&= ~ —X„when d«5.

For O~ near 0 —A.„the expression for the surface
impedance is

(X~, —Xa) & 2(QB —V,) &(Z. —Za1) (5.8)

This result is an excellent approximation to the
exact expression

5 M11+ M12 (5.9)

In Fig. 5 we illustrate the excellence of Eq. (5. 8)
in describing the power absorption peaks which are
removed from the main FMR (i. e. , n& 5). For
perspective the reader should refer to Fig. 3 which
shows the entire spectrum calculated from the Eq.
(5. 9). In Fig. 5, the curves labeled "exact" are
calculated from Eq. (5.9) while those marked "ap-
prox" are calculated from Eq. (5.8). The agree-
ment can be further improved if Eq. (5. 3) is used
for the FMRB contribution. For the peak n= 13 and
i = 10 2 the FMRB is only about 2% of the SWRP
while for n= 5 the two contributions are about the
same magntitudte. As / increases the FMRB is- re-
latively more -important.
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FIG. 5. Comparison of approximate
and exact calculations of the derivative
of the surface impedance (upper) and
the surface impedance (lower) for
&=10 and l=Gx10 for the n=5 spin-
wave resonance in a 5 x 10 -L perm-
alloy film. The heavy curves are
calculated from the exact formulas
and the 6 and 0 are from the approxi-
mate formulas.
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C. Spin-Wave Resonance Mode Intensities

With the aid of our approximation formula, Eq.
(5.8), we can determine the peak heights and widths
and also the derivative of power absorption peaks.

First we note that the SWRP contribution is in
the form of a Breit-Wigner shape. The peak height

at resonance a„ is

5 la IO 4(5/d)
d A„l'„X„Ql/z + 2

(5. 10)

Vfe see that in the absence of magnetic losses the
peak heights are constant. This result seems
rather strange at first glance. One might expect
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that the power absorption should fall off as 1/n
because alternate half-wavelengths across the film
cancel. The remaining uncompensated half-wave-
length of the nth mode contributes only 1/n to the
volume integral of Poynting's vector. The answer
to this apparent contradiction is that the height of
the peak in the power absorption is inversely pro-
portional to the imaginary part of the eigenfrequen-
cy. According to Eq. (3.19) the imaginary part
of the frequency Q„z(0) is proportional to 1/n when

d «6 so that the decrease due to cancellation is
exactly compensated by the decrease in Q„z(0) with
increasing n. The decrease of the eddy-current
losses as n increases exactly cancels the n 3 de-
crease in the peak heights due to the wave cancella-
tion across the film. When l & 0 then the peak
height is not constant. When the term +Ql/&» 2
then the peak height decreases as 1/na. For the
parameters previously mentioned QQl/& = 6. 63ln .
For n = 9, X„Ql/& = 2 for l = 4 && 10 ~. The modes
with n & 9 will then be dominated by magnetic losses.
The peak height is controlled by the prefactor
(5/d) which has a frequency dependence of &u

~~3 due
to the skin depth. It might appear that the factor
X„Ql/&' is also frequency dependent. This is not
the case since & oo 1/5 oo Q. In order to produce a
frequency dependence in the ratio of the peak heights
a„.,/a„using the Landau-Liftshitz form of damping,
the damping parameter l would have to be frequen-
cy dependent.

The FMBB contribution to the peak height is
small in thin films for the high-order modes when
i~10 ~. For the low-order modes the FMRB is
important. This contribution increases with in-
creasing frequency and decreases with n approxi-
mately as 1/n .

In many cases the "peak-to-valley" amplitude dif-
ference in the derivative (with respect to the ap-
plied field) of the power absorption is used as a
measure of the mode intensities. The difference
in applied field va1ue for the maximum and mini-
mum in the derivative is used as a measure of the
linewidth.

The principal contribution to the derivative comes
from the SWBP function. The effect of the FMBB
is to produce an asymmetry in the derivative. Near
the main FMR peak the asymmetry is large. The
derivative of the FMRB overwhelms the SWR con-
tribution when 0- QH = & so that a number of SWBP
may be unresolved.

The derivative of the surface impedance is

This approximation is compared with that obtained
by differentiation of Eq. (5. 9) in Fig. 5. The
agreement is excellent for the modes well removed
from the FMR peak. We note that the maximum
(minimum) in BZ„„,/ BQ„occur sat o)2 —Q
= (+ )I'„/)) 3. The difference between the derivative
maximum and minimum is

3W3 )„(d) g (Q-Q„»e) . (5. i2)

Experimental microwave power absorption usual-
ly shows that the linewidth of the higher-order
modes is much larger than that predicted by theo-
retical models. One important factor that leads
to a broadening of the higher-order modes is varia-
tions in film thickness. Thickness variations of
the order of 30-50 A are to be expected. For a
5000-A film this gives b,d//d i%%uo. The simplest
model which includes the effects of bd is that in
which the absorption spectrum is a superposition
of spectra arising from many different sections of
the film whose thickness is locally constant. Thus
if (Z") is the observed superposition of spectra

ta

Zswap (t) dt,bd
1

(5. 13)

where ta and t, are the maximum and minimum film
thickness, respectively, and hd = t2 —t, . More
sophisticated weighted averages can be imagined
but the essential features of the effect can be seen
in this simple linear model. Using Eq. (5.6) we
obtain

—);())/rt) ) a I ) w!(t,) —))')

—arctaD (5. 14)

The derivative gives

8 „d 1(Z")= — —(Zswap( a) — map (ti)] ~

H

(5. iS)
The two line shapes in Eq. (5. 15) will be approxi-
mately resolved when the separation of the peaks
is of the order of I'„, that is, when

Thus the mode intensity I„as calculated from the
derivative decreases as 1/n when a„ decreases as
i/n'.

D. Effect of Thickness Variations

BZ„„, —16(6/d) I o. I Q'(u&~ —Q')I"„sQ„g [(~„'—Q')'+ I'„']' x ~ I" =20 Ql+ (5. 16)

(5. 11)

We note that for Ld/d-1% this condition is easily
satisfied. . For example, with the parameters used
previously and l = 10 3 the inequality is satisfied for
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FIG. 6. Comparison of the exact
and approximate formulas for the
surface impedance at the ferromag-
netic resonance peak for a film 24 p,

in thickness. The constant difference
is due to the neglect of the Z con-
tribution.
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n & 9. For such a case according to Eq. (5. 15) the
derivative decreases as 1/n instead of 1/n . This
effect results from the fact that the resonance
frequency now varies over a range due to thickness
variations which increase as n2[aQ„= [2(D/4v)
&& (v/d)hd]n ). The total integrated intensity is ap-
proximately constant so that the peak height must
decrease with an additional factor of n ~. This
factor also appears in the derivative of the inten-
sity. We also note that the condition Eq. (5. 15)
is frequency dependent sothat for low frequencies
the 1/n4 behavior may be approached for smaller
n than in the high-frequency case provided
Ql &

I n I/X„ in both instances. Frequency depen-
dences of this sort but even more pronounced have
been reported recently by Weber and Tannenwald. ~0

The linewidth of (Z") is much broader than that
of Z~Rp for the typical thin film resonance experi-
ment.

E. Characteristics of the FIR Peak

We commented earlier that the FMB peak position
and height is controlled by the exchange interaction.
When d~ 45 the shape of the power absorption curve
becomes independent of thickness. When d is large
the quantities tan(k,' z d/2) - i provided that k', , 4 0.
For 0- Q~ none of the propagation constants vanish
and therefore we find that the power absorption
tends to

1 —2 s5 kgb' 1 —
p i5 kqk2

(5. 17)

The contribution due to the left-hand circularly po-
larized waves is nearly constant fear 0- Q„while

that due to the right-hand circularly polarized
waves changes rapidly. Consequently the FMB
peak position can be located by finding the maximum
of the first term. Making use of Eq. (4. 6) and the
fact that the peak occurs when I g I is of the order
of & we find that near the peak

1 1 —j
2 [(n' —n„—2e) —i( ~2l+n')]'" ' (5. 18)

An approximately constant correction due to Z„
must be added to the right-hand side of Eq. (5. 18)
in order to calculate the magnitude of Z„accurate-
ly. The maximum occurs at O~= 0' —2q. At this
field the peak has the magnitude

1
I max 2( + I fgl)1/2 (5. 19)

For small values of q the Z„contribution is rela-
tively small. In Fig. 6 the function Z„according
to Eq. (5. 17) is compared with the approximation
Z ' of Eq. (5.18). The constant difference of 0. 65
is due to the lack of the Z„contribution.

Next we consider the dipolar dispersion of the
FMB peak. Using Eq. (4. 13)

z (2i/k) T„Z.'(0)
I1+ T, I l1+ (k/2i)Z„'(0) l~

(5.2o)

For small values of k„ the peak position of
Rez(&u, k„) is given by

to,' '"
0 —Q~= 2g+ —+ K . (5.21)

This result is valid only when K& ' &1. For larger
values of K quadratic terms are important and the
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lem is that Z„(0) is obtained from Eq. (4. 15) by
replacing tankad/2 by i, a, procedure which is valid
when Ini(kid/2)» 1. However, at the antiresonance
minimum ka-0 and tankmd/2 may not be replaced
by i near g -1=0. The presence of nonzexo l does
not remedy this problem. Thus Eq. (4. 15) should
be utilized in studying the antiresonance. For l = 0
and d» 5 we may evaluate Z'(a&, k„=0) by using
k; = 0 and tank, d/2 = i. Then we find that the mini-
mum value of Z'(&u, k„=0) is

ReZI)II Re . ] /3

0.2 1.0 1.5

FIG. 7. The dipolar dispersion of the ferromagnetic
resonance peak as a function of E= 6 )kII ). The small E
region is described by 0- QH =2m+ (e/2+lQ'/4)~~2 in the
linear region. This region is indicated in the enlarged
small K region. The parameter / = 10

This should be compared to the maximum value of
ReZ'=1/2(&)' . Since e-10'we see that the
minimum is many orders of magnitude smaller
than the maximum. A detailed study of the anti-
resonance for both parallel and perpendicular res-
onance conditions will be presented elsewhere.

VI. SUMMARY OF RESULTS

relation is no longer linear. In Fig. 7 the depen-
dence of the FMR peak on K is shown.

F. Antiresonance

Recent experiments have shown that the trans-
mission of microwave energy through a ferromag-
netic metal exhibits a maximum at ~ = yH„, or in
our dimensionless units at Az = 0 —1. This phe-
nomenon is a result of the behavior of the magnetic
susceptibility of the ferromagnetic medium. In
the case me are considering of the applied magnetic
field perpendicular to the sample surface the ab-
sorption minimum is associated with the behavior
of Z ((0 k„=O) as ls evident ln Fig. 4.

To study this feature we note that according to
Eq. (4. 16) that if /=0 then km-0 as Qz Q-l.
The minimum in Z'(&u, k„=0) is associated with
Aa- 0. For small / and g - 1 small,

6'e'(k,')'=q- n+ "
(5. 22)

For the semi-infinite surface impedance of Eq.
(5.1V), k;=(-1+i)[(q -1)/n]'" when I =0 and g —1
&0 while for (q —1)& 0, k,'= (1+i)[(1—q)/n]'~' since
the imaginary part of k2 must be positive. The
propagation vector ka as a function of q therefore
has a cusp at g —1 = 0 and this behavior leads to a
cusp in the surface impedance. Vfhen /40 the mini-
mum in Z'(~, k, = 0) is parabolic as shown in
Fig. 4.

lt is temyting to suppose that Z„(0) can be used
to study the antiresonance when d»5. The prob-

In this section the important x esults derived in
the main text ax'e summarized. It 18 convenient
first to recall the definitions of the various sym-
bols.

I equals planck's constant/2v; &u is the angular
frequency in 1ad/secq 'Mq 'ls the saturation mag
netization in Oe; 0 is the dimensionless frequency
Q= k(d/4vpM pegual's the. gyromagnetlc ratio
(erg/Oe); Q„(k„) is the dimensionless frequency for
the gth magnetoexchange branch of a metallic fer-
romagnet; Q„(k„) is the dimensionless frequency for
the nth magnetoexchange branch of an insulating
ferromagnet; n is an integer; k„ is a wave vector
parallel to the sample surface; K=5k„ is a dimen-
sionless in-plane propagation constant; 5 is the
electromagnetic skin depth; d is the sample thick-
ness; QH is the dimensionless internal field
Q„=(0„,/AM, ) —1; H„, is the applied static mag-
netic field peryendicular to the sample surface;
{D/4v) is the exchange constant {cma); I is the
phenomenological magnetic relaxation parameter;
Q„ is the dimensionless exchange energy (D/4w)kgb
c is the velocity of light; o is the electrical con-
ductivity; X„ is the exchange energy (D/4v)(v/d)V;
c is the dimensionless parameter (D/4v5')' 3;

P,(&u, k„) is the power absorbed per unit surface area
(cgs units); Z(&v, k„) is the generalized surface
impedance; ZFM»(&u, k„=0) is the surface impedance
associated with the ferromagnetic resonance and
eddy currents; Zsv»(&o, k„=O) is the surface im-
pedance associated vrith the nth spin-wave resonance
peak; Z,"«„ is the total sui face impedance Z,"«„
= ZFM»+ Zsv», and Z„'(0) is the surface impedance
of thick metallic films {d»6) for right- (+ ) or
left- (- ) hand circularly polarized k„.
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A, Spin-Wave Modes

The spin-wave frequencies of a conducting ferro-
magnetic plate (magnetoexchange branches) as a
function of k„are

2n2v'(6/d) 4

a(a)= o(0)+ a+i o( . i „,)gp)kd,2i+n m (5yd
(6. 1)

where

A„(0) = f(A„+g)+ (2$)[22+SV (6/d)2]-')(1+ tl)

(6.2)

g = n'v'(D/4v)(1/d)' .
For the insulating ferromagnetic plate

, , k„d(1+tl) «r n 1, S, e.-. .2

A„(y„)= (A„+Z„)(1+ted)+
A,„+— "

~

(1+ii) for n=2, 4, 6. . .
2 tlm )

(6.2)

B. Povyer Absorption in Thin Films

The generalized surface impedance is related to
the average power absorbed by

p, (td, a)=~ i )aez((a, a„) .
q4gao

(e.4)

The surface impedance near the nth microwave
absorption peak for k„=o is

a Inl l„
total d y (

2 A2) Z4

Equations (6.1) and (6.2) are valid when the spacing
between k„=O levels is large compared to the dis-
persion.

sos i„(el,
where a„ is given by Eq. (6, 6).

(6.6)

C. Power Absorption in Thick Films

For thick (d»e) metallic films the k„=0 surface
inpedance near the FMH peak is described by

The difference between the maximum and minimum
of the derivative of the surface impedance is

wlle1'e & = 22& i a = D/4ve, (0„=Agg + A„, alld
I„=2A(Al+ I oi I/X„). Eqllai'1011 (6. 6) app11es to fi1111s
with d«5 in the range

it„,t - X„-2(All —A„) - X„-X„ 1

for each branch n= j., 2, ... when Q-Q&»&. The
peak height a„of the ttth (k„=0) standing spin-wave
absorption peak of a thin film is gi.ven by

[(A' —A„-2&) —2(24+ EA')]'" ' (6.9)

where O'=A/(1+3 ). The maximum in the FMR
peak occurs at QH = Q'+2& and has the value
[2(&+-2' lA')]' '

The dipolar dispersion of the FMR peak is initial-
ly linear with K for small K. This dispersion is
described by

a„=4(e/d)(2+ X„Al/6') ' . (6. 6) ~Q ~~3
O' —Q~= 2&+

2
+ (6. 10)

The derivative of the surface impedance of the nth
spin-wave mode is approximately

8Zt"„„—16(e/d) I ct I A2((o2. —A2) 1'„
sA g[(td„' —A')'+ r„']'

when Kg~~a& 1. A power absorption minimum
occurs at QH = Q- 1. The surface impedance at
this antiresonance is approximately equal to q when

$ &(q.
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Absorption lines corresponding to the simultaneous creation of two excitons have been inves-
tigated in MnF2 and BbMnF3. The particular zero-phonon transitions observed are those from
the ground states of a Mn ion pair to the 4T~{G)+ Tq(G), T&(G)+ A&, E, and Tq{G)+ T2(D) ex-
cited states in MnF2 and to the T&(G)+ T&(G), T&(G)+ A.&, E, and A&, E+ A&, E states in
RbMnF3. An, attempt is made to identify the particular excitons created in these transitions
through their polarizations and uniaxial stress behavior. Selection rules are derived using the
space-group representations along with the additional assumption that the transition mecha-
anism is an off-diagonal exchange interactionbetween pairs of Mn ions on oppositemagnetic
sublattices. The interaction between excitons is discussed; it is found experimentally that for
those excitons which couple strongly to the lattice, the phonon coupling provides the major part
of the interaction. The exciton-exciton interaction energy is positive or negative and varies
from 10 to 400 cm in magnitude. A measurement of the I.-point magnon energy in RbMnF3
has been made from an analysis of the 6A&- T~{G) magnon sidebands; it is found to be
73+0.5 cm

I. INTRODUCTION

The creation of more than one quasiparticle upon
the absorption of a photon is a general feature in
the spectra of many solids and occurs whenever
there is an interaction between the quasiparticles.
The quasiparticles about mhich we are speaking
could be, for example, phonons, excitons, or mag-
nons. By definition, photon absorption involving
the creation of several quasiparticles is weak,
since presumably the particle states have been con-
structed so that the two-pa, rticle interactions are
small. Homever, if the one-particle transition is
forbidden in some way, the pair or multiple transi-
tions can be a relatively important feature in the
absorption spectrum. Tmo-particle or pair tran-
sitions have been observed in the spectra of anti-
ferromagnetic insulators, o.-02, and possibly sili-
con. Pair transitions have also been seen for

pairs of impurity ions in solids.
The pair transitions in antiferromagnetic insula-

tors have been studied in considerable detail. These
transitions include combinations of two important
quasiparticles present in magnetic systems: mag-
nons and excitons. The absorption spectra of these
substances exhibit exciton-magnon, ' two-magnon,
and two-exciton transitions. e These processes have
been of interest because of their intimate relation-
ship with the exchange interaction between ions.
Further, they have been useful in studying the prop-
erties of excitons and magnons. In this paper we
shall concern ourselves with the two-exciton transi-
tions in MnF~ and RbMnF, .

This work was motivated by our earlier work
on two-exciton lines in MnF~, in which the lowest
tmo-exciton states mere observed and identified.
In order to understand the source of the interaction
between excitons and the strengths of the two-ex-


