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Path-Integral Approach to the Magnetic-Impurity Problem. I
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The Anderson model is treated using a functional-integral technique. A systematic approach
is described which does not resort to expansions in the amplitudes of the oscillating components
of the random field, nor in the parameters of the model. The first leg of the program, which
selects a given temperature interval, is carried out in detail, and the resulting distribution
functions and thermodynamic quantities are calculated. The results are discussed and com-
pared with other approaches to the magnetic-impurity problem.

I. INTRODUCTION

Recently, the problem of a single impurity in-
side a conduction band was vigorously attacked in
a series of articles using the path-integral
method. This method, which was originally intro-
duced by Stratonovich and Hubbard, consists of
replacing the electrostatic interaction of two elec-
trons on the impurity with a time-dependent field
(or two fields) acting only on the electrons which
are on the impurity site. To obtain the exact par-
tition function of the problem, one must carry out
a functional average with a Gaussian weight over
the auxiliary fields. '

The above-mentioned replacement is exact, and
the one-particle problem in the presence of the
time-dependent fields can be formally solved. ' '
Nevertheless, concrete results have been obtained
only in certain approximations. Most of the ap-
proximations to date have consisted of treating

the oscillating part of the field as a small quantity.
In this paper we present an approach which treats
each Fourier component of the oscillating field
exactly to aQ orders, but approximates interactions
between different oscillating components.

To put our contribution in perspective, we review
briefly the approximations that have been used in
previous work. The simplest approximation is the
"static" one. ' Here, the fields are time indepen-
dent and all thermodynamic quantities can be fully
calculated. In this approximation one obtains exact
results in two limiting cases: (i) when there is
finite electrostatic repulsion U and vanishing width
l of the impurity level, and (ii) when U= 0 and
I'& 0.' ' The first-order corrections (in I'/U or
U/1') to these limits do not agree with the static
approximation.

The static approximation to the partition function
as a function of the time-independent field t'0 (be-
fore the Gaussian average) develops maxima at
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some (o+0 when

y= U/vF

is greater than y, . Wang, Evenson, and Schrieffer
(WES) find y, =2 while Hamman5 finds y, =l. When

y. & y, the susceptibility y diverges linearly with

P=(ksT) as T-0. This is a serious shortcoming
of the static approximation because it is reasonable
to have X finite at T = 0. For smaller values of y
the partition function is peaked about )o= 0 and the
localized impurity enhances the Pauli susceptibility
of the band.

A better approximation proposed by WES keeps
terms up to second order in the Fourier components
of the random field. This approximation, named
RPA', amounts to including small oscillations
about the constant field. Such oscillations are
stable only for y &y, . As a by-product of RPA' the

susceptibility is obtained correctly to first order
in y as U- 0 for fixed l. '3' In Sec. VI we will
show that RPA' overestimates the effects of fluc-
tuations and gives too large a value for the sus-
ceptibility.

In order to treat the intermediate coupling re-
gion, defined by ~&y&1, Schrieffer, Evenson, and

Wang included quartic terms in the Fourier com-
ponents of the random field in their expansion for
the free energy for a given field function. They
further argued that since the lifetime of an elec-
tron in the d state is of the order of (pI'), one
can neglect oscillations in the random field which
have frequency higher than PI'. ' To calculate the
thermodynamic functions, further simplifying ap-
proximations were made. The quartic terms were
replaced by quadratic ones multiplied by the aver-
age of quadratic terms which were then determined
self-consistently. The advantage of this approach,
which is analogous to a Hartree-Fock treatment,
is that the oscillations are stabilized in the inter-
mediate coupling region. Moreover, the zero-
temperature susceptibility is finite. However, as
one further increases y, the zero-temperature
susceptibility decreases as a function of y, which

indicates that the approximation is no longer ade-
quate.

For very large values of y (y so large that a
well-developed local moment is present) one ex-
pects the Anderson model to behave essentially
like an s-d model. 'o The susceptibility should ex-
hibit a Kondo effect~~ and flatten out to a finite
zero-temperature value. 8 Hamann' and Schrieffer
et al. 3 suggest that in this region it is advantageous
to assume that the electron on the impurity probes
the instantaneous value of the field. The probabil-
ity distribution for the instantaneous field is given
by the static approximation, i.e. , it is local in
time. They proceed to insert the time-dependent
field, smoothed on a scale (PF) ', into the expres-

sion for the static approximation and include qua-
dratic oscillations about it. Hamann showed that
this becomes equivalent to Anderson and Yuval's
treatment of the Kondo problem.

Keiter analyzed these and other failings of the
various approximations in the functional-integral
method which uses only one random field. His
parallel development of the functional approxima-
tions and standard perturbation expansion makes
some shortcomings apparent. Furthermore, his
parallel treatment provides a tool for improving
the approximations of Refs. 1-4. In particular,
he obtains the first-order correction to X for large
y and derives the logarithmic term, which is of
order y, after revoking the approximation of a
constant level width. On a pessimistic note,
Keiter concluded6 that the amount of effort involved

in the renormalization associated with the function-
al-integral paradigm casts serious doubts as to
its advantages over the usual many-body perturba-
tion expansions.

The picture that emerges from the above treat-
ment is not very clear. What may be concluded is
that as y increases beyond the value —,', one must
include in the partition function anharmonic terms
in the random field as well as their dependence on
their frequency. Interactions between the various
modes of the field also become important. ' As y
becomes greater than 1, the anharmonic terms have
to be kept to all orders.

In this paper we present the first part of an effort
to avoid expansions in the amplitudes of the field
components. We treat the problem of the thermo-
dynamics of the Anderson model using the single
random field method. For a given value of PI'
we include field frequencies Q„which satisfy

0„=2gv& PF,
where v is an integer. We calculate exactly the
contribution to the partition function of each of the
field amplitudes with these frequencies and either
spin projection. This procedure omits interactions
between the various modes of the field for a given
spin except that all modes interact fully with the
zero-frequency mode. The up- and down-spin con-
tributions, when multiplied together, provide the
partition function of the localized impurity for the
given random field before the Gaussian average is
performed. Thus, interactions between the modes
of the random field with different spins are in-
c1uded to all orders.

The mathematical formulation of this approach is
presented together with the analytical and numeri-
cal results for the case PF & 2' (that is, when only
the first oscillating Fourier component of the ran-
dom field is included). Our results for lower tem-
peratures (that is, larger PF) will be described
elsewhere.



PATH-INTEGRAL APPROACH TO THE MAGNETIC-IMPURITY. . .
II. DEFINITION OF NOTATION

We adopt the approach of WES in which the Cou-
lomb repulsion of the electrons on the impurity is
replaced by a single random external field, and the
energy of the free impurity state is shifted by
&U. The random field

where E~, and t.'„,are the energies of an electron
in the band and on the impurity with spin projection
0 = + 1, respectively. c~„c~„c~„andc„,are,
respectively, the creation and destruction operators
of electrons with spin projection o in the band and
in the localized d state. U, the strength of the Cou-
lomb interaction, is the coefficient in the term

(2. 1) Il~= Un„n„, (2. 7)

is defined in the interval Os v 1 and the frequencies
Q„are defined in Eq. (1.2). In terms of complex
field amplitudes $„, the partition function for the
system is given by O'ES as

S= d(0 2 d E„exp
v&0 po ~woo

sw 00

C =2vPU. (2. 8)

WES termed Zo(t'o) the static approximation and
wrote

where n= ctc.
Zo($ ()) is the correction to Zo due to a time-in-

dependent external magnetic field C)o which acts
only on the d electron. $0 is just the zero™fre-
quency Fourier component of $(r) in Eq. (2. 1) and

+Q Tr ln(1 -K') Zo(&o). (2. 2)

In the above equation we have

z((((,) = exp Z tn(1+ v(:G„'))
noe

(2. 9)

Zo(ho) = &Zo(to) . (2. 3)

(2. 4)

where

g, the partition function for the Anderson model
with no Coulomb interaction term and with the im-
purity levels shifted by ~ U, is given by

g0 Try-8Qf0+&v)

in which G„' is the Fourier component of the two-
time d-d Green's function belonging to the Hamil-
tonian E0+ H~. In the "wide-band" approximation
we have

G„'= (i(o„—pro, + ipr sgn(o„) ~,

where

H() = Q coo no, + Q (t oo+ o U)noo

H„= Q (Voco()co()+ V*coo c))()) ~

Roe

(2. 5)

(2. 6)

(o„=(2n+1)iv, n=0, +1, ~2, . . .
and F is the width of the virtual d state. Note that
the Green's function is diagonal in Fourier space.
With G'„given by Eq. (2. 10), Zo can be evaluated
and is found to be

(2. 12)

B is the Eulerain integral of the first kind.
A special case that is most often considered is

the symmetric case, where

= cC)~~G~', m4n
1-K

=1, m=n' (2. 15)

Zqe= eq+ ~ U= 0 . (2. 13)

in'((((,)-( 4) tan& ( 0)

Under this condition the asymptotic behavior of
Zo as pr- ~ was shown by WES to be

6„'= (i(o„+cc)o+iPI'sgn&o, ) (2. 16)

III. STATEMENT OF GENERAL APPROXIMATION

where G „' is the d Green's function for 80+ H~ in
the symmetric case; in the presence of a mag-
netic field Cgo

ln 1+ — . 2. 14 The quantity that has to be approximated is

exp[Trln(1-K')j . (3.1)

Returning to Eq. (2. 2) we note that the matrix
elements of 1 -K' are given by

In order to develop the approximation, this quantity
is expressed as an infinite determinant using the
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identity

exp[Tr ln(l —K ')] = Det(l —IP)= D'—. (3 2)

principal diagonal of ones and one diagonal j re-
moved above it and one j removed below it. Our
approximation to D'(M) is then

The static approximation consists of keeping
only the diagonal, i.e. , in the static approximation D (M) = 1+ Q(d) —1) (3. 11)

Do (3. 3)

With some effort, it can be shown that as X'- 0,
D'- 1. It is obvious that as U or C vanishes
D'- 1 because in this case all off-diagonal elements
are zero.

In the matrix D' '6 every diagonal is proportional
to one Fourier component of the field $ [see Eq.
(2. 15)]. Specifically, the diagonal which is v

diagonals above the main one is proportional to
No other diagonal depends on P „although there

is one diagonal below the main one which is pro-
portional to

(3.4)

Equation (3.4) states the reality of the field.
The determinant D' is expressed as the limit of

a (2iV+2)-dimensional determinant D'„:

(3. 5)

d, = lim d„(j) .

Before concluding this section the following com-
ments on the approximation are in order: (i)
Every term that appears on the right-hand side of
Eq. (3. 11) appears once, and only once, in DjM)
(ii) All terms in D„'(M) which involve only one
amplitude $ „(v& 0) and its complex conjugate $ „
are included in our approximations. (iii) Each
one of the terms in the sum in Eq. (3.9) vanishes
as I"-0 or U-0.

IV. EXACT EVALUATION OF D (1}

At this point we specialize in the case M = 1.
According to the discussion following Eq (3. 7.),
one expects the results of this approximation to
give a good description as long as PI'& 2n. From
Eq. (3. 11) we have

For a given value of PF we define M (an integer)
by

D'(1) = d, = lim d„(1). (4 1)

2v(M —1) & PI'& 2',
and set

r.=0 f»
I
vl'M ~

(3.6)

(3.7)

In other words, we assume that oscillations of
the field with frequency which is greater than the
inverse "time" that an electron spends on the im-
purity are unimportant. This assumption, which
we feel is a rather safe one, is similar to the one
made by Schrieffer et a/. ' D„', for 1V&M, becomes
a matrix with M nonzero diagonals above and be-
low the main diagonal. We denote it by D„'(M),
where

D'(M) = limD„'(M) . (3.8)

The elements along the main diagonal are 1.
Our main approximation consists of disentangl-

ing the various modes of the field from each other.
This is done by writing D„'(M) as a sum of M terms,
each of which involves only one $„:

That is, we expand d„(1) about its central two rows.
8& and 8& are subdeterminants whose elements
are given by Eq. (2. 15) with the restrictions that
0&nz and n&1V, respectively. In addition, of
course, $„=0 for I v I &1.

From the definition of B„and B™„it follows that

&~.i(«(o) = &M(«t o
—2«) ~ (4. 3)

The evaluation of d& will be described in detail
because it will be the cornerstone for the exten-
sions of the present theory to M &1. These ex-
tensions will be described in a subsequent paper.

The calculation of d„(l) is difficult because iPI'
(in the denominators of the off-diagonal terms)
changes sign when co„changes sign. Thus, we start
by expressing ds(1) in terms of subdeterminants for
each sign of ipI". We write

D„'(M ) = 1+ Q [d„(j) —1], (3.9) Expanding 8& about its first and second rows
gives a second-order difference equation for B„

where d„(j) is a determinant whose elements are
given by Eq. (2. 15) with the restriction (3. 6), ex-
cept that

CP ) g
I3

4 '(g P)(A ~ 1)
(4. 4)

$„=0 for
l
vl+j. (3. 10) and boundary conditions

Thus, d„(j) is a tridiagonal determinant with a Bo= 1, (4. 5)
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Ca
I $ la

4v (A, + 1)(A,+2)

where, in the symmetric case,

A, = —&+-,'5-ioC~O/2w,

(4. 8)

(4. 7)

of Eq. (4. 4) leads to

(4. 8)

(4. 8)

As is shown in Appendix A, repeated iteration

where J is a Bessel function.
Finally, inserting Eq. (4. 2) in (4. 1) and using

Eqs. (4. 3) and (4. 8) we find

(4. 10)

Equation (4. 10) is exact and has the following prop-
erties:

written as

D'(1) = [D'(I)]*,
D'(I) = D'(1) = D(1),
lim D(1)=1.

(4. 11)

(4. 12)

(4. iS)

~p d «g $02

F(5+ 2P) F(5+2m —2P)
F(5+P+ 1)F(5+ m —P+ i)

V. PARTITION FUNCTION

In the present approximation the result (4. 10)
provides us with the partition function. Since
Zo($0) ande ' 'u" 'in Eq. (2. 2) dependon)oand
I 4 I only, the integration over the Gaussian
weights for aQ other Fourier components can be
carried out. Since they all integrate to unity, we

have

Z=4. f "d/OJ $, dE, e "0 '"iZO($, )[D(L)],

(5. 1)

where $' stands for the absolute value of $'.
the nonsymmetric case, e,+ ,'U+0, and -[D(1)]
shouM be replaced by D'(1) D'(1).

Two quantities are now of interest. The first
is the probability distribution of various field am-
plitudes for different values of the parameters
y and 5 = PF/v. For a selected set of pairs (y, 5)
we plot in Figs. 1-4 the ratio of the integrand as
a function of $, to its value at 4 = 0 for several
values of $0.

In order to plot these curves, we use a rapidly
convergent series representation for D(1), which
we derive in Appendix B, as follows:

D(1)=~ F(A.+i) ~'5

F(5+2k) C)i
k!F(5+ k+ l)F(A, +k+1) 2w

(5. 2)

The second quantity of interest is the distribution
of &0 after the Gaussian average over 4 has been
carried out. As shown in Appendix C, this can be

F[(5+ i)/2]'
IF(A, +I+P) I'I (FA, 1++m-P) I

0~1 0 (5. 8)

y=0.2 Pl" ~6.5
lo

S

6
04

C4
I

4V

CV

0

FIG. 1. Logarithm of the distribution of $~ vs $g
[see Eg. (5. 1)j. The numbers marking the curves are
the values of ~$p/C.

where Z isdefinedin Eq. (2. 3). Setting &;=Oin
Eq. (2. 12) one finds that ZD($0) is just the m=p=0
term of the double sum in Eq. (5. 3).

In Figs. 5-8 we plot log Z~($0) as a function of
(0 for a set of values of y and 5. For comparison,
on each figure we also plot the static approxima-
tion result. [Note that the curve for the static ap-
proximation vanishes exactly at $, = 0 as a conse-
quence of Eq. (2. 12). However, LogZ~(0) isanon-
vanishing function of the parameters y and 5. To
aid in the above comparison, we have shifted the
value of LogZ~(0) on Figs. 5-8 so that LogZ~(0) 'also
vanishes. ]

A general characteristic of the approximation is
that for small values of y= U/vF the first term in
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IO

8
O

6
I

cv 4
4IP

2

y= 0.6 Pr =6.&

0.5

2

y=KO PF=63
IO—

4

0
C:

ol 0
I

OJ -2
N

FIG. 2. Logarithm of the distribution of $~ vs $~

[see Eq. (5. 1)]. The numbers marking the curves are
the values of m/0/C.

lO

y=t.o PF =6.i

the series representing Z& is dominant. Hence,
the results are essentially the same as in the static
approximation.

As y increases beyond y = —,
' the static approxima-

tion develops maxima at values of $0&0. The posi-
tions of these maxima tend to the limit + —,'Cn as
y- . Furthermore, the RPA' corrections to the
static approximation become unstable. The RPA'
corresponds in the present approach to the replace-
ment

D(1)- exp05/2)((v5+ v)'+ (C$ o)'1 '(C& )')
(5. 4)

the exponential of the ratio of the first two terms.
For small &0 and large y this approximation to
D(1) diverges like e''z, where a is arbitrarily
large In fa.ct, D(l) in Eq. (5. 2) is an entire func-
tion of $& which diverges as $z-~ slower than
e"& for any a. [D(1) behaves asymptotically like
e '& for some b. ]

As can be seen from Fig. 4, for y &-,' and $o= 0,
the function —2v(~+ 2lnD(1) does tend to increase
for small g, , where its behavior is the same as
in the RPA'. However, as $~ increases on the
scale of C/2v this increase is rapidly quelled by
the decrease of the term —2m]~. For larger $0,
even the small t~ increase disappears, as can be
seen from Eq. (5.4).

-lO—

FIG. 4. Logarithm of the distribution of $$ vs (f
[see Eq. (5. 1)]. The numbers marking the curves are
the values of v)&/C.

VI. SUSCEPTIBILITY AND ENTROPY

It was shown by Schrieffer et al. ' that the in-

O

N

C

l

pr = s.s

As far as Z, (&,), which is defined in Eq. (5. 3),
we find that the inclusion of $, weakens the sym-
metry breaking. Specifically, for a given y, the
maxima in Z& appear at higher values of PF or at
lower temperatures. These maxima are less pro-
nounced than in the static approximation. This is
quite an important feature since, as we show in
Sec. VI, it brings about a reduction and possible
leveling off of the static local susceptibility.

The RPA' expression for Z~((o) amounts to
factorization of the term with m=P=0 in Eq. (5. 3)
(which is just the static approximation) and a re-
placement of the infinite series multiplying it by a
geometric series with a quotient equal to the ratio
of the first two terms.

8
Cl

6
CV

04
I

4IP

C4

0.3

0.5
l

0.5 t', /c

2 3 4

FIG. 3. Logarithm of the distribution of $~ vs 4
[see Eq. (6. 1)]. The numbers marking the curves are
the values of ergo/C.

FIG. 5. Logarithm of the distribution of $0 vs $0 [see
Eq. (5.3)J. The solid curve represents the static approxi-
mation, the dashed curve represents the present calcula-
tion. (In this figure the two curves are overlapping. )
The arrow represents the position of —ln [Z~(0)] for the
dashed curve.
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y=)

the slope of ny.„as a function of PI; is bounded

by its free-spin value, which is unity in the vari-
able of Fig. 9, saturation must occur at lower
temperatures.

In Fig. 10, we plot the excess free energy due
to the impurity

~Z = (Pl")-' ln(Z/Z') (6. 6)

as a function of PI' for various values of y. The
value of ~ evaluated in the static approximation
is included for comparison. The excess entropy
is then given simply in terms of 4I' by the follow-
ing:

(6. 6)

y=0.2

I a I s l a I s I

2 4 6 8 l0

I'IG. 9. Excess susceptibility due to the impurity vs
PI'. Solid curves represent the static approximation.
Dashed curves represent the present calculation. The
arrow next to each pair of susceptibility curves marks
the value of PI" for which PU=2m.

where p is the chemical potential and ~ is the
volume.~ and 48 are contributions to the total free en-
ergy and to the total entropy of order unity. The
conduction band contributes a quantity of order 8,
the number of electrons in the band. Thus, the
smooth behavior of ~ as a function of temperature
(Fig. 10) implies that the localized impurity has
a negligible effect on the total entropy and hence,
on the specific heat of the system. This is to be
contrasted with the case of the susceptibility which
varies rather rapidly with the temperature for
large values of y.

VII. DISCUSSION

2n & PI'&4m, (6.4)

t'2 must be included in the calculation.
As y increases far beyond one' (such as y = 3 in

Fig. 9), 4y, behaves linearly with PI' in the inter-
val PI'&2v. The slope becomes closer and closer
to that of hg, which was calculated in the static
approximation. This behavior is quite reasonable.
Asy- the value of 4y, at T=O increases to in-
finity. Hence, the saturation of &y, takes place at
higher and higher values as y increases. Since

about a decrease in the second moments of the
distribution and, in turn, of the susceptibility
[see Eq. (6. 3)]. The present calculation suggests
that the distribution function behaves asymptotically
like e' ~"' . This conjecture is corroborated by the
static approximation and by the extensions of the
present approximation to higher v's. ~

For greater values of y, namely for 0,5~y & 1, &X,
tends to saturate in the temperature interval PI'c2m.

g the present approximation is extended to tempera-
tures much lower than 2v/I', hy, increases rapidly
and eventually approaches the static approximation
to 4X, . However, such an extension would be un-
warranted according to the discussion in Sec. IV.
In order to obtain reliable results in the next tem-
perature interval, which is

5.0

2.8

0.8

0.6

) y=l

0.2
) y=0.6

2 4 6 8 IO

FIG. 10. Excess free energy due to the impurity vs
PI' t.see Eq. (6. 1)].

Much is still to be desired from the approach
presented in this paper. We list below some of
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the obvious needs and we discuss them in relation
to other approaches.

One has yet to determine the nature of the terms
which are preserved in the approximation out of the
totality of terms in the full expansion of Z($) in a
series in $„. Such an expansion was performed by
Keiter. A criterion which justifies the selection
of the particular set of terms treated above is
clearly missing. However, we feel that neither
the RPA' nor the quartic approximation provide a
good criterion for this selection, except in the ex-
treme limits of very small or very large y. As
Keiter pointed out, the usual argument of cancella-
tions due to random phases does not apply in the
case of a localized impurity. We feel that the
asymptotic behavior of our approximation, namely,
&($) diverges like exp(a„ I 5„'i ), speaks strongly
in favor of the present choice. This behavior per-
sists when field amplitudes with v & 1 are included.
It should be contrasted with the attempts of Herz"
to renormalize the coefficients of the I )„1 for
low values of v by integrating over higher-order
terms in $„for higher values of v.

Irrespective of the outcome of the investigation
proposed above, one can ask whether there is,
within the present approach, a saturation of ~x,
at low temperature and whether a Kondo-type log-
arithmic dependence on temperature appears for
large y. Since in the above we limited ourselves
to v &1 we cannot pursue the calculation of &g, to
low enough temperatures to answer these ques-
tions. We are presently analyzing the effect of
including Fourier components of the field with
v & 1 on the various thermodynamic quantities.

An important attraction of the scheme proposed
here is that, as in the static approximation,
one obtains a systematic calculation in the whole
continuous range of parameters. If one is to ac-
cept Keiter's conclusions6 then this possibility
has to be abandoned, as it was before the introduc-
tion of the functional integral method by WES. In
such a case, the most reasonable approach would
be that of Mattis~~ who considers the Anderson
model with a finite number of shells of atoms
around the impurity. This problem can be solved,
as a linear chain, to any desired accuracy. With
four shells, Mattis obtains convergence of the
thermodynamic quantities as a function of the size
of the system. The only drawback of such an ap-
proach is that the Anderson model for a single im-
purity is just the first step in understanding con.-
ducting magnets which show localized moment be-
havior. The Hartree-Pock and functional-in-
tegral' methods are easily generalizable to the two-
center problem. The identifications made in the
one-center problem are helpful for gaining insight
into the more complicated multicenter problems.
Mattis's approach does not have this virtue.
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where we have used the difference equation to ex-
tend the sequence of B's to

8 g=l .
The sequence further extends to
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Inserting Eq. (4. 4) into the right-hand side of Eq.
(Al) and using (A2) and (A3) gives

E
(A+ n) (A + n+ 1)

=1+8, K'( — ) B.s

K 00

where K~ = Ca
I $q I ~/4m . Once again B„-B„qi.s

substituted from Eq. (4. 4), the coefficient written
as the difference of two partial fractions, and one
more term separates from the sum. Iterating this
procedure gives

40 K ~

j i (A+ 1)(A+ 2) ~ (A+ j+ 1)
(A5)

Equation (A5) is identified ~ as

B„=I'(A+ 1)(iK) "J„(2iZ),
which is just Eq. (4. 9).

APPENDIX 8

(A6)

The integral representation for the product of
two Bessel functions implies that
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APPENDIX A

To derive Eq. (4. 9) from Eqs. (4. 4)-(4. 6) we
write
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s/2

[cT~~~O(2Z cos8)
0

+elg~~oio(2Z cos8)] cos[(A -A )8])f8 .
From Eq. (4. 7) one has

A~+A*, = 5 —1,
A, -A~ = —ioC)o/v .

Inserting (B2) and (B3) in (Bl) gives

2 Ã/2
B= — [Zo ~(2Z cos8)+ J„i(2Z cos8)]

0

x cosh 6} d8
oC)0

25
& (2Z )

cosh(oCgo8/w)

0

(Bl)

(B2)

(B3)

(B4)

(B5)

APPENDIX C

When D(1), in Eq. (5. 2), is inserted into Eq.
(5. 1) and the Gaussian average over $~ is ger
formed term by term one obtains

defoe- oZ, ((o) I
r(A. +1)

mOO

x ~ k+ 1'(5+ 2k)1 (5+ 2l)
k I'(5+ k+ 1)1(5+ l+ 1)

1 Ca
X

Ir(A. +)+lt) I'
I r(A, +)+)) I* ( air')

where we have used the formula

(cl)

(c2)j $ "'e " dt'=-,'(2v) ' 'I'(s+ I) .
Transforming the summation indices in Eq. (Cl)
according to

where the recursion relation for Bessel functions
was used. Finally, the series expansion for J,
is substituted into (B5). Performing the integral
over 8 term by term leads to Eq. (5. 2).

k+ i=et, k=p, (c3)
and inserting Zo ($o) from Eq. (2. 12) in the sym-
metric case leads to Eq. (5. 3).
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