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nomenological coefficient which could be fitted with
experiment. Assuming the most simple tempera-
ture dependence for this phenomenological coeffi-
cient, some qualitative conclusions were able to be
drawn, which included a change in sign of the slope
of the magnetic-dispersion-vs-temperature curve
for temperatures slightly below TN as one passed
between so-called low- and high-frequency regions
and the existence of a maximum in the magnetic-
absorption-factor-vs-temperature above T„ for

both the low- and high-frequency regions.
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The rotation of the plane of polarization of an ultrasonic wave in both the antiferromagnetic
and flopped phases of the antiferromagnetic crystal Cr203 has been calculated and measured
at 4. 2'K using 9-GHz sound waves. The Faraday effect is found to arise from a resonant inter-
action between phonons and low-frequency magnon modes, by single-ion magnetostriction.
The values of mago. eto-elastic coupling constants G44 and G46 of Cr ' in Cr203 are determined:
) G44 ) ~4. 5 cm, ) G46 ) ~ 2. 5 cm

I. INTRODUCTION

Rotation of the plane of polarization of an acous-
tical transverse wave in a magnetically polarized
crystal has been recognized, for a long time, to
be a tool for the study of magneto-elastic coupling
in magnetic materials. Kittel was the first to draw

attention to the possibility of a Faraday effect in
ferromagnetic crystals. The first experimental
results have been reported on yttrium iron garnet
crystals and the values of the transverse magneto-
striction were deduced at different temperatures, ~ 3

Similar experiments were done on paramagnetic
crystals and in metals. s In this last case, differ-
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ent characteristics of the orbits of the electrons
were obtained.

The common feature of these experiments is the
difference in the coupling between the two inverse
circularly polarized ultrasonic waves with the or-
bital movement of the electrons. This coupling
difference, introduced by the magnetic field, results
in two new dispersion laws for the two circularly
polarized waves whose degeneracy is removed. A
rotation of the plane of polarization follows. It
must be emphasized that this effect supposes that,
before coupling occurs, the two circularly polarized
waves are degenerate. For crystals, this property
exists along acoustical axes (a name coined by
analogy with the optical axes in electromagnetism).
The six-, four-, and threefold axes are among the
acoustical axes. In the last case, internal conical
refraction is superimposed.

This paper is devoted to the study of the rotation
of the plane of polarization of acoustical waves in
antiferromagnetic crystals; it develops a short
report published elsewhere. The effect originates
from the coupling between two circular phonon
modes with a magnon mode. The coupling is par-
ticularly efficient when the two wave vectors and
the two frequencies are nearly equal.

Experiments reported here have been made on

CrP, crystal, using 9-GHz ultrasonic waves
propagating along the threefold axis (easy-magneti-
zation axis) at helium temperature. The biasing
magnetic field was parallel to this axis. The effect
has been observed both in the antiferromagnetic
phase and in the flopped phase.

In Sec. II of this paper some general properties
of antiferromagnetic crystals are outlined, and in
Secs. III and IV, a theoretical calculation of the
rotatory power in both phases is presented. In Sec.
V the experimental apparatus is described, and

an interpretation of the different experimental
results is given; the values of a few magneto-
elastic coupling constants are obtained. As a con-
clusion, the results are summarized in Sec. VI,
and some comments are made on the extension of
these experiments to other materials.

II. GENERAL PROPERTIES OF ANTIFERROMAGNETIC
CRYSTALS

A. Description of an Antiferromagnetic Crystal

There exist several types of antiferromagnets,
the magnetic structures of which are more or less
complex. Only simple antiferromagnets with two
antiparallel sublattices with the nearest neighbors
of a spin of one sublattice lying entirely on the other
sublattice will be considered here. The magnetic
excitations of the system are described in terms of
noninteracting spin waves. 'this approximation is
justified for CrpOs at 4. 2 'K (temperature of experi-
ment); moreover, the magnon lifetime at this tem-

perature is much greater than the period of the
ultrasonic wave. ~

In magnetic crystals, the acoustical Faraday ef-
fect may be enhanced when the frequency and wave
vector of a spin-wave mode can be made as close
as possible to the frequency and wave vector of the
propagating ultrasonic wave. In the antiferromag-
netic phase, a magnetic field H applied parallel to
the easy axis of magnetization removes the degen-
eracy of the spin waves, leading to high- and low-
frequency magnon modes. One of the low-frequency
modes can fulfill the previous condition, if its ve-
locity is not greater than that of phonons. For a
given value of the applied field H= H., (H„= 59 kG in
Crg, at 4. 2 'K), ' the magnetization flops to a di-
rection nearly perpendicular to the easy axis. The
spin-wave theory shows that there exist in this
flopped phase two spin-wave modes, ' one of which
has a relatively low and nearly constant frequency
("acoustic" mode), the other a frequency which is
zero at the antiferromagnetic-flop transition, and
which increases strongly when the magnetic field
increases ("optical" mode); the coupling between
the ultrasonic waves and the optical mode can lead
to an observable acoustical Faraday effect.

B. Magnon-Phonon Interactions in Antiferromagnetic Crystals

Some aspects of phonon-magnon interactions in
antiferromagnetic crystals have been discussed
previously, ' and experimental results on ultra-
sonic attenuation near the spin-flop transition have
been partly explained by these interactions. '~'
Use of 9-0Hz waves, as has been previously re-
ported, "allows us to discriminate between reso-
nant magnon-phonon interaction and spin-flop tran-
sition, at least in the antiferromagnetic phase.

Different coupling mechanisms between elastic
strains and magnetization of a crystal are possible.
The Hamiltonian will be written in the different
cases in terms of spin variables S, and S, and
phonon strains or displacements. Only the strong-
interaction terms, i.e. , resonant type, between the
phonons of fixed frequency co and the antiferromag-
netic spin-wave modes of the crystal will be taken
into account.

1. Volunze Magnetostriction

In antiferromagnetic compounds, the main con-
tribution to the volume magnetostriction arises
from the modulation of the exchange integral by the
phonon field. This coupling mechanism has been
previously studied'; it gives rise to the following
coupling Hamiltonian:

5C = + I.& ~ p(o'xo'y- s p &to'~- & p)
)tqP

+ H xqp(+x Px ancp +x Px a~-ap)-
+~Rap( Px Px qsqp Px Px a-sap) j (2' l-)
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G ~„, are the components of the magneto-elastic
coupling tensor G; they are unchanged by permuta-
tion of n and P and y and 6 separately. The tensor
is simplified by the geometrical symmetry of the
site. Tables giving null components can be found
in a paper by Dobrov. ' More explicitly,

X'= Q Q [G,', „,(S„', S,'}+G„',„,(S„',S,'}
i

+G„' „,(S„', S,'}+G„„„,(S„')'

+ G„„,(S„')'+G,', „,(S,')']c„'s, (2.2)

where (S, Ss }=S Ss+ SsS .
The spins point along the z axis, which is taken

as quantization axis. Then three kinds of terms
can be obtained.

Zero-order terms in spin variables S, or S .
They come from S, . They do not couple phonons
and magnons because they cannot induce transitions
between different magnon states.

QuaChatic terms in spin variaMes. They come
from the expressions of S„, S„, and (S„,S,}as
function of S, and S . The resulting coupling pro-
cess is of the same type as that of volume magneto-
striction (three-particle collisions). They will also

where o. and P are the usual operators describing
the magnon modes and a the phonon modes.

This Hamiltonian gives a noticeable contribution
to the thermal relaxation of magnons. However,
for a fixed wave vector q, the interaction energy is
very weak, and the resulting phonon and magnon
renormalization hardly modifies the dispersion
curves. This coupling process will be neglected in
the following.

Another contribution to volume magnetostriction
is the modulation of magnetic dipole-dipole inter-
action'; this interaction mechanism can lead to res-
onant magnon-phonon processes. However, it can
be easily shown that the coupling constants in this
case are two orders of magnitude smaller than
those resulting from single-ion magnetostriction.

2. Single-Ion Magnetostriction

The single-ion magnetostriction interaction as-
sumes the form

be neglected.
linear terms in sPin variaMes. The expressions

of (S„,S,}s: and (S„,S,}s:in terms of S, and S give
a sum of terms linear in spin operators and linear
in strains. They give rise to a possible resonant
coupling, resulting from the following elementary
process:

phonon (&u, q)
-magnon(~, q) (and inverse process) .

The contribution of this process to the thermal
relaxation of magnons is negligible, because it oc-
curs only in the vicinity of the crossing point where
the phonon and magnon dispersion curves intersect.
However, if a phonon mode or a magnon mode of
frequency and wave vector close to this crossing
point is strongly excited, the coupling energy can
be large. The propagating waves are then mixed
waves, carrying elastic and magnetic energy; their
dispersion law is different from those of pure pho-
nons or pure magnons. They are called ma, gneto-
elastic waves. For the study of the acoustical ef-
fect, the system satisfies this condition. Further-
more, it will be pointed out that the modification of
the phonon dispersion curves resulting from this
resonant process is sensitive even rather far from
the crossing poj.nt.

2. Single Ion Magn-etostriction in CrsOs

In CrpO„ the crystallographic sites of the mag-
netic ions Cr ' have a C3 symmetry. There are two
types of sites; one is obtained from the other by a
rotation of m around a twofold axis of the crystal.
These two types of sites correspond to the two mag-
netic sublattices l and m.

For transverse waves propagating along the
threefold axis (e axis), only strains e„, and a„are
different from zero. Therefore, the coupling con-
stants of interest are 64&, G44, G45, and G«. Be-
tween the constants relative to sites l and m exist
the relations

G4i = G4i, G«= G&4 Gss = Gss Gss= Gss (2.4)

Axes x and y, which are not imposed by the C3
symmetry, have been chosen identical to those of
the crystal (imposed by the Dss symmetry).

The interaction Hamiltonian is therefore written

~'=&,((G„l(S„')'-(S„')']+G«(S„',S. }+G„(S„,S, }+G«(S„', S„]),„
+(-G„[(S„')'-(S,')'] -G„(S„',S.'}+G„(S„',S.'}+G„(S„',S„'})e„',}

++J(G [(S„")'—(S„) ]+G,(S„,S,"}-G„(S., S. }-G .(S.", S, })e,".

+(G«[(S.")'-(S,")'1+G (S, , S:}+G«(S." S'}+G (S." S,"}).".} (2.5)
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FIG. l. Spin configuration of each sublattice in the
flopped phase.

where e„» and 8„,are related to tensorial strains by

2~x» &x»~ 2~@» ey» '

Hamiltonian describes with the same constants the
ultrasonic wave in the antiferromagnetic phase as
well as in the flopped phase.

8. Antiferromagnetic Magnon Hamiltonian

The Hamlltonlan

&m=~~ ~y '8/+k 3//eH&~ Sk +3//eHx~ Sk
j,5 m

(3.2)

has to be transformed in magnon variables. This
is usually achieved by Holstein-Primakoff, then
Bogoliubov transformations. " Here, this is done
within the usual lom-temperature approximation.

So, new variables are successively introduced by

In the antiferromagnetic phase, the spins of each
sublattice point along the z axis. The terms which
give a noticeable contribution are those coming
from (8„', 8,'} and $8t, s,}.

In the flopped phase, the sublattice I is rotated
by an angle 8 about the x axis and the sublattice m
by an angle —8 (Fig. l). New spin components 8 '

can be defined such as

S»' =S, S» =-S

(N) 1/kp e R R) c„

d„=(N) "'Z,„e""'"d„,

8 g (38)i/k 8 m (38)1/kdt

(38)l/k&'t 8 tk (38)1/kd

(3.3)

(3.4)

Finally, the magnon operators c/k, pk are given by

Sy = cos8S~ —sln8 S»

S,' = sin8S, '+ cos88,',
S,"=cos8S„+sin8S,",

(3 6)

S, = —sin88, + cos88,

cg = Qp cosh8g, + Pg, slnh8y

dk = c/k s lnh 8k + pk cosh//k

(3. 5)

The main contribution to X' arises from the terms
of the type g, ', 8„'}and (8„', 8,'].

These results are now used to calculate the rota-
tion of the plane of polarization in the two phases.

III. ANTIFERROMAGNETIC PHASE

A. Phonon Hamiltonian

with

where z is the number of nearest neighbors.
The magnon Hamiltonian is then

ts ~k@Qk(+k +k+ 2 ) +~ Qk(Pk Pk+ 2 ) t (3' 7)

For a phonon mode of wave vector q and polariza-
tion i, the Hamiltonian is Qk = (~e+~~) —~eyk ~

3 3 3 3 (3.3)

+a & =~+ac(ec/ear+ k) ~ (3.l) In the domain of interest, a~A «f and

In the problem treated here, two linear polariza-
tions occur, i =x, y. But, as mas pointed out in the
Introduction, circularly polarized vibrations play
an essentia, l part. If the calculation were conducted
by a perturbation method, these polarizations mould

be imposed because they have the symmetry of the
perturbed system. However, in the present work,
since an exact diagonalization is performed, a
change of reference modes may be achieved indif-
ferently at the beginning (choice of linear or circular
vibrations) or at the end of the calculation (final
diagonalization). Usually the spin-phonon interac-
tion Hamiltonians are given using linear phonon
operators (i.e. , with &~ and e„,); therefore linear
vibrations have been used.

Because the spin-flop transition is not accompa-
nied by a structural phase transition, this phonon

1 —Xa 0 {3.9)

Starting with the Hamiltonian

3." =Z, f(G„(8,', 8,'}+a„(8„',8,'})e„',

This scheme perhaps oversimplifies the situa-
tion of antiferromagnetic CraOS, 30 but it is correct
in the limit of small wave vectors (ke «H„/He).
If a magnetic field is applied parallel to the easy-
magnetization axis, the degeneracy of magnons

n~ and P~ is removed:

Q,'(1t, H) = Qk+yH, Qk(k, H) = Q„yH, y ~g pe/h-.

(3. lO)

C. Interaction Hamiltonian
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+Q ((G (8m 8m) G {8m 8m})

+ (G„{8„",8,"]+G„{8„",8,"]) e„" ], (3.11)

using the p~e~eding transformations (S.2)-(3.4)
and the development of &(q) as a function of the

phonon operatorsq lt ls found 'thRt IQagnons of
t q pl dt ph of a

vectors +q and —q. Therefore every operator
Q~ IQUst be RccompRnied by Q„~ a

Then, for the mode j,
8„=(a~/XVM~». )"» i[(a„+a'„}&«."

(~cI+a-cI)s '
]~ (S.12)

a ne% forIQ of the interaction HRIMltoDlan ls ob-
tained:

&&here the time dependence has not been specified.
N is the number of Crs' ions in each sublattice,
NM is the total mass of the crystal, and e„, is the

phonon or ultrasonic phase velocity.
Introducing coupling constants

A1=8(28)'~ (h&o/2M»», )I~ G«(sinha, - coshe, )
(S.13)

A»=8(28)'~»(R+/2M'», )'1»G4»(sinhe, + coshe, )

3C' = (A, + iA»)[p, {a,„+a, ) —p, (a,„+a.,„)]+(A, —iA»)[p (a,„+a,„)—p, (a,„+a,„)]

—(A» - iAI)[p~I(a, „+a~,„)—pI, (aI„+a,„)]- (A»+ iAI)[p, (aI„+a,„)—p.,(a,„+at „)]
—(A, iA»—)[a,(a,„+a '„)—.I».,(at, + a.,„)]—{A,+ iA,)[n', (a,„+a,„)—nt, ( a+ at,„)]

—(A»+iA1)[n, (a,„+a~,„)—I».,(aI„+a,„)]—(A»- iA, )[eI(a,'„+a,„)—o.t, (a,„+at,„)] . (S.14)

The total Hamiltonian is

~here

~.=g~.{q)[(,',.-'. ) (",...—.')] g~,(q)[{p,'p, —.') (p', p, -', )],

X»= h(g(q) [(a~„a„+»)+ (at ~,„+»)+(at„a,„+-,')+ (a'~, a,„+-,') ] .
D. Dispersion Law of Magneto-EIastic %(aves

(S.16a)

(3.1R)

Tl18 pl'oMBm is now to determIne 'tile eigenfrequencles of vibration of tile sp'stem. Each operator o, P,
and a satisfies the boson commutation rule [Q, Q ]= 1 and follows the evolution equation i@de/dt= [Q, '.tC],
which can be vrritten

ihda, ~/dt=gcva„+{AI —iA») a., —{A,+iA») n I+(A~I-iA»)P, -(A1+iA»)PI,

ih daI, „/df = gvat„— (A, —i-A») n, + (A, +i A») &I —(A, —i A»)p, + (A, + iA») pt,

Ida, „/dt =h(ua, „+(A»+ iA,)II, —(A»- iA. ,)nI- (A, +iA, )p, + (A»-iA, )pI, ,

iKdaI, „/df = -I&aI,„-( A+»i A)nI, (A+» —i A)In ~t+( A»+i A)I,P—(A» —iA, )P , I

Ndn. ,/df=@A e, (+AIi+A)(»„a+at)+( A»i A)(I,„a+aI),
ild /deaf I=-an nI+(AI-iA»)(a„+at, „)+(A»+iAI)(a,„+aI,„),
iadP, /df =any, + (A, + iA»)(a, „+a',„)- (A, - iA, }{a,„+a',„),
i' dp'/di= -Iflgt, + {AI-iA»)(a,„+aI,„)—(A, +iA, ){a„+at,„)

(3.16)

Now, using variables describing circularly yolarized yhonons

+ ' ~ + +
C~g $C~y=C~P P 8 qg +$8 ~Sf =+„~P P

the set of equations (S. 16) can be written
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A2- iA)

—(Az+iA. ,)

A2+~1

-(A, -zA, )

A2- jAg

—(Az+ iAz)

A2+n4~

—(A, -zAz)

2(A, +zA, )

—2(A, +zA, )

-2(A, —zA, ) -2(A, +zA, )

2(A, -~,) 2(A, + zA, )

2(A, -zA, )

—2(Az —zAg)

—NQ~

(3.18)

The equations relative to the eight other opera-
tors lead to the same solutions.

The eigenfrequencies +,of the magneto-elastic
waves and the eigenfunctions can be determined by
diagonalization of the matrix A appearing in (3.1V),
which is the direct sum of two 4&&4 matrices. Each
of these operates in a vectorial space spanned by
variables a„, a',+, n „and P'„and by a, , a, ,
~'„and P„respectively.

These two matrices lead to the two following dis-
persion laws:

(w, —& ) [(&u,+ ufo) —g&, ]—8u)&o, '+ ——0,
(3. 1S)

(~ —~ ) [(& —~o) —~ ]—8&~

(3. 20)
where

c= e+ Qo 2(.t)p = O~ —A~ ~

lf H = 0 ((no = 0), the two equations are identical and

lead to identical roots. The two magneto-elastic

modes are always excited in pairs [Fig. 2(a)] with

equal phase velocities; therefore no rotation of the

plane of polarization can occur. If H &0, the de-
generacy of the magneto-elastic modes is removed,
as can be seen in Fig. 2(b). In CrzOz, H~= 2. 4
&10 6 and 8&= 700 G. Then tanh28, = —1 and

cosh8, = —sinh8, . Therefore, if G4, is not much

greater than G44,

A2 cosh8, + sinh8, G45

A& cosh8, —sinh8, G44

Under these conditions A2 can be neglected. The
two positive roots arising from the dispersion equa-
tions and whose values are nearly equal to v„,q are

&u ~= a&+4~, (A', /5') [(~—~,)'- a&',] ', mode 0

(3.21a)

e z —u&+4+, (A, /Sz) [(&u+&uo) —&u,] ', mode 1 .

(3. 21b)

The third magneto-elastic mode of relatively low

frequency (&,= Qz) has a dispersion law

phonons

~Sf+YH

FIG. 2. Removal of the de-
generacy of magneto-elastic waves
in the antiferromagnetic phase by
the application of a magnetic field.
1'he dashed curves relate to non-
interacting magnons and phonons,
the full curves with relative polari-
zations +and —relate to magneto-
elastic modes.

b H+0
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FIG. 3. Dispersion curves of magneto-
elastic modes 0, 1, and 2 in the antiferro-
magnetic phase fee Eqs. (3.22a) —(3.22c)].
The field H~ is defined by Qgq, H=H~)
=~ (q). Both the magneto-elastic modes
0 and 1 are preferentially excited: near
A, when H &H~ and near B when H &H~.

Qf —FH

&um, = Qz+ (4&uA~/h )[(v; &uo) —uP], mode 2.
(S. 22)

These formulas are valid provided that the follow-
ing conditions hold:

$/l = 2(k& —ko) = 2 (@bed/v„, =A Q/(Q —& ),
with

A. = (2$~+/M vs, h) G444(sinh6, —cosh', }',
h~(Q' —&u')~» 8~Q A'

5 (Qa —(u~)» Q8Ai,

h ~Q&»2A& .

(3. 23a)

(3. 23b)

(3. 23c)

tanh28, = —H s y, /(H~+ H„),

l
«nh2&.

I

» I

from which

In Fig. 3 the dispersion curves of the three mag-
neto-elastic modes are plotted. 0,„ is the value
of H for which w(q)= Q~(q). If H is not very close
to &,„, there are always two magneto-elastic
modes which are preferentially excited (modes 0
and I); they are circularly polarized in opposite
senses and they have different phase velocities.
The resultant linear polarization, arising from one
round trip through the crystal, depends on the
phase difference between the two waves, i. e. , on
magnetic field. It must be noticed that the fre-
quencies which have been calculated correspond to
a given wave vector. In fact, experiments are
made at a given frequency. Nevertheless, the
preceding results are quite correct if the phase
velocities are not too strongly modified.

E. Faraday Rotation

The rotation per unit length can be written

cosh8, 4 —sinhe, ~ —,e =2, & ~H )2 y qa '+H„HE

where X is given by ),- 1 —Z(qa} . Thus,

2S G44 2 co
(3 24)

l Mva, h X(qa) +H JH~ Q' —(u'

IV. FLOPPED PHASE

A. Magnon Hamiltonian

The magnon spectrum in the flopped phase of an
antiferromagnet can be determined in a way similar
to that of the antiferromagnetic phase. The
Hamiltonian (S.2} remains unchanged and the di-
agonalization is achieved by the following steps.

(i) Quantization of each sublattice in axes rotated
by + 8 and —0 around the x axis [Egs. (2. 6)].

(ii) Fourier transforms of spin variables S. and

S:
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$ % $

S+ = e &c

2S~'~'
Sm

I Q -ii)' a (4.1)

2S '~'
S m Q N" 'K~dt

(iii) Holstein-Primakoff-type transformation:

Ck Alt Qii.+ BA a h + Ck p-k + Dii pii (4. 2a)

dI = -A~+I —B~cx„& +C~ p &+a&p (4. 2b)

The ultrasonic waves interact with the "optical"
mode (P mode) of wave vector q. The freiluency
of this mode is

n(q) =(gi, /n)[a, (.1+y,)]'"
x [Hs(1+y„cos28) —Hg sin28]'~, (4. 3)

Q(q) depending on the magnetic field H through 8.
The ultrasonic waves can also interact with the

low-frequency magnon mode, leading to a rotation
of the plane of polarization. However, the fre-
quency of this mode is nearly independent of the
magnetic field such that variations of the rotation
angle as function of H cannot be observed experi-
mentally.

B. Interaction Hamiltonian

In the interaction Hamiltonian (2. 5), only the
terms linear in S, or 8 and linear in & are retained.
This Hamiltonian can be written using the trans-
formations (4.1) and (4. 2):

X=GiA [(P, —P', )(a„+a'„)+(P', —P,)(a',, +a „)]
—jG2A, [(P,+P,)(a„+a ~) —(P, +P,)(a„+a „)]

D. Faraday Rotation

The rotation of the plane of polarization per unit
length is given by

S G &uA

/ Mv' 5 0 —v
(4.6)

where

G = G«[A(cos~8 —sin~8) + (cos~8)/A]

+G«[sin~8(A cos28+1/A)]. (4.7)

In the following, the values of 0 and A will be
taken at k = 0. In the long-wavelength limit,

—GSA [(p, —p, )(a,„+a",„)+(p~ —p,)(a,„+a „)]
+~G4A. [(P,+ P', )(a,.+a',.) (-P.' + P,)(a', +a,.)],

(4.4)
where

A, = Cq+D„

A..= C, -a„
G~ = S(2$)~ ~3(k&o/2Mv2, )'~2 G«(cos 8 —sin 8),

G~=S(2S) ~ (ka&/2Mva, ) ~ G46sin8,

G~=S(2S)~~~($&d/2Mv~ )~~3G48sin8cos8,

G4= S(2S)' '(k(u/2Mv„', .)' 2G«cos8 .
C. Dispersion Relation for Magneto-Elastic Waves

The equations of motion lead to 'he dispersion
relation

((u'- id', )fS'(id'- &d',)(0'-(u', )

-4@'&a[(G,A )3+(G,A )'+(G,A. )'+(G A, )'])
+16(G G —G G ) (A, A )'(o'=0 . (4. 5)

In the same approximation that was used for the
antiferromagnetic phase, three magneto-elastic
modes are obtained.

ULTRASONIC SIGNAL

48 50

1i( It
~

52 54 56

TRANSIT l ON

H(kG)

58

FIG. 4. Ultrasonic signal
as a function of magnetic field
in the antiferromagn. etic phase
of Cr203 at 4.2 K and 8890 MHz.
The crystal is 4.4 mm long.
The magnetic field is applied
paraQel to the c axis of the
crystal with an accuracy better
than 0.5'. Each oscillation of
the signal corresponds to a ro-
tation of 7( of the ultrasonic po-
larization.



ACOUSTICAL FARADAY EFFECT IN ANTIFERROMAGNETIC Credos 3085

ULTRASONIC SIGNAL

FIG. 5. Ultrasonic signal as a
function of magnetic field in the
flopped phase of Cr203, in the same
conditions as those of Fig. 4.

70 75 80 85
H(kG)

qa «1, and A(k) and A(k) take the following values
for k-0:

where

cos8=H/(2Ha H~) . - (4. 10)

h 0=gpa(4H, a cos'8 —2Ha H& sin'8)'I ',
1/P.

A 4
28~ cos 8 -H„sin 8

(4.8) For the experimental values of H, the value for
cose is always nearly zero. It can be shown that

A(cos'8 —sin'8) + (cos'8)/A «sin 8 (A cos'8+ 1/A) .

48 49 50 51 52 53 54 70 I5 80 85

kG)

FIG. 6. Variations of $ with magnetic field in the anti-
ferromagnetic phase (arbitrary origin).

FIG. 7. Variations of $ with magnetic field in the flopped
phase (arbitrary origin) .
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Cr2 03 ANTIFERROIVIAGNETIC PH

10

FIG. 8. Angle of rotation of the polari-
zation as a function of 1/(&2~ —~ ) (anti-
ferromagnetic phase) .

0.5

)022(g2 ~2)-~
I

(rad/sec) ~

G = G46sin 8 (A cos 0+ 1/A) .
Before comparing the developed theory with

experiment, some comments, valid for both
phases, will be made.

(i) Measurements of (/l versus 1T yield absolute
values of the following coupling constants: I G44l in
the antiferromagnetic phase and l G4, l in the flopped
phase.

(ii) There is a divergent factor (Qm —e )
~ in

Eels. (3.24) and (4. 6). It may be thought that it
introduces an infinite angle of rotation. But in-
stead it must be kept in mind that these formulas
are not valid if 0 = &u [condition (3.23a)]. On the
other hand, phenomena such as attenuation, which
becomes stronger near resonance, are neglected.
This prevents, in any case, measurements near
the crossing point.

(iii) Unlike the case of ferro- and ferrimagnetic
compounds, there is no demagnetizing field. There-
fore,experimental results do not depend on the
sample shape .an/, are, easily related with theory.

V. EXPERIMENTAL RESULTS

A. - Experimental Technique

Ultrasonic waves are generated by the piezoelec-
tric effect in an ac-cut quartz transducer intro-
duced in a microwave cavity, the resonance fre-
quency of which is about 9 GHz. The cavity is
excited by a tunable magnetron. The ultrasonic
pulses are detected by the inverse piezoelectric
effect in the same quartz crystal after one round
trip in the magnetic crystal (the Faraday effect
on the two directions of propagation is cumulative,
in contrast to the natural rotatory power where
there is a cancellation). Such a transducer pro-
duces an elastic displacement parallel to the
crystallographic x axis. Conversely, this cut is
sensitive only to the x component of a transverse
displacement and therefore behaves like an analyze&
of transverse elastic waves.

A steady magnetic field up to 100 kG is produced
by a superconducting coil. The orientation of the
field along the easy axis of magnetization is adjusted
by the following procedure: It is increased up to
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Cr2 03 FLOPPED PHASE

& H„/Hz and quadratic where (ka)' & H„/Hz .It is
easy to show that in Cr203, and with ultrasonic
waves of 9 GHz, (qa)'& H„/Hz (q being the wave
vector of noninteracting ultrasonic waves). Be-
cause of the uncertainty about the absolute mea-
surement of the field, Q»(q) is not known with good
accuracy; it is useful to introduce a fictitious mag-
netic field Ho such that

h Q»(q) = y(HO —H)

[see Eq. (3.10)].
The problem is then to determine the value of Ho

which gives a linear variation of ( as a function
of

40 50 60 70

G20
0 —co

80

PIG. 9. Angle of rotation of the polarization as a function
of ~/(~ —+ & Sopped phase&.

II =II,& and the crystal is oriented such that the
spin-flop transition occurs in the narrowest field
range.

The dispersion curve is linear in k where (ka)

B. Results

The ultrasonic signal is detected and recorded
with H varying from 0 to 85 kG. The internal
conical refraction has no visible influence.

In Figs. 4 and 5, recordings of detected ultra-
sonic signals are reproduced for II &II„and
H &H„. The variations of ] as a function of H are
plotted in Figs. 6 and 7.

These figures show that the influence of the
resonant phonon-magnon interaction is sensitive
even rather far from the crossing point of the
dispersion curves. In the antiferromagnetic phase,
one of the excited magneto-elastic modes is
strongly damped. In the flopped phase, the attenua-
tion is large, and the oscillations of the ultrasonic
signal are detectable only if the magnetic field is
oriented accurately along the z axis.

C. Interpretation of Experimental Results

1. Rotation in Antiferromagnetic Phase

The ultrasonic waves interact with the low-fre-
quency magnons obeying the dispersion law

ftQ»(k) gpzHz[(1+ H„/H—z) —y»] gpzH . —

1 1
y'(Ho - H)—

The best value is Ho = 60. 5 kG. This is to be com-
pared to the experimentally determined spin-flop
field, P„=5&.5 kG.

In Fig. 8 the variations of $ as a function of
[y»(HO —H) —aP] ' are plotted. The slope of this
curve allows the determination of the magneto-
elastic coupling constant G'44,

~G44~ =4. 5 cm ' for Cr»' in Cr»Os .
2. Rotation in I'/oPPed Phase

In the flopped phase, the dispersion law of the
interacting spin waves considered here assumes
the form

KQ(k) =gpz[Hz(1+ y»)] [Hz(1+y» cos28) —H„sin 8]

The ultrasonic wave vector q is very small; it will
be taken as

h Q(q) = @Q(k = 0) = gpz(4Hz cos28 —2HzH„sin 8)'~3 .
Then, by plotting the variations of the rotation as

a function of GSQ/(Q —&u ) (Fig. 9) in the case of
Cr, O„ the value of G,z is found,

~ G4e~ = 2. 5 cm ~ for Cr ' in Cr20» .
The constants G,~ are defined in Eq. (2. 5).

From these numerical values, it can be easily de-
duced that the three conditions (3.23a)—(3.23c) are
fulfilled.

VI. CONCLUSION

The experimental study of the acoustical Faraday
effect in antiferromagnetic crystals at high fre-
quency (9 GHz) shows that the interaction of phonon

and spin waves originates in the coupling of each
magnetic ion with the strain. This technique enables
measurements to be made of some magneto-elastic
coupling constants. Since in this frequency range
the Faraday effect is quite large, these constants
can be accurately determined. The numerical
values found here may be compared to those mea-
sured by acoustical paramagnetic res&onanee on
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diluted Cr ' ions in corundum, ~ where Cr ' sub-
stitutes for A13' without change of site symmetry,

644=1.85 cm 1, 6~=1.55 cm 1.

The present values are of the same order of mag-

Qitude.
The theoretical part of this paper can be trans-

posed mutatis mutandis to other antiferromagnetic
crystals of different symmetries provided the mag-
netization easy axis is an acoustical axis. This
includes, for instance, the case of MnF2.
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Scattering of Polarized Electrons from Magnetic Materials
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Gross-section formulas for large-angle (e, e) and for coincidence (e, 2e) scattering of fast
electrons from gaseous and solid targets are derived. It is shown that the momentum and

spin-density distribution of the bound electrons can be obtained from single (e, e) scattering
of polarized e1ectrons. It is also shown that the electronic spin- and energy-dependent mo-
mentum-density distribution can be obtained from (e, 2e) scattering of polarized electrons.
An (e, 2e) experiment with unpolarized electrons gives the energy-dependent momentum dis-
tribution. A comparison is made with related methods, like Gompton scattering, and the
feasibility of the suggested experiments is discussed.

I. INTRODUCTION

Recent&y, several papers ' dealing with
electron-momentum-density distributions in atoms,
molecules, liquids, and solid materials have ap-
peared. Three experimental techniques have been
used for ohtaining these distrlhutions (a fourth less
straightforward method is briefly discussed at the
end of this payer).

The first method involves large-angle Compton
scattering of x rays. Theoretical and experimental
aspects of this method have been described in much
detail by Eisenber ger:and Platzman, 1 Eisenberger,

and Currat et a/. The momentum distribution is
obtained in this case from the frequency distribution
of the x rays scattered through a fixed angle. The
same information can be obtained from the angular
distribution of x rays of a suitable frequency.

The second method involves large-angle and
large-energy-loss scattering of fast electrons from
gases or solids (reflection or transmission through
thin t'i1ms). This technique was applied already
more than 30 years ago for gaseous He and H2. The
momentum distribution is obtained either from the

energy distribution4 of the electrons scattered
through a particular angle, or from the angular


