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A method combining statistical equilibrium theory and the thermodynamics of irreversible
processes is used to study the magnetic relaxation behavior of AB-type Ising antiferromagnets;
more specifically, using a Bethe- Takagi statistical expression for the magnetic Gibbs energy,
the magnetic Gibbs energy producedin the irreversible process is calculated and the time deriv-
atives of the sublattice long-range-order parameters and the short-range-order parameter
are treated as fluxes conjugate to their appropriate generalized forces in the sense of Onsager's
theory of irreversible thermodynamics. Three relaxation times are calculated and examined
for temperatures near the Noel transition temperature Tz with the result that the "staggered"
magnetization is shown to experience a critical 'blowing down. " Also, an expression is calcu-
lated for the dynamic initial parallel susceptibility which is appropriate within the above theo-
retical framework for all temperatures and frequencies and contains effectively only one phe-
nomenological coefficient. Assuming the most simple temperature dependence for this phe-
nomenological coefficient, the dynamic susceptibility expression is analyzed near T~ for se-
lected frequencies.

I. INTRODUCTION

In recent years there have been large theoretical
and experimental efforts devoted to the better un-
derstanding of critical phenomena in magnetic sys-
tems' and much progress has resulted. Largely
due to the great complexity of an actual physical
cooperative system, considerable theoretical inter-
est has been directed towards finding and studying
more simple mathematical models which neverthe-
less retain the decisive features of the physical
system near a critical point. Even then, however,
these simplified many-body models still present
very formidable mathematical difficulties when an
attempt is made to obtain their exact solutions and,
as a result, many approximation methods have been
studied and developed. In general, the case of non-
equilibrium critical phenomena is not presently as
well understood either theoretically or experimen-
tally as the equilibrium case, and further efforts on
these challenging time-dependent problems should
promise to be rewarding in the future. Although
admittedly there remains an important need for
more fundamental understanding of dynamical as-
pects of critical phenomena, some noticeable devel-
opments which have used phenomenological argu-
ments to some degree or another have emerged in
the very last few years. In this regard, particular
mention should be made for theories of dynamical
scaling ' and mode-mode coupling, 4 and for re-
sults found using the stochastic kinetic Ising model.

The present paper considers an AB-type Ising
model of an antiferromagnet. Then, utilizing the

fact that the statistical Bethe- Takagi theory conve-
niently offers an approximate expression for the
magnetic Gibes energy surface, one next uses a
simple method which combines the statistical equi-
librium theory with the Onsager theory of irrever-
sible thermodynamics in order to study relaxation
behavior in the spin system. Three relaxation
times are calculated and examined for temperatures
closely surrounding the Noel transition temperature
T„, and the "staggered" (or sublattice) magnetiza-
tion is found to exhibit a critical "slowing down. "
Also an expression is calculated for the dynamic
initial parallel susceptibility which is appropriate
within this theoretical framework for all tempera-
tures and frequencies and contains effectively only
one phenomenological coefficient which may be
found from experimental fit. Assuming the most
simple temperature dependence for this phenomeno-
logical coefficient, the dynamic susceptibility ex-
pression is analyzed near T& for selected frequen-
cies.

II. BETHE-TAKAGI EQUILIBRIUM RESULTS FOR
AB-TYPE ISING ANTIFERROMAGNETISM

The Ising model under study is an assembly of N

spins localized on lattice points with the properties
that each spin can only be up (positive) or down

(negative) along the z axis and that the spin-spin
interactions are short (nearest-neighbor) in range.
Consider only lattices which may be decomposed
into Geo interpenetrating sublattices A and 8 with

the property that any lattice point belonging to a
particular sublattice has all its nearest-neighbor
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lattice points on the other sublattice (such lattices
may be termed "loosely packed"). For the case of
Ising antiferromagnetism, call the A (B) sublattice
the one which has spins up (down) at the absolute
zero of temperature.

Introducing the localized Ising spin variable ]0&

whose values are given by
U = — Z p, , p, , = ——, NzZo (J& 0), (2)

action energy U and the total magnetic moment M„,
of the Ising antiferromagnetic spin system can
easily be written, using (1), explicitly in terms of
R» R» and 0 as follows:

+1, spin on ith site up

—1, spin on ith site down,

one may define the following order parameters:

1'a ~ Rz -=—2 2

NkeA "' ' N lCB

where N is the total number of Ising spins, Q = ',Nz-
is the total number of nearest-neighbor spin pairs
(z, the lattice coordination number, being the num-
ber of nearest-neighbor spins surrounding any
spin), and g«» ~ ~ signifies a summation over all
nearest-neighbor spin pairs. R& and R~ are called
the sublattice long-mange-order parameters while
o is called the shoat-range-order parameter.

Assuming the Ising spin system to be placed in an
external magnetic field II applied along the s axis
and to be in thermal contact with a temperature bath
having absolute temperature T, one appropriately
wishes to construct a statistical expression for the
magnetic Gibbs energy 6 =- U- TS-HM„„where
U, S, and M„, are the spin-system configurational
interaction energy, entropy, and total magnetic
moment, respectively. The configurational inter-

I

(2)

where —,
' J is the strength of the nearest-neighbor

Ising spin-spin interaction (J& 0 for antiferromag-
netism) and po is the magnetic moment of an Ising
spin. In order to form the magnetic Gibbs energy
G, however, one needs still to construct the sta-
tistical expression for the entropy given by Boltz-
mann's formula

S= klnW(R&, R8, o),

where k is the Boltzmann constant and where
W(R&, Rz, v) is the number of ways of arranging the
Ising spins consistent with given order-parameter
values R&, R3, o. As is well known, this purely
combinatorial problem is an extremely difficult one
(e.g. , there exists at present no exact solution for
any three-dimensional lattice) and therefore, at
this stage, one must in general introduce some
mathematical approximation for W(R„,Rz, o). The
present paper only considers the Takagi approxi-
mation for W(R» R» o), which approximation is
known to be the statistical-mechanical interpreta-
tion of the earlier Bethe' approximation. The re-
sults of the Bethe- Takagi approximation are well
known and since they will be used in the present
paper are entered below in a condensed form for
convenience.

The magnetic Gibbs energy 6 in this approximation is given by

Gm= U- TS -H Mto

,'N z Jo —2N p, o H—(R~—Rz) NkTln2-
——,'N kT(z —1) [(1+RE)ln(1+R„)+ (1 -R„)ln(1 —R„)+ (I +Re) ln(i +Re) + (1 -Rz) ln(1 —Rz)]

+ ,N kT z[(1+Rz-R—z—o)ln(1+R„-Rz — ) o(I+-Rz R +as) ln(1 —Rz+Rz —o)

+(I+R~+Rz+o)ln(1+R„+Re+a)+(I —R„—Rz+v)ln(1-R„—Rz+g)]. (5)

The equilibrium conditions & = 0 result in the following set of coupled transcendental equations:

eG~, , 1+R„(1+R„—Rz —o)(1+Rg+Rz+o') 4poH=zln
BR~

'
1 Rz (1 —Rg-+Re —a')(I —R~ —Rz+o') kT

aG- 0. 2 111+R. 1
(1-R +R -o)(1+R +R +o) 4POH-+4

aR,
'

1 —R, (1+R„-R,-o)(1-R„-R,+o) kT ' (eb)

BG (I+R„-Rz—o)(1 —R„+Re —a) 2 J=0: ln
eo (1+Rg+Rz+ o)(1 -Rg —Rz+ v) kT (6c)
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R~ ——R8 ——Rp, cr = crp,

where Rp, crp are the familiarly known solutions of
the Bethe equations

1+Ro 1+ 2Ro+oo
2 z —1 ln — =zln

1 —Ro 1 —2Ro+ o'o

(1 - oo)' 2J
ln (1+2Ro+ oo)(l 2Ro+0'o) kT

(7a)

For temperatures before the Noel transition tem-
perature TN, these equilibrium order-parameter
solutions Rp, op can both be written conveniently in
terms of the so-called Bethe long-range-order pa-
rameter ~ through the relations

Rp= tanhz

sinh(z —2) 5

sinh(2z —2)5cosh z&

(8a)

(6b)

where the temperature dependence of & is given by

Setting H= 0, the equilibrium conditions (6) offer the
solutions

1 (1 — -') -'
Xstatic y PT 1 0 1 R2 ~ (13)

The expression (13) is the same result as that fur-
nished by the constant-coupling approximation" of
Kasteleyn and Van Kranendonk applied to Ising anti-
ferromagnetism.

Upon analyses, it is easy to show that the Bethe-
Takagi (BT) expression for X,««, [(13)]has a finite-
jump discontinuity in slope at the Neel transition
temperature T&, in comparison with the infinite-
slope singularity found by Fisher and Sykes' (FS)
using exact series expansions. More specifically,
the FS results give, for temperatures in the neigh-
borhood of TN ', the result that

tot l 0 (R R )
Po
y

N &o 1 (1 —z ')
V kT 1 — 1-R

which gives the static initial parallel susceptibility
X„,«, in the Bethe- Takagi approximation as

sinh(z —2) 5

sinhz5
(8c) Np, 2 T(FS&

X,t~gg, =
&T

o.'&+ @,[1 —T~ /T]ln 1—
T

Using (8a) and (8c) together, the Noel transition
temperature T& marking the disappearance of equi-
librium sublattice long-range order Rp is found
within this approximation as

J/kT~= ln[z(z —2) ']. (8d)

For temperatures above the Noel transition tem-
perature TN, the equilibrium order-parameter
solutions Rp, crp are given, respectively, by

Rp ——0,

o o
= tanh(J/2k T).

(Qa)

(Qb)

R„=R,+R, , (10a)

R~=Rp-R(, (lob)

cr = crp+ cry ~
(10c)

where the induced quantities R„cr, are both small
and vanish in the absence of H [one can show that
R, -O(H) and o, -O(H )]. Substituting (10) into the

equilibrium conditions (6a) and (6b) and using the
Bethe equation (7a), one obtains

R = +OH1 (1 —z ') lj.oH
1 —crp 1 —Rp

Using (3), (10a), (10b), and (11), the magnetization
M is found to be

Considering the antiferromagnetic Ising spin sys-
tem to be placed in a weak, uniform, static external
magnetic field II applied along the z axis, one may
write, in the state of thermodynamic equilibrium,

where n&, &, are constants for given lattice coordi-
nation number z. For the hexagonal (z = 3) lattice,
however, the BT approximation gives qualitatively
good agreement within the transition region when
compared with the FS results in the sense that the
BT results for the hexagonal lattice give a steep
linear drop in the susceptibility as temperature is
lowered slightly from T& and, for temperatures
slightly above T&, a linear rise turning through a
marimum at a temperature T ~ above T„(for z = 3,

N)jo= 0.4163). For larger lattice coordination num-
bers z=4, 6, and 8, the comparisons with FS are
not as favorable since for these cases the suscep-
tibility maxima in the BT approximation occur at
TN and the susceptibility curves become less steep
at temperatures slightly below TN for increasing
lattice coordination number z. As one would ex-
pect, for all cases, both the higher location of the
Noel transition temperatures T~ and the nature of
the nonanalytic behavior at TN exhibit the shortcom-
ings of the BT approximation within the transition
region. However, besides establishing a demarca-
tion for the qualitative validity of the BT method ap-
plied to Ising antiferromagnetism, one might also
remark, because of the fact the method only barely
fails to give a maximum susceptibility above T& for
the plane square (z = 4) lattice, that the results offer
motivation for a slightly improved approximation or
a better method, i.e. , one which retains some
three-spin correlations could be worthwhile.



THEORY OF RELAXATION PHENOMENA IN. . . 30V1

III. MAGNETIC GIBBS-ENERGY PRODUCTION, KINETIC
EQUATIONS, AND RELAXATION TIMES

In order to investigate relaxation phenomena in
the Ising antiferromagnet, one assumes a small,
uniform, external magnetic field H is applied along
the z axis which removes the spin system slightly
from equilibrium, and one studies how rapidly the
spin system returns or relaxes back to thermal
equilibrium. In order to calculate the dynamic
initial parallel susceptibility. a method is used
which combines the previous statistical equilibrium
theory with the Onsager theory of irreversible
thermodynamics. Since the external field H will
always be taken sufficiently small such that the
spin system may be considered close to equilib-
rium, this method only studies the final stage of
approach to equilibrium. Before proceeding to
discuss such longitudinal relaxation, some further
preliminary remarks should be given concerning
the method used. The Ising Hamiltonian

where G' ' is the equilibrium magnetic Gibbs energy
in the absence of H [found from (5) by setting R„
= Ra =Rp o' = op H= 0] and 4G„, the production of
magnetic Gibbs energy due to the presence of small
H, is given by the following quadratic form found by
retaining to second order the terms in a Taylor
series expansion of G with respect to the spontane-
ous equilibrium point R&=R~=Rp, o =op& H=0:

&G = p [A(Rg Rp)—+A(RB —Rp) + 2B(Rg —Rp)(Ra —Rp)

+ 2C(R~ —Rp)(o —op) + 2C(Ra —Rp)(o —op)

+D(o —o p)' —2E(R„-Rp)H+ 2E(Ra —Rp)H],

(17)

where the expressions given below for A, B, C, D,
and E are explicit functions of the known equilibri-
um quantities Ro, oo and are, therefore, calculable

. as functions of the temperature:

3C = 2 Z Zi S), S»„
t'y, u&

(14)

where S„is the longitudinal component of the local-
ized Ising spin (S= —,') angular momentum operator
S, , does not admit longitudinal relaxation since the
equation of motion for (S„)vanishes identically:

Z ([s„s„„s,.])=0,
O, p&

1+op 1 2(1 —z )

8 G, 2Rp- op(1+op)
8R„SRa „' (1 —o'p)[(1+op) —4Rp]

(1Sa)

(lsb)
where ( ~ ) signifies the appropriate ensemble
average, 2pff is planck's constant, and [Sq, S»„S&,]
signifies the vanishing commutator operator
S&,S~,S„-S„S&,S„. One therefore needs to add to
the Ising Hamiltonian (14) other operator quantities
which do not commute with S„, thereby inducing
transitions within the spin system permitting, as
a result, longitudinal relaxation. These added op-
erator quantities should preferably contain some
kind of spin-lattice coupling since it is known that
longitudinal relaxation is intimately connected with
the spin-lattice relaxation time, e.g. , the frequent-
ly designated T, appearing in the longitudinal Bloch
equation description of spin-lattice relaxation phe-
nomena in solids. Since, as mentioned above, the
method of the present paper contains the Onsager
theory of irreversible processes (a phenomenologi-
cal theory), the explicit form of the needed addi-
tional operators will not be displayed, but instead
their effect will be "hidden" within Onsager phe-
nomenological rate coefficients which themselves
must be found either in principle by a more power-
ful theory or in practice by fit with experimental
data.

To proceed, then, the magnetic Gibbs energy (5)
is written in the neighborhood of equilibrium as

G~(T, R~, Ra, o, H) =G~ (T, Rp, op)+&G~, (16)

eRgeH, 8R~BH (18e)

According to the Onsager theory of irreversible
thermodynamics, one obtains the generalized forces
Xa„, X», X, conjugate to the currents R„, It a, o,
respectively, by differentiating AG [Eq. (17)]with
respect to R&-Ro, R~ -Ro, o -o» respectively:

s(~G )
s(R„-R,)

=A(R& -R p) +B(Rr& —R p) + C(o —op) —EH, (19a)

s(~G.)
8(Ra —Rp)

=B(R~ —Rp)+A(Ra -Rp)+C(o —op)+EH, (19b)

= C(R~ -Rp)+ C(Re -Rp)+D((r —o ).
s(~G„)
s o —vp

(19c)

2 2
& Gm 8 Gm = —1zNk'

sR„so ., eR,eo ., ' (1+o,)' 4R', '-
(18c)

D Gm 1 Nk T 1+o'o —2Ro
2

~

~q

~~ ~
2 ~

~

~
0

~

0
2 ~

~

~
0

t

g2 2

(I - o,)[(I+o,)'-4R', ]
'

(lsd)
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Again according to the Onsager theory of irre-
versible thermodynamics, the. linear relations be-
tween the currents and forces may be written as
follows in terms of a matrix of phenomenological
rate coefficients:

(20)

where account has been taken of the geometrical
equivalence of the two sublattices and the facts that
the long-range-order parameters Rre odd VRrlRbles
while o is an even variable under time inversion. '
The matrix equation (20) written in component form
yields upon using (19) a set of three, coupled, lin-
ear, inhomogeneous, first-order-in-time, rate
equations:

R„=(y„A+ vB+ ]C)(R„Ro)-+(ysB+ vA+ gC}(Rs —Ro) + [(ys+ v)C+ )D](o —oo) —(y„-e) EH,

Rs = (vA+y„B+ )C)(Rg —Ro)+ (vB+ysA+ )C)(Rs —Ro)+ [(ys+ v)C+ )D](o —oo)+ (y„—v) EH,

(21a)

(21b)

(21c)o = [y,C —$(A+8)](R„-R())+[y,C —&(A+8)](Re R,)+-(y, D- 2tC)( o-o,).
In order to find the relaxation times, one considers the corresponding homogeneous equations resulting

when there is no external stimulation, i.e. , 8 =0. Equations (21) then become

R„=(y„A+ vB+ pc)(R„-R,)+ {y„B+vA+ pc)(R, R,)+ [-(y„+v)C+ )D]((r o,), —

As = (vA+ys8+ )C)(R„—Ro)+ (vB+ysA+ (C)(Rs —Ro)+ [(ys+ v}C+)D]((r —o 0),

o= [y, C —](A+8)](R„R,)+-[y, c —](A+8)](R, R,)+(y-, D 2)C)((r—o,). —

Assuming a solution of the form e '~' for (22), one obtains the secular equation

(22a)

(22b)

(22c)

7 '+ysA+ vB+ $C

yg g+ pA. +(C

y, C —$(A+8)

ysB+ vA. + fC (y„+ v)C+ )D

g '+y„A+ vB+ (C (y„+v)C+ )D

y, C —t'(A+8) v' '+y, D —2t'C

which yields the following three inverse relaxation times:

&i'= —(ys- v)(A-B),

i[( )(A 8) D] 1 1 4 [y,(ys+v)+2( J[D(A+8) —2C~J
~? = a ys+ v + +ya

[( }{A 8} D]3

1[( )(A+8)+ Dj 1 1 4 [yO(ys+ v)+ 2k ][ (A+8) 2C ]
3 2 ys yv [( )(A 8) D]2

(24a)

(24b}

In order to analytically examine the spectrum
(24) for temperatures slightly below T„, one may
use the following series expansions for (Ba) and

(8b):

Ro= tanhz5=z5- 3z 5 + ~ ~
3 3

z lnzz —2

'ra = —2NZ(z —2)'Y, ' [y,(ys+ v)+2) ]8 +. ~ ~, (26b)

o, = (~ -1) '[1+-.' z(~ -2)(S~-2)5'+".], (25b)

where the relation between 6 and the temperature
slightly below T~ may be approximately written,
using (8c), as

1) 5'=re /f r„, 8 = (r„T)/r„. (25c)-
Using (18) and the series expansions (25) for the

order parameters, {24) may be written for tempera-
tures 7 slightly below T& as

&~(& 1)(ys —v)—
(s - 2) in[. (s —2)-']

~g(& 1)ey l

& 2 2

2(. —2)in[.(.—2}-']

(z —l)(Sz' —Sz+4) S(z —1)y,(v +v) —2('}
(~ - 2)'

"l~[z(z —2) '] —1 e +. . .
I

(RBL)

For temperatures sBghtly above T&, one may use
the following series expansion for (9):
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O)»[x(x-O) i
O

x(x —O)[O(x —()-»[x(x-O)'1})x[x(x—O)')
O&

2(. —l)

(T TN)/&i([ ~ Using (l8) and the series
expansions (27), (24) may be written for tempera-
tures sBgkthy above T~ as

NZ(z —l) (y „—v)
{z—2) ln[z{z —2) ']

l- l e (28)4(z —l)

v, '= --,'m(z-2)y. ' [y.(y„+v)+ N'] e.+ ~ ~, (28b)

NZ(z —1) y,
2(z —2) ln[z(z —2) ']

z —1 y, + z —2

(z —l)'y'

(29b)

NJ(z —1) y,
2(z —2) ln[z(z —2) '] '

where, in (29), the Onsager coefficients are under-
stood as evaluated at Tz. One therefore has the re-
sult that, as T- T&, the relaxation times 7, and v3

both remain finite while the remaining relaxation
time va approaches infinity. Also, from physical
considerations, (29) shows that

Y& —v& 0, y, &0.

Having found the system relaxation times, it is
instructive to calculate next the normal coordinates
associated with the negative reciprocals of these
relaxation times. Diagonalizing the system of equa-
tions (22), one finds

x )x[x(x —O) '] —). o.+ "I. (Oot:)

From (26) and (28), one concludes that, as T- 7„
from either below or above, ('j I o o

o)

.,-j
N~(z - i)(ys - [)

(z —2)ln[z(z —2) '] ' where the normal coordinates are calculated to be

&,= (R~ -Ro) —(Rz-Ro) (Slb)

[2)C —y, D vz'] [(R„-Ro)—+ (Rz —Ro)]+ 2[(ys+ v)C + )D]{a—v~)

v, '+ v, '+ 4)C

(2K —y, D —v '] [(R/ —R,)+ (R -R )]+2[(ys+ I/)C+ )D](0 —(7Q)

(3lc)

Using (3) and (Slb), the magnetization M =M„,/V
may be written

showing that the relaxation of the spin-system mag-
netization is characterized by the single finite re-
laxation time v, . Also, using (Slc) and (Sld), the
system long-range-order parameter defined as
—,'(R„+Rz), and the short-range-order parameter
o, may be written, respectively as

l vz'+ v', '+ 4(C
2 (v, ' — ')[v( „y)C+& +]D

(32c)

Equation (32b) shows that the relaxation of the long-
range order —,'(R„+Rz) (proportional to the "stag-
gered" or sublattice magnetization) is characterized
by both relaxation times Ta and 73 However for
temperatures near T&, F3 decays much more rapid-
ly in time than F3 since v'3 approaches infinity while

v3 remains finite for such temperatures. One con-
cludes therefore that the staggered magnet~gation
experiences a cViticaf slowing down. Equation (32c)
shows that the return to equilibrium of the system
short-range order is also characterized by both re-
laxation times v'3 and v3. However, in th'is latter
case, for temperatures near Tz,:,' 'not only as men-
tioned above does Pz decay:much. mox'e slowly in
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time than I', but also for such temperatures, (32c)
shows the amplitude of the normal coordinate F3 to
be much smaller than the amplitude of the normal
coordinate F3.

IV. STEADY SOLUTION OF KINETIC EQUATIONS LEADING
TO COMPLEX MAGNETIC SUSCEPTIBILITY

The case is no% studied %here the spin system ls

stimulated by a small uniform external magnetic
field H oscillating at an angular frequency m. In the
steady state, all quantities miO oscillate at this
same angular frequency ; therefore,

H=H e'", R -8 =R 8'",

Substituting (33) into the kinetic equations (21) gives

{-i(o+y„A+vB+ $C)R~, + (ys B+vA + (C)Rsq+ [(y„+p)C+ )D]gq (ys ——p) E&q,

(vA+y„B+ )C)Rg, +(-i(@+vB+y„A+$C)Rs, +[(y„+v)C+ )D]g, = —(y„- p) E&,„

[y, C —$ (A +B)]R~,+ [y, C —g(A +B)]Re,+ (- i(g y+, D —@C)o,= 0.

(34a)

(34b)

(34c)

Solving the set of inhomogeneous equations (34) simultaneously for R»/ff~ and Rs,/B, gives

(y„- p)E y„B+vA+ $C
~a~ = S —(ys —p)E —ia) + vB+ysA+ $C

H~. H)
y, C - g{A+B}

(y„+ v)C+ )D

(y„+v)C+ )D

= -s) '(ys —v)E(co +i[(y„+v)(A+B)+y, D)o —[y,(y„+p)+ 2)z] [D(A+B)- 2C']),

where the determinatal denominator & is the same as the secular determinant used in (23) for calculating
the reciprocal relaxation times except for the replacement of r- by -i, i.e. ,

—i(0 +ysA + pB+ $C

pA+y@8+ gc

y.C —g(A+B) —i&o+y, D —2$C

= {-uo —7', ')(- i&@ —v'3')(- i&a —r~') (36)

Equations (35) and (36) are needed in order to
calculate the complex initial magnetic susceptibility
g"'(ur). This may be seen as follows. The antifer-
romagnetic Ising-model induced magnetization (to-
tal induced magnetic moment per umt volume) is
given by

2y Re[(RA1 RBl)e

&&here M„ is the magnetization induced by a magnet-
ic field oscillating at ~ —frequency and where use

I

I

was made of (33). Also, by definition, the expres-
sion for )t "(&a) may be written

M -M„=-Re[x"'(ur)H, e'"'], (38)

where )I"'(~)= X'(~) —iy."(~)with y. '(~), X "(~)
being the magnetic dispersion and absorption fac-
tor, respectively. Comparing (SV) and (38), one
obtains

X"'(&)= (&up/2l')04& —Ra j)/&g ~

Therefore, in order to construct the dynamic sus-
ceptibility (39), one uses (35) and (36) in order to
%rite

(R» -Rag)/&g= 2(yz- v)»~7a&s

Since (2'4) give both

(v +i[(y„+v)(A+B)+y, D](u —[y,(y„+v)+ 2$ ] [D{A.+B) —2C']
(1+i&@i',)(1+iev'2)(1+

inrun,

)

and

[(ys+ v)(A+B)+y.D]= —(73'+&3') [y,(y„+v)+2) ) [D(A+B) -2C ]=ma'vs', (41b)
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one is able to write (40) explicitly in terms of the
relaxatlon times as

(Rg[ —I4 I)/H I = N Ilo{yn —p)v'I v'31'3

X
(O'- i(1.,1+ 1.,I) —V,11.,1

{1+i(o7I)('1+i(ov, )('1+i&vI,)

7 $&—Po(ys —I ) 1 + l{d7'g
(42)

Using (42), the complex initial susceptibility (39)
becomes

y" '(~) = y'(&u) —iy "((d)

(Np, o)1 {2V i+iz7 j
'

a standard Debye form containing only the finite re-
laxation time 7', and containing effectively only one
phenomenological coefficient (ys —v). Within the
present theoretical framework, the Debye form (43)
is applicable for all values of temperature and fre-
quency and, in particular, setting ~ = 0 and using
(24R), (18a), and (18b), one recovers the previous
static susceptibility result [E(l. (13)] thus affording
a consistency check upon-the present dynamic cal-
culation. Although not treated in the present paper,

X"(~) = — -
2y (y I) -1 2

(Npo) [()v,
1 + CO 7'

y

(44b)

Substituting the series expansions (26a) and (28a)
lll'to (44), the magnetic dispersion Rnd Rbsorption
factor may be examined analytically for both low

and high frequencies at temperatures closely sur-
rounding the Neel transition temperatures Tz.
Specifically, defining

(s —2) in[a(z —2) ']
XZ(z -1){y,- v)

one obtains the following results for the loni-fre-
gQ88cy 7'eglos characterized by &T&@&& 1:

it should be mentioned that the staggered dynamic
susceptibility can easily be displayed as containing
R 11116RI' sllpel'posltloll (wltll temperature-dependeIlt
coefficients) of two Debye forms characterized by
the remaining relaxation times v'2 and v3, respec-
tively.

Separating (43) into real and imaginary parts
gives the magnetic dlspersioQ and absorption fac-
tor as, respectively,

X'(~)-X =-
2~ (ys-~)

1
(&J(IO)

1 +(d 'TI

1

»»)n[»(» —1) 'J
1) &

g —1

z in[a(g-2) ']Kl+
( )

— —1 8+ ~ ~ ~ {46b)

K(d7'q~ 1 —2 -1 ~ + ~ ~, T& &g
z'in[a(s —2) ']

z —1

z'in[a(z —2) ']

~

A'~r; 1+1 —1)»,+ ~ ', , r r„;
4 z-1

while for the high frequency region-characterized by &uI:II[»1, one obtains

x'((d)-x ='
rr(t»r, ) 1+ —1)8 +''.z in[a(z —2) ']

Z(t»r, ») 1 — —1) (t. + . .'z'in[a(z —2) ']
T~ Tg

x"(~) =

K(1»r) ) 1 —1(t»T») —. . . —1) 1 +, r T»2 z'in[z(s —2) ']
8 —1

z in[z(z —2) ']
II((d7 I~) 1 + 2((OTII[) 4(g —1)

j. N po z —2 ', T- T~K=- ——— in[a(z —2) ], e, =~
2 V J g —1 ~N

t

pressions (46a) and {46b) may also be easily ob-
tR1116d. fl'Gill tl16 BT 8'tR'tlc susceptlblllty XII~II~ [(13)]
by using the series expansions (25) and (27), re-
spectively. Since the remaining dynamic. suscepti-
ljlll'ty expl'esslolls (46c) (4M) Rnd (47) coll'tRill

(through 7'I1[) the. single Onsager phenomenolqgical
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coefficient quantity (y„—v), one should be able to
fit such susceptibility expressions with experimen-
tal data in the transition region.

From an analytic point of view, one is able to ex-
tract some qualitative features from (46) and (4'7)

if one assumes that the temperature variation of
(y„—v) in the transition region is negligible. Then

(46a) and (4Va) show that, for temperatures slightly
beneath TN and for x=3, 4, 6, and 8, there exists
a change in sign of the slope of the magnetic
dispersion curve g'- g„vs temperature as one
passes between the low- and the high-frequency re-
gions (positive slope for the low-frequency region,
negative slope for the high-frequency region).
Also, for both the low- and high-frequency regions,
the curve g" vs temperature has a positive slope
at temperatures slightly beneath T&, but for tem-
peratures slightly above T„, the y" curve has a
positive slope for z = 3 and a negative slope for
@=4, 6, and 8. In addition one finds that, for the
high-frequency region and for temperatures slightly
above T&, the curve g'- X„vs temperature has a
negative slope for s = 3 but a positive slope for
x=4, 6, and 8. Therefore, under the initially men-
tioned assumption, it occurs once again that the
qualitative features for z = 3 differ from those for
s= 4, 6, and 8 crystal lattices. Concerning such
differences, in this dynamical calculation the pro-
duction of magnetic Gibbs energy &G was derived
by power series from G and was crucial in order
to apply the Onsager theory of irreversible thermo-
dynamics. It is therefore desirable to choose the

shape of the G surface as accurately as possible,
i.e. , to construct the best possible starting point
for the application of the Onsager theory. Recall-
ing, then, the earlier equilibrium Sec. II, and

realizing that the general qualitative features of the

equilibrium susceptibility derived by Fisher and

Sykes from exact series expansions are rather sim-
ilar for both two and three dimensions, it can be
concluded by comparison with the FS exact series
results that the Bethe- Tagaki approximation of the

G surface is most accurate for the case of the hex-
agonal (z = 3) lattice. Therefore, in the present dy-
namical analyses, one should probably prefer the

hexagonal lattice results whenever any ambiguity
arises. For example, under the previous assump-
tion that the temperature variation of (ys —v) in the

transition region is negligible, the stated dynamic
results found above are taken to imply the existence
of a maximum in the magnetic absorption factor
curve g" vs temperature at temperatures above

TN for both the low- and high-frequency regions.
Naturally, such assumed negligible temperature
dependence for (ps —v) should be tested either by

experiment or by a more powerful theory. In this

regard, Kikuchi' has shown by using a statistica1. -
mechanical method called path probability that, for

order-disorder configurational relaxation treated
within a superposition approximation in a bcc AB-
type lattice, the diagonal Onsager coefficients tend

to finite values while the off-diagonal coefficient
tends to zero as temperature tends to the critical
temperature T, (in fact, Kikuchi shows within the
superposition approximation that the off-diagonal
coefficient equals zero for T &T,). From an ex-
perimental point of view, perhaps the substance
CoCs3C15 can be used as an example of application
since experimental measurements ' suggest that
this salt is, in a good approximation, a three-
dimensional almost simple-cubic Ising antiferro-
magnet.

V. CONCLUSIONS

Using the method of equilibrium statistical me-
chanics, the static initial parallel susceptibility has
been calculated in the BT approximation for loose-
packed Ising antiferromagnets. These results have
been compared with the results of FS based upon
exact series expansions. For the hexagonal (z = 3)
lattice, the BT results within the transition region
gave qualitatively good agreement when compared
against the FS results in the sense that one obtained
a maximum in the susceptibility-vs-temper ature
curve at a temperature slightly above the Neel tran-
sition temperature T„and one obtained a steep drop
in the susceptibility curve as one lowered the tem-
perature slightly from TN. However, for the other
lattice coordination numbers @=4, 6, and 8, the
qualitative agreement of BT compared with FS was
not as good within the transition region since the

BT results showed the susceptibility maxima to oc-
cur at TN and showed the susceptibility curves to

drop less steeply for increasing lattice coordination
number z as one lowered temperature slightly from
TN ~

Next a method combining the statistical equilib-
rium theory with the Onsager theory of irreversi-
ble thermodynamics was used to study relaxation
behavior in the spin system and to calculate the dy-
namic initial parallel susceptibility. Although the
results are expected to be rather inadequate for
temperatures extremely close to a critical tempera-
ture due to the nature of the approximate theory
used, the study illustrates a simple method whereby
some qualitative features of the relaxation phenom-
ena can be obtained in forms amenable to experi-
mental fitting. Having used a three-order-param-
eter description, one obtained as a result three re-
laxation times where, as T- T&, one relaxation
time tends to infinity while both remaining relaxa-
tion times stay finite. Besides finding a critical
"slowing down" of the "staggered" magnetization,
the dynamic susceptibility was found to be a stan-
dard Debye form containing a single (finite) relaxa-
tion time and containing effectively a single phe-
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nomenological coefficient which could be fitted with
experiment. Assuming the most simple tempera-
ture dependence for this phenomenological coeffi-
cient, some qualitative conclusions were able to be
drawn, which included a change in sign of the slope
of the magnetic-dispersion-vs-temperature curve
for temperatures slightly below TN as one passed
between so-called low- and high-frequency regions
and the existence of a maximum in the magnetic-
absorption-factor-vs-temperature above T„ for

both the low- and high-frequency regions.
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Acoustical Faraday Effect in Antiferromagne tie Cr2 03~

M. Boiteux, P. Doussineau, B. Ferry, J. Joffrin, and A. Levelut
Laboratoire d'Ultrasons, ~ Faculte des Sciences de Paris,

Tour 13, 9 alai Saint-Bernard, Paris 5e, France
(Received 8 March 1971)

The rotation of the plane of polarization of an ultrasonic wave in both the antiferromagnetic
and flopped phases of the antiferromagnetic crystal Cr203 has been calculated and measured
at 4. 2'K using 9-GHz sound waves. The Faraday effect is found to arise from a resonant inter-
action between phonons and low-frequency magnon modes, by single-ion magnetostriction.
The values of mago. eto-elastic coupling constants G44 and G46 of Cr ' in Cr203 are determined:
) G44 ) ~4. 5 cm, ) G46 ) ~ 2. 5 cm

I. INTRODUCTION

Rotation of the plane of polarization of an acous-
tical transverse wave in a magnetically polarized
crystal has been recognized, for a long time, to
be a tool for the study of magneto-elastic coupling
in magnetic materials. Kittel was the first to draw

attention to the possibility of a Faraday effect in
ferromagnetic crystals. The first experimental
results have been reported on yttrium iron garnet
crystals and the values of the transverse magneto-
striction were deduced at different temperatures, ~ 3

Similar experiments were done on paramagnetic
crystals and in metals. s In this last case, differ-


