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of the parallel and perpendicular scattering com-
ponents (an inelastic spectrometer employing polar-
ized neutrons may also be used for this purpose).
If the assumption is made that at low temperatures,
when the spin moment is nearly fully aligned, the
spin scattering is confined to the perpendicular

component, an estimate can be made of the orbital
scattering. In practice this is only an upper limit
because of the possibly incomplete magnetization
of the sample, However, the magnitude observed
of about 0. 2 eV ' atom ' at energies below 0. 04 eV
has the predicted order of magnitude.

*Visiting scientist from Atomic Energy Research
Establishment, Harwell, Berkshire, England.

R. J. Elliott, Proc. Boy. Soc. (London) A235, 289
(1956).

J. E. Hebborn and ¹ H. March, Advan. Phys. 19
175 (1e70).

3E. D. Thompson, Phys. Bev. Letters 19„635{1967);
H. A. Mook, R. M. Nicklow, E. D. Thompson, and
M. K. Wilkinson, J. Appl. Phys. 40, 1450 (1969); F. M.
Mueller and J. %'. Garland, Bull. Am. Phys. Soc. 13,
58 (1e68).

4R. D. Lowde and C. G. %indsor, Advan. Phys. 19,
813 (1970).

O. Halpern and M. H. Johnson, Phys. Bev. 55, 898
(1939).

68. Peierls, Z. Physik 80 763 (1933); J. E. Hebborn
and E. H. Sondheimer, J. Phys. Chem. Solids 13, 105
(1960); H. Fukuyama and R. Kubo, J. Phys. Soc. Japan
27, 604 (1969).

'M. Shimi. zu and Y. Takahashi, Phys. Letters 32A,

164 (1970).-

J. E. Hebborn and ¹ H. March, Phys. Letters 29A,
432 {1e6e}.

¹ Szabo, Diploma thesis (ETH Zurich, 1967) (un-
published) .

T. Sehneider, Solid State Commun. 8, 279 (1970}.
S. W. Lovesey and C. G. Windsor, J. Phys. Radium

32, 573 {1970).
L. Van Hove, Phys. Rev. 95, 1374 (1954).

«3See, for example, B. Peierls, Quantum Them'y of
Solids (Oxford U. P. , Oxford, England, 1955}, Sec. 4. 2.

«4D. F. Johnston, Proc. Phys. Soc. (London) 88 37
(1966).

«5A. R. Edmonds, Angular" Momentum in Quantum Me-
chanics {Princeton U. P. , Princeton, ¹ J. , 1960),
See. 2. 5.

«6R. %atson and A. Freeman, Acta Cryst. 14, 35
(1961).

«'H, A. Mook, Phys. Rev. 148, 500 (1966).

PHYSICAL REVIEW B VOLUME 4, NUMBER 9

Exciton &ands in Antiferrornagnetic Cr203~

R. M. Macfarlane
IBM Research Laboratory, San Jose, California 95114

1 WOVE MBER 1971

J. Vf. Allen
Lincoln I aborato~y, Massachusetts Institute of Technology, L exington, Massachusetts 021»

(Received 17 May 1971)

%'e have calculated the energy dispersion of the lowest eight 2g Frenkel exciton branches in
the four-sublattiee antiferromagnet Cr203. This is the first such calculation for a magnetic
insulator. The symmetry properties and k dependence of the interion exchange and Coulomb
interactions which give rise to dispersion and Davydov splittings are presented in detail. Pair-
wise matrix elements of the interion Hamiltonian are treated as phenomenologieal parameters,
and in most eases were determined from the k=0 energies analyzed, in an earlier paper. Dis-
persion curves for five directions in the rhombohedral Brillouin zone, and the exciton density
of states, are given. Confirmation of the main features of the calculated exciton bands is
provided. by a measurement of the exciton-magnon absorption band shape. In the presence of
a number of simplifying assumptions, this band shape is given by the joint exciton-magnon den-
sity of states. Good agreement between the calculated and observed band shape is obtained.

Because of translational symmetry, the optical
excitations. @ithin the localized electrons of mag-
netic insulators, (usually. , g;, d, or f-f transitions)
can properly be described as Frenkel excitons. '

Coulomb and exchange interactions between the
magnetic ions provide the mechanisms for the
characteristic exciton properties, viz. , Davydov
splittings and dispersion. It is of considerable im-
portance to establish the existence of these effects
because they provide important insights into the
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interion couplings. These couplings are of central
importance to magnetic ordering in insulators.

The possibility that fine structure in the optical
spectra of magnetic insulators is due to the exci-
tonic nature of the excited states seems first to
have been investigated experimentally by Eremenko
and Belya, eva in MnF2. However, they did not fmd
evidence for it. Davydov splittings were subsequent-
ly observed in the optical spectra of Cr203 and
YCr03, ~'6 and negative exeiton dispersion has been
invoked to explain the properties of an exeiton-mag-
non absorption and bound state in MnF3. However,
no detailed treatment of exciton dispersion in mag-
netic insulators has yet been given.

We propose here a model for the interion (ex-
change) couplings in Cr20~ which give rise to ap-
preciable (-100 cm ') dispersion of the Z excitons.
This work is an extension of our earlier analysis
of the k =0 excitons (hereafter referred to as
AMW ). For several reasons, the E excitons in
Cr~O3 provide one of the best exa,myles in magnetic
insulators for a study of exeiton effects. The Cr '
ion states involved have a relatively simple struc-
ture, being predominantly tz A3 and t3 E. The
spectrum of the dilute paramagnetic isomorph of
Cr203, i.e. , ruby, is well understoods so that the
energy-level structure of the Cr' optical transitions
is known. Vfe already have a fairly detailed under-
standing of the 4 =0 excitons from our recent analy-
sis of the optical spectrum, which has given a good
picture of the interion exchange coupling. One con-
sequence of the sizable (3-180 cm ') Davydov split-
tings observeds'4 is that sublattice excitations are
not at aQ close to being eigenstates. Another im-
portant property of the 3E excitons which makes
them an ideal ease for study isthat they couple only
weakly to the lattice so we can, to a good approxi-
mation, neglect exeiton-phonon coupling. This also
enables us to observe the exciton-magnon transi-
tions without interference from exeiton-phonon
processes. These measurements will be used to
support our model for the exciton dispersion.

To give some perspective, we briefly outline the
situation with regard to exciton dispersion and
Davydov splittings in solids other than magnetic
insulators. In cases where interion (or inter-
molecule) coupling is strongest for translationally
inequivalent ions a measurement of the Davydov
splittings at k = 0 will essentially yield the total
extent of the dispersion. Vfhere this is not true
the dispersion may be much larger than the Davydov
splitting. The direct observation of dispersion
requires the excitation of k 40 exeitons. Because
a photon probe has k =0, excitons with large k can
be observed only in situations where the initial or
final state contains another excitation (usually a,

phonon or magnon) to conserve k, . The band shape
of the combined excitation can, in principle, be

analyzed for the exciton dispersion, if the disper-
sion of the added excitation and the transition ma-
trix elements are known as a function of k. This is,
of course, much more indirect than the use of in-
elastic neutron scattering which is, however, re-
stricted to low lying excitations with energy =kT.
An approximate measure of dispersion can some-
times be obtained by observing optical transitions
in situations where the translational symmetry has
been destroyed, for example by impurity substitu-
tion.

There have been a number of calculations of ex-
eiton dispersion in solids, for example in semicon-
ductors'0 and alkali halides" where the excitons
are of the Wannier type, and rare-gas and organic
solids'3' where they are of the Frenkel type.
However, there are very few experimental data
from which information on exciton dispersion can
be obtained. The best examples are provided by
organic molecular crystals where singlet excitons
show large Davydov splittings and dispersion due
to Coulomb interactions between the molecules.
The strongly allowed (oscillator strength -0.4)
exeiton in anthracene around 2500 A shows a Davy-
dov sphttmg of 16000 cm ' and the weaker sp~n
singlet around 3800 A is split by 3&3 em '.' In
naphthalene the splitting of the 2000-A singlet has
not been measured, while the lowest singlet has a,

Davydov splitting of 166 cm . In both of these
materials interactions between translationally in-
equivalent ions predominate, so the Bavydov split-
tings give a good indication of the over-all disper-
sion of the singlet excitons. Further details of the
exciton energy as a function of k in benzene and
napthalene have recently been obtained by Colson
et aE.' by analyzing the band shape of exciton-
phonon transitions involving essentially dispersion-
less optical phonons (molecular vibrations). Iso-
topic substitution which destroys translational sym-
metry has been used with some success to deter-
mine exciton dispersion in naphthalene. ~o For the
lowest triplet (spin forbidden) excitons it has been
proposed'4 that the electronic exchange interaction
makes the dominant contribution to the dispersion
and Davydov splittings. The latter are ' 10 and32

22 em ~ for the zero-phonon lines in naphthalene
and anthraeene, respectively.

In semiconductors, alkali halides, and ra.re-gas
solids there do not appear to be experimental mea-
surements of exciton dispersion although calcula-
tions have been made. ' ' In these systems exci-
ton-phonon (indirect) transitions are broad and often
involve many phonons due to the strong coupling.
This coupling considerably complicates the analy-
sis of the zero-phonon structure for Davydov split-
tings and makes it essentially impossible to-infer
dispersion from the exeiton'-yhonon absorption
bands. '-
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In Sec. II we review the relevant symmetry prop-
erties of the Cr~Q3 lattice, the Brillouin zone, and
the exciton states. In Sec. IG we set up the eigen-
value problem and analyze the symmetry properties
of the interion couplings. In Sec. IV we present
expressions for the exciton dispersion and disper-
sion curves for several directions in k space. Ex-
perimental support of the dispersion calculation is
provided by briefly analyzing the exciton-magnon
band shape in Sec. V. A more detailed analysis of
the exciton-magnon absorption will be published
separately.

II. SYMMETRY PROPERTIES

t100] ~

k
Jk Z

k

Above its Neel temperature, Cr~o, has the
corundum structure DSM with two formula units per
unit cell. The four chromium ions are at (c) sites
of C, symmetry and the six oxygens are at (e) sites
of C2.symmetry. Below T~ the magnetic symmetry
group is DMB (D,') and the unitary subgroup D~~is
symmorphic. The four Cr~' spine labeled 1-4 (see
Fig. 1) are collinear along the rhombohedral [111]
axis and are ordered (+ —+ -). The rhombohedral
cell is defined by @0=5.35 A and a=55'O'. For the

FIG."1. Bhombohedral unit cell of Cr203 showing the

spin arrarigemerit and- the neighbor geometry from the
Cr3' ion labeled No. 2 out to fifth nearest neighbors.

FIG. 2. Brillouin zone for Cr203 with high-symmetry
points and lines marked. The irreducible zone ha
of this volume.

ne as g2

direct lattice we can take the primitive translations
to be"

sl +~,
Tg= —gsi +gv 3s3 +rk ~ (2. 1)

1 ~ j.Ts= —2S1 —pV 3 S] +'Vk
~

with ~=4. 55 A, s=2. 816 A, and the volume of the
unit cell equal to 96. 2 A3. In Del the nonprimitive
ranslation r is —,(T, + T~+ T,). Table I shows some

important aspects of the geometry of Cr' ions
which are near neighbors of a given Cr ' ion up to
the fourth nearest neighbor. The first, second,
and third neighbors of a given ion have opposite
spin and the fourth neighbor has the same spin,
i.e. , is ferromagnetically aligned.

In reciprocal space the primitive translation vec-
tors are

I A

K, = si +f k p

(2. 2)

K3= ——s'i 2—&~3s'j +r'k,

where i, j, bare unit vectors ink space and ~'
=2w/3r, s'=4m/3s. The Brillouin zone is shown

in Fig. 2. The degeneracy and transformation
properties of the exciton bands are determined by
the zone symmetry and indicated by the represen-
tations of the groups of the k vector which are used
as branch labels. The character tables for the
groups of the k vector at I', Z, B, A and the lines
A, Z for D3, and D3 are given by Slater 6 and will
not be reproduced here. The k=0 group (at the
point 1') is 'isomorphic to the magnetic point group

D3/ (D3) whose unitary subgroup has representations

A,A2 and E. We wiQ sometimes use superscripts
+ and —to denote behavior under the operation AI
of time reversal and space inversion which is an
element of D3~ (Ds). The exciton labels at the special
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TABLE I. Geometry of near-neighbor Cr3' ions.
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Neighbor
(snd Dist. in A)

first
(2. 65)

second
(2. 89)

third
(3.43)

fourth
(3.65)

Reference
ion

1'
2"
3'
4

1+

2
3'

1'
2
3'

1+

2
3'

4
3'
2
1+

2"
1
4
3'
4"
3+
2"
]+

3+

4
1+
2"

Neighbor ion
(No. )

(1)
(1)
(1)
(1)

(3)
(3)
(3)
(3)

(3)
(3)
(3)
(3)

(6)
{6)
{6)
(6)

ri= pl4

Pf4

Pg4

P)4

r2= T~+ pi2
—(T~+p~2)

T) + pgp
—(T, + p„)
—(T-p )('-"
—(Tg- pg4)

r3= (T~- pi4)

r4 =+ {Ti—7)
+ {T;—v)
+ (Tg —T}
+ (Tt —v)

i=1,2, 3

i=1,2, 3

g-1 2.3

Vector
Ref. —Neighbor

points l; Z, 8, and A are given in Table II. In
Sec. QI we will see that the symmetry properties
impose useful restrictions on the form of the exci-
ton states and the matrix elements of the exciton
Hamiltonian.

III. EXCITON DISPERSION CALCULATION

A. Statement of Problem.

TABLE II. Transformation properties of excitations
in Cr203 [antiferromagnetic phase D& (D3)].

I' point
electric dipole

selection

Ag

A2
E

Zf
Z2

g3

Ag

Ag

A, +A,

Bg
B2

Bg+B2

The electronic Hamiltonian for the crystal can be
written as a sum of single-ion and interion terms
as

X=K0X(R„,)+ L X(R„„R.,), (3.1)
f =g ff=f 5&g 0 N, ~g

where R„, is the position of the ith of p ions in the
nth of N unit cells. The exact form of X wiQ not
be important here, except that it be invariant to
the groups of k at all points in the Brillouin zone.
The first term, 3C(R„,), is essentially the ligand-
field Hamiltonian for isolated Cr ' ions, and in AMV
an explicit form of X(R„„R~) is given, based on
Anderson's~' superexchange model for interion in-
teractions.

We specify a subspace 8 of crystal states ) p,R„,)
defined by an antisymmetrized product of localized

states in which only the ion at R„, is excited (to a
single-ion state specified by p, ), the others being
in their ground states. Vfe restrict our attention
to two values of p., i.e. , p, , -=1~ 8-,'a4 for spin-up
ions labeled i= 1 and 3, and the conjugate states
—&as, for the spin-down ions 2 and 4, and jL(,2

a E-,'ae for i= I, 3 and - &as for 2, 4. The C3„
double-group representations a4, a„and as are
rigorous site labels, and t2 FM, are approximate
but the admixture of other terms is only about 10'k.
Since there are four Cr ' ions per unit cell, this
defines a subspace S of 8N states, and it is within
this subspace that we diagonalize the Hamiltonian
3C. Diagonal matrix elements of 5C in 8 for a given

are equal, and off-diagonal elements are trans-
fer-of-excitation (TOE) type connecting different
ions. Specifically excluded are states with more
than one ion excited, as matrix elements to these
are much less than the diagonal energy separation.
The eigenvalue problem is then

D«(&) ft.ii~1) 'R., ) -~() f~., l)"ft., ))=0.

The states labeled by the other two values of p, for
Z (viz. , --,'a, and ——,'as for ions 1 and 3 and the

conjugate states for ions 2 and 4) are also excluded
from S since they give risetohigher-energy excitons
involving nominally hM, = 2 transitions from the
ground state and these are not observed experimen-
tally.

The symmetry of the crystal imposes certain
conditions which simplify the solution of Eg. (3.2).
For pairs of ions lying on the Cs axis (e.g, first
nearest neighbors) it is rigorously true that within
S
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(»»f~n» I&I p i~m» ) (s. 3)

i.e. , TOE matrix elements between states which
are not degenerate from ion to ion in zeroth order
vanish. Vfe assume that this is true for other ion
pairs. This leads to a separate eigenvalue prob-
lem for each p,, i.e. , two of order 4N. Transla-
tional symmetry enables the formation of sublattice
exciton states which transform irreducibly in the
translation subgroup:

"'I pR.»)

8"&

, (2, 21

2 (2, sI e-"1 -1
(2 4I 1 e"1

(3. 'I)

and»t is the phase of 'H, 3(0), »t&, of H,2(0) +2H»(0),
and»t&2 of H12(0) — H, 3(0).

m

(3.4) B. Symmetry Properties and Relationships between the

H,, g)
where T„are the primitive translations and p~ lo-
cates the jth ion in the unit cell. Matrix elements
of 3C [which transforms identically in D3M (D3)] are
diagonal in k:

'H„(k) = (»»ki
I
3c

I »»kj)

»" ' &~tv»in» & ( pR I
$c

I
»»R, ) (s. 5)

We further define for each p,

'I,',»&(r, ) =( p, R„» IXI p.R.,), (s. 6)

where I denotes the neighbor (first, second, etc. )
located by the relative vector r =R, —8„,. In a
rhombohedral unit cell such as shown in Fig. 1, the
vectors p, ~ are parallel to the C3 axis and connect
ions i and j. The relative vectors for the first four
neighbors are

Ir, =p«, r2=T +p12 r3 T1 p14 r4=+(- T1+'T),

together with the vectors r3, r2", etc. , generated
from these by the operations C, and C3'. The basic
problem now is to diagonalize two 4&&4 matrices
at each k, which corresponds to diagonalizing the
intersublattice interactions.

At k =0 the four states for p, = 1 transform accord-
ing to a reducible representation l;- 2E, and the
four for»» = 2 as I"2- 2(A, +A2). The linear combi-
nations of the sublattice states which transform ir-
reducibly at k=0 can be expressed in the following
transformation matrices (which can be deduced
from AMW), where the rows are labeled by (»», i I:

A determination of the H„.(k) requires a calcula-
tion of the sum over pa, irs of ions in Eq. (3.5). In

practice, because of the short range of the exchange
interaction [which is the dominant term in
X(R„»R„,)] the sum can be restricted to a few near.
neighbors. By going as far as the fourth neighbors
(I & 4) we include the nearest ones with the same spin
as the reference ion. This is important since the
largest TOE matrix element occurs between such
ions. The geometry of the ion pairs is shown in
Fig. 1 and Table I. The diagonal elements H«are
equal and independent of k. Most of the important
ion-pair interactions which enter into the exciton
dispersion also determine the k = 0 Davydov split-
tings which have been measured directly in the ab-
sorption spectrum. Therefore, with the model for
the interactions which follows and the k =0 energies,
we get a good picture of the k dependence of the ex-
citon energy bands.

Symmetry operations of the crystal, both unitary
and antiunitary, impose certain restrictions on the
"H»»(k) and ~&»»»»1" (r, ). First of all we look for rela-
tionships valid for general k, and then we lool;. in
configuration space for conditions on particular
'h,". for a given neighbor type. The latter are, of
course, consistent with the general k-space result
so that if ~H»1(k) ='H, ,J (k) for all k, then 'I»»»»»&

= 'h.,"J. for all /. However, since we can restrict
ourselves to a few values of l, more restrictive con-
ditions on h &' can sometimes be found. The im-
portant results are summarized here and further
details are given in the Appendix.

For the exciton branches derived from I', (i.e. ,
&L»=1) we find

(1, 1I

1 (1, 2I

(1, 4I

g + g+ E ". E

0 1 0 8'

8-" 0 —1 0

0 8 0 —1

0 e" O

and

'H„(k) = e(k) 'I,',"(r,)

'H„(k) = c(k) 'I,',"(r,)*,
where

c(k) = e»2 ~1+212 y(ge»" 2+ 12 +~2»" '
» 3+&12&



'H„(k) = 'H„(k)

( 8(p/8)

1~(8&( r ) (e-(f (f(-P14&+~&-(f (f8-P14)
3/

we have E&-13835 cm and lh, 3 I
—15.3 cm

For the excitons derived from I'8((1 = 2), which
reduces to 2(A, +A8) at k=o, the situation is some-
what more complicated since none of the H(&(k) are
rigorously zero. Symmetry considerations (see
Appendix) lead to the following relationships:

'H„(k) = 'H„(k)

+ ~8e- (f (% 8-P14))
3H„(k) = 8H„(k)

8) (t)(r )
(k p(4+8l (8&( r )

= 2 f&13 (r4)[coskk ' (- T1+T8+T8)

+ cos-,k ~ (T, —T8+ T8)

+coskk' (T1+T8—T8)] . (3.3)

Note t at, atk=O, H„(O)=H„(O)=H„(O)=H„(O)=O
and H„(0)= H48(0) =6k(8) as in AMW. Since the
first-neighbor terms vanish, only interactions be-
tween ions of a single-near-neighbor type (within
our limit of / & 4) contribute to a given 'H„(k). The
largest TOE matrix element is the spin-allowed one
'h,'3' which determines the k =0 Davydov splitting
of the E excitons. At this stage the assumption
is made that at all k the spin-forbidden TOE matrix
elements for second and higher neighbors can be
neglected. The nearest-neighbor interaction,
which in other symmetries would probably be the
largest of these, vanishes by symmetry here.
With this approximation the I'~ matrix at general k

~is& (i4)
&iii z,
& i2~ 'H„(k)* Z,

&iSi 'H (k)+ 'H (k) Z

'H„(k)* 'H„(k) 'H„(k)'

(s. 9)

&( { -(k (f 1-p14) + e-(f ~ (V8- p14)

« fk p (%3 «pg4)$

H,8(k) = H,3(-k)

8@(8)(r ) (
(f ~ (f'1+P18) + e(f ~ (f'8+P(8&

~2 ra

(f . (V8 + p18) )

If k~3 and h43 are real, as is the case for magnons
in Cr808, 33 then H18(k) = H48(k).

H23(k) H43{ ) 2 ~18 (r4)lcoskk ( Tl + T8+ T8)

+ coskk ' (T1 —T8+ T )

+cos—', k (T1+T8 —T8)] . (3. ii)

For the limiting case of k=0, we have

H„(O) — H„(O) — )8„(r,)+ 3 a„(-r, ),

and is real. Further,

8H,8(0) = 'H„(O) = 3 8I)188) (r,),
'H„(O) ='H„(O) =6818I84)(r4),

which is consistent with the conditions imposed by
the factox group, as it must be. The form of
X(I'3) for general values of k is then

124&

becomes

&is(
X(l', ) =

(

~is& ~i4& ~i2&

g~

H18(k)* Z1

0 g~

o 'H„(k)+ z,

{s.io)

z,
& 22' 3H„(k)+ Z,

X(l",) =
&2Si 8H„(k)+ 8H„(k) Z,

&24~ 'H„(l)* 'H„{k) 8H„(-k) Z,

(s. i2)
A more convenient form which shows the relation-
ship to the k =0 Hamiltonian is obtained by trans-
forming E(l. (3. i2) to get 3C{I'8)'=8 'X(i'8)8, where

where the matrices are Hermitian and only ele-
ments on and below the diagonal are shown. The
approximation leading to Eq. (3. io) is also made
because we do not have any information on the mag-
nitude of the smaller TOE matrix elements. As
methods are devised to get this information it can
readily be included in the I', -exciton-band Hamilto- .

nian of E(l. (3.9). From the k =0 energies in AMW

1 0 1 0

0 1 0 1

01 0 -1

and clearmg over-all phases. Then
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X(r,)' =

(1)2+h14 cosk ' p14

I a,',"I y(k)

+ 2e ass+ W(k)

h, 4 sink ~ p14
(1) ~

E2+ h14 cos k ~ p14
(1)

I
ag'I x(k) E2 —h14' cosk '

p14
(3.12')

I a,",'I x(k) (1)
h14 sink ~ p14

I a» I
y(k) E a(1)

2 14 COS 'P14
+2e-"'Ia,',"

I
W(k)

X(k)=sin k (T, +p,a)+sin k ~ (Ta+p, a)

+ sin k (Ts+ pea),

F(k) = cos k ~ (T, +p,a) + cos k ~ (Ta+ p,a)

+ cos k ' (Ts+ p») ~

ii'(f) = cos —,'k ~ (- T, + Ta+ Ts) + cos —,'k ~ (T, —Ta+ Ts)

+cos —'k ~ (T|+Ta —Ts) . (3.13)

At k = 0, X(0) = 0 so the off-diagonal block vanishes
and we have the A, and A2 blocks on the diagonal
as expected. The approximation made for the I'1
branches of neglecting nominally spin-forbidden
TOE between second and farther neighbors [i.e. ,
H»(k) = 0] could also be consistently made here.
However, H,a(k) contributes to the k= 0 Davydov
splitting between the A1 and A2 branches, which
has been measured experimentally. Our previous
analysis of the k =0 energies gives E2=13827 cm ',

I
= 10.6 cm, h'14' = —8. 5 cm, and I h12' I

= 2. 2 cm '. The k dependence of the matrix ele-
ments of X(I'a)' is shown explicitly in Eqs. (3. 12')
and (3. 13) so all of the quantities necessary to cal-
culate the I'2 exciton band structure are known.

IV. EXCITON BANDS

The final diagonalization of the I', exciton Hamil-
tonian in the approximation of Eq. (3.10) is very
simple, and the eigenvalues for all k are

h, a(ri) =Hi+
I Ks(k) I ~ (4. 1)

where h14', the third-neighbor coupling, has been
neglected compared to a,'4'. The phase r p = Q»
—P,s is the difference between the phases of the
matrix elements h12' and h&~3'. An analysis of
the k = 0 exciton g values in AMW suggested
that Igq —ga) = v [see after Eq. (3.7) for the
definition of P&, Pa]. It can be shown from this
that e' ' is real and that b,P= v is consistent with the
k=0 energies. Since h,'4' is real, the matrix of
X(1'a)' is real. The k-dependent factors not given
explicitly above are

Because of the simple 2&&2 form resulting from the
retention of only spin-allowed TOE matrix ele-
ments, the eigenvectors of (I',) are not k dependent,
and are the same as those given in the first matrix
of Eq. (3.7). The eigenvalues depend only on the
magnitude of 'H» and 'h,'3', whereas the phase of
'H» comes into the eigenvectors but, as we have
observed, it is not a k-dependent phase. Using
the values of E, =13835 cm ' and } 'h,'3'

I
= 15.3 cm '

obtained from the k =0 energies, we obtain the k-
dependent eigenvalues A, 2 which are plotted in Fig.
3 for five directions in the Brillouin zone (of Fig.
2). The only place in the zone (apart from k =0)
where the l", branches are required to be degenerate
for a most general Hamiltonian is at the Z point
where they transform like 2Zs (Zs being doubly
degenerate). The bands of Eq. (4. 1) show a four-
fold degeneracy at Z and A which occurs because
the Hamiltonian of Eq. (3. 10) has higher symmetry
than Dsa (Ds). Inclusion of 'H», 'H, „and 'H, 4
would produce a small change in the band energies,
and a small splitting of the degenerate bands at the
zone-boundary points A and Z.

For the four F2 branches the approximation of
neglecting the nominally spin-forbidden TOE for
neighbors farther than the first [H»(k) = 0] results
in a simple analytical form for the eigenvalues of
Eq. (3.12), i. e. ,

a a s 4(ra)-Es+ I H»(k) I
+

I Hw(k) I
. (4. 2)

Analytical expressions for the vectors can also be
obtained, and these are k dependent, as well as
depending on the phase of h». The Davydov split-
ting between the A, ', A2' and A, , A2 branches at
k=0 is then 2}H14I or 17 cm '. However, as noted
in Sec. III, we know the A, , Aa Davydov splitting
(3. 5 cm '), and a lower limit (25 cm ') for the
A1 A2 Davydov splitting. This fixes I h,'2'

I
= 2. 2

cm ' and enables us to solve the more general form,
X(I"s)', whose eigenvalues for a number of direc
tions in k space are plotted in Fig. 3, together with
those of X(I',). For our choice of hP = v, all the
matrix elements of X(la)' are real and it can readily
be transformed into two 2& 2 blocks. Inspection
of Table 0 shows that, in general, the four F2
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FIG. 3. Calculated exciton
dispersion curves for the lowest
eight branches of the E excitons
in a number of directions in the
Brillouin zone. The k = 0 labels
are shown and the transformation
properties at some other special
points can be seen from Table II.
The dotted curves are the F&
excitons, and the solid curves
F2. Branches which become de-
generate at special points can
have nonzero slope at the zone
boundary, e. g. , the slope of the
E' and E branches at the Z and
A points is +3~ l h~3 I or +208
cm '/& '

branches will be nondegenerate throughout the zone.
However, we again find extra degeneracy at the Z
and A points. The eigenvectors of 3e(I'~)' are k

dependent, as noted above. For example, at k= 0,
A, has the vector (2 p p 2) and at k=v/c,
(0. 535, 0. 535, —0. 311, —0. 311), in terms of the
basis states of Eq. (3. 12).

The exciton density of states
X104

1.5—

V

0

I I

2E EXCITON DENSITY of STATES
Cr, o, was calculated using a Monte Carlo algorithm and

a mesh of n=10 points in the irreducible ~» of the
Brillouin zone. Several calculations were made,
varying the number of points in the mesh. The
statistical noise fluctuations on p{E) depend on the
number of points in a given energy interval, but
are proportional to n ', and were less than - 5/o

for n= 105. Figure 4 shows the result obtained us-
ing an energy resolution of 1 cm '.
V. EXCITON-MAGNON ABSORPTION AS CONFIRMATION

OF EXCITON DISPERSION

5—

I

100

E

I

200 cm ~

FIG. 4. Density of states of the excitons shown in
Fig. 3. This was calculated using a Monte Carlo algo-
rithm and a channel width of 1 cm ~.

As pointed out in the Introduction, an optical
measurement of exciton dispersion involving the
creation of excitons with all values of k requires
another quasiparticle to be excited for k conserva-
tion. Vfe have obtained experimental support for
our model of exciton dispersion by measuring the
exciton-magnon absorption associated with the
eight E exciton branches whose dispersion was
calculated in Sec. IV. It will be sufficient for
our present purpose to give a preliminary analysis
of the o polarized exciton-magnon absorption as
this is related in a simpler way to the exciton den-
sity of states. The 7t polarized spectrum and an
extended treatment of the exciton-magnon band
shapes will be covered in a future publication.

The experimental spectrum was measured at
1.6 K using a single crystal of Cr~03 2&&2 mm
polished to 15-p, thickness, with the c axis in the
plane. The crystal was cemented to a sapphire
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FIG. 5. Polarized exciton-magnon absorption bands in Cr203 at 2'K.

substrate with its c axis parallel to that of the
Cr,03. No strain broadening was observed over
and above that present in thicker freely suspended
samples. The spectra were recorded digitally,
point by point, by an IBM 1800 process control
computer and the ratio to the incident light inten-
sity calculated numerically. This gave the absorp-
tion coefficient and corrected for the energy depen-
dence of the spectrometer and detector response.
Figure 5 shows the o and m polarized spectra. A

comparison of the a, v, and axial spectra (the latter
taken with a different crystal) showed that the ob-
served spectra arise from electric dipole transi-
tions. In Table III are listed the absorption cross
sections. The excitons are nominally spin and

parity forbidden and get most of their intensity at
T = 0 from the single-ion mechanisms of the spin-
orbit interaction mixing f2~e Ta into t~ E, and the
odd parity crystal-field mixing charge transfer
and 3d' states (as in the case of ruby). The exciton-
magnon transitions are more allowed since, in ad-
dition to these mechanisms, the interion exchange
interaction also enables spin and parity to be con-
served. 'o Phonon sidebands are ruled out as a pos-
sible origin of the observed spectra since the 2E

level couples very weakly to the lattice, and the
exciton-phonon absorption would have about the
same intensity relative to the pure exciton absorp-
tion, as is observed in ruby, i.e. , less than —,'.

The microscopic mechanism for exciton-magnon
absorption~ involves a two-center excitation in
which an ion at R„, is excited to an optical state p,

(which labels exciton branches), and an ion at R„~
is excited within the ground-state manifold, in this
case 423, to the state v (which labels magnon
branches). Let p„be the vector which locates the
spin deviation on ion j in cell m relative to the
optically excited ion. Then the exciton-magnon state
at k = 0 (which can be excited by a photon) can be
written

l p, -k; v, k) = —Z Ze-" "~~
& ~gn

Q and S are the eigenvector matrices of the exciton
and magnon Hamiltonians, respectively. 'Phe in-
tegrated absorption cross section (per chromium
ion) in polarization e, for the exciton-magnon
transitions from the crystal ground state I G) in
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TABLE III. Measured absorption cross sections for
E exciton and exciton-magnon transitions in Cr203
(x=1.6 K).

Transition

exciton 0~

r2
0'2

exciton- 0.

magnon

Peak o.'

(cm ~)

1350
600
170
500

2100
650

Cross section/Cr3' ion

~(E)dE
4Nq

(10 20cm)

27
20
11
16

580
210

the absence of exciton-magnon interaction is"

1
n(E) dZ

4N

where F. is the transition energy in cm ', q labels
the components of the dipole operator P, and the
refractive index (q) function is anapproximate local-
field correction. From Eqs. (5. 1) and (5. 2) we
have for the integrated absorption coefficient

u(E) dZ
1

Q)„-k ~],„-k

&S,„(k)Sf.„(k)e"'u e "'7's' F,(p"„)E,(p(', .)

&&5[E E„(p,, -k) --E ~(v, k)] . (5. 3)

The E's are two-site transition moments which
depend on the particular pair of ioris excited —one
being ion i in a reference unit cell, and the other
being ion j in unit cell m. Equation (5. 3) is ex-
pressed in a way that makes clear what the exciton-
magnon band shape depends on, and the meaning
of certain approximations which we will proceed
to make in order to simplify the analysis. First
we note that Eq. (5. 3) has the form of a weighted
convolution of the exciton-magnon density of states
in which the exciton and magnon have equal and op-
posite wave vector. The weighting factors can be
divided into k-dependent ones-arising from the
mode vectors (Q's and S's), the exponential factors,
and the exciton and magnon dispersion-and branch-

dependent ones. The latter are the intrinsic phases
of the exciton mode vectors relative to the magnons,
i.e., p, p„and P, of Eq. (3.7). As we have seen,
only the difference Pq —gq effects the exciton ener-
gies. Since the exciton and magnon have linewidths
at 7.'= 0 of less than 3 cm ', we neglect relaxation
and strain broadening of the exciton-magnon band
shape. Selection rules on the symmetry of excitons
and magnons which can contribute to polarized ex-
citon-magnon absorption are not very restrictive.
For sidebands of the 1"& exciton branches, contri-
butions from all special (and, of course, general)
points are allowed. For the I'& branch, all points
are aQowed except the Z point which is forbidden
in ~ absorption.

In the presence of a number of approximations,
which we now state, the o polarized exciton-mag-
non band shape is given simply by the joint density
of states; i.e., the k-dependent and branch-depen-
dent weighting factors can be neglected. The ap-
proximations are as foQows:

(i) Exciton-magnon interaction can be neglected.
This is a reasonable first step introduced to sim-
plify the analysis at this stage.

(ii) The dominant absorption mechanism involves
nearest-neighbor Cr ' ion pairs ( p, &—= pq4). Thi.s is
physically reasonable since they are the closest
ions, and they Pave opposite spin and hence can
satisfy ~M, = 0 in the electric dipole transition.
Further& these pairs lie along the C3 axis and give
rise to k= 0 exciton-magnon states of E symmetry
which are electric dipole active only in o polariza-
tion. Experimentally, the o polarized absorption
is about three times stronger than v (which arises
from excitation of more distant neighbor pairs).

(iii) The exciton and magnon mode vectors Q and
S are k independent. This is true near the zone
boundaries where the density of states is high, and
so is probably a fair assumption.

(iv) All branches of the E excitons couple to the
magnons with equal probability. This is hard to
justify a priori and we will comment on it further
below.

In the light of the above approximations, we cal-
culate the combined exciton-magnon density of
states

kgb ~ V

using expressions for the magnon dispersion given
by Samuelsen and by Alikhanov et al. (fitted to
inelastic-neutron-scattering datas~'3 ) and our Eq.
(4. 1) and the solutions of Eq. (3.12') for the exci-
tons. In Fig. 6 p' (E) is compared with the experi-
mental exciton-magnon o band shape and the agree-
ment is seen to be quite good. . To show th@ depen-
dence of.the calulated bind shaye on the excitori
dispersion, we have also calculated the joint ex-
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polarized exciton-magnon absorp-
tion spectrum measured at 2 K
with the calculated exciton-magnon
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citon-magnon density of states for dispersionless
excitons and this is shown in Fig. V. These re-
sults support the over-all features of our exciton
dispersion calculation, although some changes in
the model may be required as further information
bearing on the excitons and their dispersion be-
comes available. For example, recent exeiton ab-
sorption data by Allenes through the spin-flopped
configuration suggest that the upper A2' branch may
have been ineorreetly assigned in AMW and may in-
stead lie above the upper E branch.

By making the approximations listed above, me

were able to calculate a band shape with no adjust-
able parameters-those describing the exciton dis-
persion. having been determined separately. The
assumption that the branch-dependent weighting fac-
tors (which are functions of P, p„and pz) are
equal is probably the weakest point. Information
on these phases can be obtained from the relative
intensities of the k= 0 excitons as was done recently
for Ycr03 by Meltzer. Such refinements are cur-
rently being incorporated into an extension of the
band-shape caleula;tion.

VI, CONCLUSION

Although exciton dispersion in magnetic insula-
tors is probably fairly widespread, only one previous
example of experimental evidence for it seems to
have been recorded. That is the negative dispersion
in the A&, E branches of MnF3 which results in
an exciton-magnon band with lower energy than the
exction, . The origin of dispersion is the intexac-
tlon between magnetic lons which we believe to be
largely of the exchange type. In situations where
the excitons couple strongly to phonons the TOE
matrix elements will be reduced by vibrational
overlap factors, and exciton dispersion mill be con-
siderably reduced. This is probably the reason
for the negligible dispersion of the 4T& excitons in
Mnp, f pl. Th E t C 9
provide one of the best cases for study since the
transition involves relatively simple single-ion
states and the coupling to phonons is very weak.

Ne have Mly exploited the symmetry properties
of the crystal to reduce the number of independent
two-center coulomb and exchange integrals (the
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h's) which enter into the dispersion calculation.
These integrals are treated as empirical param-
eters and most of them are obtainable from our
earlier analysis of the k= 0 energies. A number
of approximations have been made, and these can
be removed as more information on the details of
exciton dispersion become known. For example,
we diagonalize the exciton Hamiltonian within the
set of states which are degenerate from ion to ion
in zeroth order (zeroth order including diagonal
exchange only —no TOE). Nonresonant TOE may
be important, and its inclusion would lead to en-
ergy matrices of order pN for transfer between p
different single-ion levels. This introduces a
large number of unknown matrix elements and
phases, and a systematic calculation scheme which
keeps track of the relative phases of the single-
lon levels wiB have to be developed to deal with
the pairwise interactions (cf. the tensor-operator
techniques in atomic and crystal-field theory).

Since direct measurement of the E-vs-k relation-
ship of optical excltons ls not possible lt ls more
difficult to obtain information on the details of the
exciton-band structure, compared to the case for
ma, gnons or phonons where inelastic neutron scat-
tering can be used. However, we have obtained
confirmation that at least the main features of our
exciton-band calculation are correct, by measuring
the exciton-magnon absorption band shape and com-
paring it to a numerical computation of the joint
exciton-magnon density of states.

APPENDIX

((]zf j& = &e„z[x[e„j& (Al)

(A2)

We are, therefore, interested in the transforma-
tion properties of the basis states under 6„and 8,.
For the f', exeitons, the functions I j) transform
like a3 of the group C3 for j=1, 3 and ~ for j=2,
4. For the Fz exeitons all ij) transform like the
ldentlty cg.

A. Relations in k Space

Sublattice exciton states

transform under e„as follows:

(AS)

The symmetry restrictions on the H, &(k) are ex-
plored in further detail here. Let e„and e, be uni-
tary and antiunitary operators of the magnetic space
group-in this case D q~(D3). Then e„and e, com-
mute with the Hamiltonian R so that
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= 0 otherwise . (A6) 'H»(k) = 'H4, (-k) . (A9)

The phase angle X (e„) is determined by the rota-
tional properties of the site functions. Therefore,

l

~ k) II-&/8 p fx ( „& e-& ep&' ylR )
(A6)

Similarly for the antiunitary operators

elik)=N P e'" ' ' e" ~"' ~&lH z) . (Av)

"H&g(k) = "H43(k)
for p. =lq 2 .

"H,4(k) = "H~(k)
(A6)

(b) The operation C2 takes k- -k and inter-
changes sublattices. 1. 4 and 2—3. In this case
y (Ca) iS zero only for the 1'z:excitons. Then Eqs.
(Al) and (A6) yield

The useful k-space relationships are as follows:
(a) At general k, RI (the operation of time re-

versal && space inversion) is the only symmetry op-
eration (i. e., RIk=k), and it interchanges sublat-
tices 1 2 and 3 4. We can take X (RI)=0 so
that Eqs. (A2) and (AV) give

B. Relations in Configuration Space

In configuration space there are a number of use-
ful relationships among the "I&,'&& of Eq. (3.6). For
first neighbors (I = 1) which lie along the C~ axis
Eq. (Al) gives for p= 1

&fl«&=«113clcs4&=e'""(llx 4), (Alo)

with a similar expression for (21Ri 3). Therefore,
1 (1) 1 (1)
h14 = has =0.

For», = 2 the phase factor in Eq. (A10) is unity so
only the trivial result &14 = 814~ is obtained. The
next useful result comes from the third neighbors
whose geometry is shown in Fig. 8. Taking the C&

axis as the perpendicular bisector of p14 in Fig. 1,
and rs the vector between third neighbors to be in
a plane perpendicular to this C2 axis, then

C2l pR &)=
l

&&R,4& C2li&R 4)=
l
pR &)

C2l &Rm&=
l
&R 's) Cnl &R s&=

l
&R '2) ~

(All)
This together with Eq. (Al) gives

~41 ( r3) I&14 ( r3) &
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h„(r,) = h~(- r, ) .
The Hermitian nature of $C implies

"a4i'(ra) =
t. 'ai4'(- ra)]*

(A12)

(A13)
'I.',"(,) = ("I,'l'(-.,)]* .

Equations (A12) and (A13) together show that ~hz~~~'

(r~) and "k,'4'(r3) are real. This is true for both
p. = 1 and p. = 2. The transformation properties of
the I R„,) under the other two C2 operations of 8'„
i. e., C~ and Cz', involve phase factors because Cz

=CSC2 and C&'= C3'C~, and no new results are ob-
tained from them. Once a particular operation has
been physically located (e. g. , Cz in Fig. 8) it must

be used consistently in analyzing the symmetry
properties and phase relationships of the hI&(r, ) for
all /. Phase relationships between the individual
h&z' for ion pairs of a given type are required in
order to factorize out a particular h,&"(r,) in the
exciton dispersion expressions. %e illustrate this
by the third-neighbor TOE. For p, =1, the IR„,)
transform in the C3 site group like a3, aa, a3, az for
i=1, 2, 3, 4, respectively. Using this in Eq. (Al)
and referring to Fig. 8 we get

&ho&(r ) &lrl81@ (C ) 2lr/-31I (C-1 )

(A14)
'h' '(r )=e " ~'h (C r )=e " 'Q (C 'r )
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