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A classical lattice model for a binary alloy which consists of a ferromagnetic and a non-
magnetic component is investigated. Two coupling constants, a magnetic and a nonmagnetic
one, describe the interactions between particles on nearest-neighbor sites. For vanishing
magnetic coupling the model can be reduced to the Ising model from which the coexistence
surface is determined exactly. The critical behavior is discussed extensively within the
mean-field approximation. The critical line and the coexistence surface define three classes
of directions (in the space of intensive variables) with respect to which the various critical
exponents are calculated and classified.

I. INTRODUCTION

A classical configurational-lattice model for a
binary alloy has been proposed recently. ' The
model consists of a ferromagnetic component A. and
a nonmagnetic component 8, and neighboring A

spine are exchange coupled to each other by a mag-
netic coupling constant &, while a nonmagnetic cou-
pling constant q~ favors the occurrence of AA. neigh-
bor pairs (we assume e„ea non-negative). An
external magnetic field h is coupled to the A spins
and, furthermore, the two components are assigned
different chemical potentials p& and p~.

This model is suitable to describe the mutual in-
fluence of two different phase transitions. On the
one hand, a ferromagnetic transition occurs at a
magnetic ordering temperature if the A-atom con-
centration is sufficiently high and, on the other
hand, a miscibility gap becomes evident at low
temperatures. The two order parameters, which
correspond to these phase transitions, are interre-
lated in general.

The study of this model is rather complex. So
far, only partial results have been obtained. In
one dimension, where no phase transitions occur,
the model was solved exactly. ' The one-dimen-
sional dilute Ising model, which corresponds to
the case &2=0, has been solved earlier. " The
case && = 0 was proposed to describe the X curve
and the critical behavior of a Hes-He mixture. ~

Mean-field solutions for this system are given in
Refs. 6 and 7. Exact high-temperature series ex-
pansions were performed for zero field, from
which the location of the criticalpointswas extrap-
olated. For the general case (&, &0, ea&0) the
stable mean-field solutions and exact series ex-

pansions will be discussed in forthcoming papers. '
Here we first give the mathematical description

of the model and formulate the mean-field equa-
tions for the general case (Sec. II). In Sec. III we
solve the special case e, = 0 by reducing it to the
Ising model. The coexistence surface is given ex-
actly in terms of the intensive variables p = p& —p»
h, and T. In Sec. IV the behavior in the neighbor-
hood of the critical line is discussed by calculating
explicitly all the interesting critical exponents with-
in the mean-field approximation. A simple classi-
fication scheme for the critical exponents is intro-
duced. Section V contains some additional re-
marks.

II. MODEL

The two kinds of particles A and B are located
on the sites of a regular lattice. The occupation
of site i is described by the site variable S,
(i= 1, 2, . . . , N):

S, = + 1, A particle at site i with spin Q,'„,
=0, 8 particle at site i (no spin) .

The Hamiltonian of the system,
N

H= —
&g Z S,S( —&2 Z S, Sq —hZ Sq —i&. SS)

&U& {fg) 51 f 1

(I)
depends on a magnetic coupling constant q„a non-
magnetic coupling constant &z, the external mag-
netic field h, and the difference of the chemical po-
tentials ILL = p,„—p.~ of the A and 8 particles, re-
spectively. g«~& indicates a sum over nearest-
neighbor pairs.

The thermodynamic behavior of the system is de-
scribed by the free energy
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I'=- TlnZ,

where the partition function Z is given by

(2) N -
p

", (ate+1)/2
x Q 2e'"cosh—

e-H/T
{s,.)

(Throughout this paper we put kz = 1.)
In the mean-field approximation (MFA), which is

equivalent to the Bragg-Williams approximation,
the model is described by two coupled nonlinear
self-consistency equations

e,m+

1J= 4&2 q

h* = -,' fg+ —', z&z+ T in[2 cosh(h/T)]] .
(10)

(ii)
From Eq. (9) it follows that the coexistence sur-
face Z of our model is described by

Therefore the exact free energy per site is related
to the corresponding one of the Ising model:

F„a, „(q, h, T) = F,""'(h*,T) —I*+-.'zz, ,

where

p e2p+ p, e&m+8 T & ylsing (12)

Here m = (S, ) is the magnetization, p= (S,z) the
density (of the A. particles)-the brackets denote
ensemble averages in the grand canonical scheme-
and e, z= zz, z (z is the number of nearest neigh-
bors). In every point of the space of intensive
variables ("fields" ) p, h, and T, Eqs. (4) and (5)
determine m(p, h, T) and p(y, , h, T). 'lf several
solutions are possible, the stable one is.singled
out by the requirement that the MFA free energy

F(p, h, T) = &e, m +&ezp + Tin(1 —p)

is minimized:

E=minimum (at constant p, h, T) .
Even in the MFA the general case shows a rather
complex behavior. New types of critical points
will occur, as, for example, the so-called
tricritical point, discussed in Ref. 6 for the case
&2=0. An extensive analysis will be given in
Ref. 9.

It is symmetric with respect to h. = 0. The phase
diagram in the (g, h, T) space is shown in Fig. i.
On passing through Z the system undergoes a
first-order transition, i.e. , the "densities" p, m,
and s (entropy) exhibit a discontinuity. At T = T,"'",
Z terminates in the line of critical points (critical
line) I', which is therefore given by

0 Z Z Ising

p = —— =-(m""'+1),gp
Bp,

(14)

m =- — =-, (I '"'+ i) tanh(@/T),Isi.
8h „z

. Note that the MFA gives the same equation for Z.-

The location of T„however, is shifted with respect
to the Ising value (T, "=-,').

With the help of Eq. (9) all thermodynamical
quantities of the model can be expressed in terms
of the Ising quantities. For the densities (first-
order derivatives of the free energy) we obtain

III. SOLUTION OF CASE el =0

As a preliminary step it is useful to study some
special cases. The case q2=0 has been discussed
by several authors. ~'~

In this paper we solve the alternative case «=0.
Here the A spins are coupled to an external mag-
netic field only, so that the model describes, for
instance, a magnetic alloy without exchange coupling
or a paramagnetic lattice gas.

Using a generalization of an argument given in
Ref. 10, this problem can be reduced to the Ising
problem. Putting cr& = 2S& —1, the sum over all
configurations fS,] is split into a sum over S, = + 1
(for all i with cr, =+ 1) followed by a sum over fo,].
Then the partition function (3) can be written as

s =——-— = s""'+-'(m""'+ 1)
QP

~~ u, A

&& (in[2 cosh(a/T)] —(h/T) tanh(h/T)] .
(16)

FIG. l. Exact phase diagram for ~~=0 in the intensive
variable space.



CRITICAJ BEHAVIOR OF A

The second-order derivatives, i.e. , the heat
capacity e, „, the analog of the compressibility
z„~, and the magnetic susceptibility X„~are ex-
pressed as follows:

-
I
p- p, l'" or la-a, l'" or

I
T T-, l' ~

{case 2)

or la-~. l" or IT- T.l'"
{case 3).

gage
+ T(m""'+ 1) BT2

The second-order derivatives g „, g», and ~
are of type F33 and diverge as

Yi incep
&a, r =

~p &Xr
A, T

tanh O'I/7)+
2(„~ )

(IO)

&~,a~ &a, r y Xi, r

-
l p —p,,l-"'or la-n, l-"' (case 1)

- l~-~. l
'or I&-&.

l
'- IT-T.

l

'

(case 2)
IV. CRITICAL BEHAVIOR

The critical properties of the model are de-
scribed by the behavior of the thermodynamic quan-
tities near a critical point (on I ). Through Eqs.
(14)-{19)this critical behavior is given, in princi-
ple, by that of the Ising model. The critical ex-
ponents of the Ising quantities in question„however,
are not all known. In order to get a complete
table of exponents, we therefore calculate and dis-
cuss the MFA critical exponents, which are de-
termined analytically by Eqs. (4), (5), (12), and
(13) (with el=0 and T,""'replaced by T, "=—', ).
It turns out that they can be classified within a
simple scheme. For this purpose we define at a
critical point P (on I') three classes C, (i = 1, 2, 3)
of directions. C, contains the directions parallel
to I; Ca aQ directions parallel to the coexistence
surface Z' (but not parallel to I"), and Cs all direc-
tions not parallel to Z. Furthermore, we let F,
and F,~ denoted first- and second-order derivatives
of F with respect to any direction of class C, and
of classes C, and C„respectively. On approaching
P asymptotically in a direction of class C„ the
critical exponents corresponding to F; and F;~ de-
pend only on the index pair (i, I) and the index trip-
let (i, )'I, Ij, respectively

The three different ways of approaching P are
denoted as follows: case 1, asymptotically parallel
to I'; case 2, asymptotically parallel to Z but not
parallel to l"; and case 3, not parallel to Z. The
position of P on I' is irrelevant for the critical be-
havior of the model.

In a critical point P(lI, , h„T,) with 8,40 the
densities p, m, and s are all of type F3. On ap-
proaching P they behave as

lp-s. l, lm-m. l, ls-~. l

-l p. -ll, l"'or lh-a, l'" (case 1)

(case 3) .
In the point Q(il„h, = 0, T,) the magnetization m is
of type Ez and therefore has a different critical be-
havior (m, = 0, lI, = 0):

(case 1)

-
l

p, —p,, ll or IIIrol T - T, l' (cases 2 and 3)

(m=0 if Q is approached in the plane II=0).
Tile susceptlb1lity X~ r 111 Q is of type Elj alld

approaches a finite value as

al'" (case 1)

(case 2)

(case 3) .

Thus E&q behaves like the density E3.
Ãe finally note that "nondiagonal" quantities like

cp 1 01' K,r al'8 of type Elg alld dlvel'ge mot'e Weekly
than their diagonal analogs (compare Ref. 12). As
an example we have in Q

K„,,-a "', K„,-II "' (case 1) .

V. REMARKS

(i) The idea of a different (singular) behavior
of the thex'modynamlc quantities, as a critical
point is approached in different mays, was intro-
duced as a general postulate in the theory of phase
transitions ' and has been discussed in a recent
payer. The above calcuIationi on-,: our model re-
veal a simple classification scheme of the critical
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Indices,
(ii) For the special case a~ =0 no tricritical point

occurs, in contrast to the case &&= 0. The excep-
tional behavior of the thermodynamical quantities
in the critica1 point Q(p„0, T,) is explained by the
fact that here I' is parallel to the k axis.

(iii) The model may be used for several different

physical systems, For instance, if 8& = 0 denotes
a vacancy on site g~ a pat'QBlgg68fgc LQtAc8 gas ls
described. The susceptibility diverges even in the
absence of. ferromagnetic coupling if a critical
point p (e Q) is approached. The criti:cai expo-
nents of the van der Waals gas for the compress-
ibility and the specific heat coincide with ours.
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The orbital contribution to the magnetic partial differentia1 neutron cross section is cal-
culated for a realistic band model of paramagnetic nickel within the tight-binding scheme.
The orbital contribution is generally less than one-quarter that of the spin contribution in an
energy range up to 0. 15 eV. At higher energies it exceeds the spin contribution and should
be observable.

I. INTRODUCTION

In the past few years there have been several
theoretical and experimental studies aimed at under-
standing the generalized electron-spin susceptibil-
ity g~(&, &) of magnetic metals. X~(K, co) measures
the response of electrons to an external perturba-
tion, of frequency M and wave vector ~, that couples
to their spin; i. e. , it describes electron-spin dy-
namics. Efficient and accurate band-structure cal-
culations have made realistic calculations of g,
possible. This work has been stimulated by experi-
mental studies, especially thermal neutron scatter-
ing experiments.

The neutron-electron interaction evaluated to
leading order in the reciprocal of the neutron mass
is the sum of, two term's; the spin and orbital in-

teractions. The contribution to the neutron cross
section from the former is simply related to y,
(Tr, ur). For small scattering wave vectors, Elliott'
has argued that the matrix element of the orbital
interaction operator is a factor m,jm* smaller than
that of the spin interaction, and it has been as-
sumed to be negligible in experimentaal analysis.
Since fine detail can be measured by neutron scat-
tering, and measurements are not restricted to
small wave vectors, the orbital contribution to the
neutron cross section now warrants a more com-
plete study. As a first step we have calculated the
orbital contribution to the magnetic neutron cross
section for a tight-binding model of paramagnetic
nickel and compared it with the spin contribution.
The latter dominates for small ~ and . The two
contributions become comparable for @-0. 15 eV


