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The theory of Muller-Hartmann and Kramer for the interaction of widely separated vortices
is extended to temperatures immediately below Tc. The interaction is found to be attractive
below Tc for type-II materials with tt:= 1/~2andnottoosmall a mean free path, in agreement
with experimental observations on such materials. The phenomenon of field reversal and the
work of Eilenberger and Buttner are shown to be unrelated to an attractive iriteraction between
vortices and the consequent first-order transition at the lower critical field, at least for tem-
peratures near T,; it is shown how field reversal, if it occurs in the mixed state, might result
in an attractive interaction at lower temperatures.

I. INTRODUCTION

In the Ginzburg-Landau theory, the interaction
between vortices, at the applied field at which flux
penetrates in the form of an isolated vortex, has
been shown to be repulsive'2 for ~ & I/v 2 and at-
tractive for v& 1/v2 . Since the critical value of
z for type-II superconductivity is I/v2 in the
Ginzburg-Landau theory, the interaction is repul-
sive for type-II superconductors. This is not con-
clusive evidence that the phase transition at the
field of first flux penetration is of second order,
but it is highly suggestive; a proof that the first flux
penetration is in the form of a singly quantized
isolated vortex requires a demonstration that the
free energy for each and every possible form of
flux penetration be greater than that of a singly

quantized isolated vortex.
The Ginzburg-Landau theory is, however, strict-

ly valid only at T= T„and the nature of the initial
flux penetration at lower temperatures is an open
question. Recently, both theoretical and experi-
mental evidence has been obtained for a first-order
transition at the field of first flux penetration, and
hence for some materials (v = I/W2 and mean free
path I not much smaller than (~) the first flux pen-
etration is not in the form of a singly quantized
isolated vortex. The experimental evidence has
been partially reviewed in a previous article.
The most direct evidence is the observation of a
first-order transition by Krageloh, Kumpf, and
Seeger; this work is unpublished at the time of
writing, and Krageloh and Seegers merely state
that the first-order transition has been observed,
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In a previous article the author has extended the
work of Neumann and Tewordt to obtain the exact
first-order correction in 1 —T/T, to the Ginzburg-
Landau expression for the free energy of an inhomo-
geneous superconductor. Following Kramer's
method, ' in this expression we write the order pa-
rameter as f+f and the superfluid velocity as
v+v where f '

and v are the perturbations to f
and v, the order parameter and the superfluid ve-
locity of an isolated vortex; on keeping only terms
up to first order in the perturbations, we find that
the free energy &6 of a unit cell of the vortex lat-
tice, relative to the Meissner state, is given by

&G = (II, A. /4w)(I, +Ig), (2. 1)

without giving any details. We also mention here
related work on the intermediate mixed state. ~'8

On the theoretical side, the author ' has proved
that the initial flux penetration is not in the form
of a singly quantized isolated vortex for materials
with a = 1/v2 and not too small I, and has conjec-
tured that the initial flux penetration is in the form
of a lattice of singly quantized vortices with finite
spacing for these materials. If the interaction of
widely separated vortices were attractive, one
would have strong support for this conjecture.

In this article, we examine the interaction of
vortices at temperatures less than T, to see if it
can be attractive. In Sec. II, we extend Kramer's
theory to temperatures less than T, and express
the interaction term in the free energy as a line in-
tegral along the boundary of a unit cell of the vor-
tex lattice. The evaluation of this integral requires
a knowledge of the behavior of the order parameter
and the superQuid velocity of an isolated vortex
far from the axis of the vortex; the asymptotic be-
havior of these quantities is determined in Sec. GI
and in Sec. IV we determine the values of I(." and l
for which the interaction is attractive. In agree-
ment with the conjecture referred to above, we find
an attractive interaction near 7 = T, for type-II
materials with ~ = 1/W2 and not too small a mean
free path. In Sec. V we examine the phenomenon
of field reversal and show, even if it occurs in the
mixed state, that it does not result in an attractive
interaction between vortices, at least near T = 1'„
simply because field reversal does not occur for
z = 1/~2 near T,. The situation is less clear at
lower temperatures, and we indicate how field re-
versal might give an attractive interaction. We
also consider the work of Eilenberger and Buttner, '
and show that their results are unrelated to an at-
tractive interaction near T = T,.

II. INTERACTION ENERGY

x[Rj (Vf) +f v ]+tj'~f Kj (Vf) +(ff«+3'g«)

a a
= 2 f dls'(hxv +K f Vf)

C

+ 2a '(1 —I)f din [(g~ —2Q —2n4g —6n4.)f Vf

—2(q«+3q«)(1- f)Vf'+q«hxv'J . (2.4)

We now simplify the line integrals by using the

symmetry of the lattice. If g is the number of near-
est neighbors and the origin is chosen to be at the
center of the vortex, we have

/din Z=2z f,'dye Z, (2.6)

where Z stands for the integrands in Eg. (2. 4); we
consider only simple lattices with one vortex per
unit cell. The integral on the right-hand side of
Eg. (2. 5) is from the point (—,

'
D, 0) to the point

(-,' D, Y) as shown in Fig. 1; D is the distance be-
tween nearest neighbors The pertur. bations f ' and
v for widely separated vortices are given by

X(a3 V f-fe ) +q«g, '[f~yg' —2(vxVf') h J),
(2. 2)

I&=2fale ( hxv'+g f'Vf)

+2z (1 —I) /din f2q«ff vxh

+ [ —24 —'g&(1 —f ) + Il~f + ('g4 & + 3'g«)

"(1-3f ')]f 'Vf - (n4n+3n4. )f (1 f ') V—f '

+r4,v'x[-f h+vxVf J I. (2 3)

The area integrals in Eq. (2. 2) are over a unit cell
of the vortex lattice and the line integrals in Eq.
(2. 3) are along the boundary of the unit cell; n is
the un'. t outward normal to the boundary. The nota-
tion in Egs. (2. 1)-(2.3) is the same as that of Refs.
11 and 12; in particular, t= T/T, and lengths are
measured in units of A., the penetration depth. The
first term in the expression for I, was found by
Kramer; the second term gives the first-order
correction in 1 —T/T, to Kramer's result, and is
new with this work.

For the case of widely separated vortices, the
quantity I, can be neglected when the applied field
is equal to the field for initial flux penetration in
the form of a singly quantized isolated vortex. ' '"
In addition, the quantities 1-f, Vf, v, h, f, Vf,
v, and h' are small along the boundary and, for
the interesting values of ~ (= 1/W2), are of approxi-
mately the same magnitude. We therefore keep
only terms up to second order in these small quan-
tities; Eqs. (2.1)-(2.3) then reduce to

I, = f d9[P'-2ha, +-,'(1-f')'+&-,'(Vf)'+ f v ]

+(1 —t) f d v(q,f (1-f ) —g~(1-f )

f '= -~ [1-f( — )]

v'=Q, v(r -r"a),

(2.6)

(2 7)
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i'!
y +K (&' —() —[1+((—&)(&&„—&Q —4&&~i —(&&)~)[)

df

(2.9)
The evaluation of this integral requires a knowledge
of the behavior off and v at large distances; the
derivation is given in Sec. III.

III. ASYMPTOTIC BEHAVIOR OF fAND v

The (Iuantities f and v for an isolated vortex are
determined by the differential equations" ~2

df 1 df 2 2 2, + ———« f (f —1+v') = «(1 —t)F(r),x dY
(3.1)

dg

ldll

2+ ————pv —f'v =(1 t)G(r)—,df' (3.2)

FIG. 1. Unit cell of the vortex lattice for the triangular
case. The integral on the left-hand side of Eq. (2.5) is
along the entire boundary of the unit cell, while the inte-
gral on the right-hand side is along the portion drawn
with a solid line.

where the r~ are the position vectors of the axes of
the vortices in the lattice, and the sums are over
all vortices but the one at the center of the unit cell
under considexation. In the following, only inter-
actions between nearest neighbors are considered,
and f '

and v may be simplified to

f'=f(r"-Dx) —1, ~'=v(r-Dx) . (2.6)

Since h(r) =1[,(r)z and j v'= -y. v along the bound-

ary, we obtain x ~ (h &v ) = hv cos8 where cos8
= ~D/x; the term x ~ Vf

' reduces to x ~ Vf '= —cos8
&& df/dr. Finally, with f '(r ) =f (r ) —1 on the bound-

ary, we obtain

4~&G
2 =4m dycos6 hv 1+v j.-t g4,

C 0

7jf 2(t) + 2X/( + 27/4 (( + 6 pe YJ&(&

E(ls. (3.1) and (3.2) can be rewritten as

{3.3)

dg 1dg
a + ———2 «g[1+ (1 —t)qz]= M(r),-(3.4)

dg 1 d5 8, + ——-~ -v[1-(1 -t)«-'&„]= X(r), -dy2 ~ dr r
(3.5)

(3.6)M(r) = «'[g'(f+ 2)+fv'+(i —t)V(r)],

N(~)=(1-f )v —(1 t)V(r), - (3.7)

where E(x) and G(x) are functions of f and v first
given by Neumann and Tewordt ' Eqs. (3.1) and

(3.2), the Neumann-Tewordt equations for the order
parameter and superfluid velocity, are the Ginz-
burg-Landau equations altered by the inclusion of
the first-order correction {in 1 —T/T, ). With

g= 1 -f& f„=df/dt' a&nd

U(r) =2 (t[)g'(f +2) +fv']+(q, +q4g+3q4 )[g'(3 f'+6f'+5f+4)]-q~[g'(f +2f +2 f+2)+f(« f,+v f )]

+(q„+3g )[6« 'ff„'+2f v']+q4« '[2f 'v'+3f@ 1+q([-f{1-f ) +f ( —« 'f„'+v'f ')1,

I'«) =(2@4.+6nc. -na)[f'(1 f') lv+nc.[-«-'{f'—l)v —2f'{1-f')v+2« 'ff I

+2 fv(fv —«r f„)+2« f„v(f, rf)] . -(3.9)

In E(ls. (3.4) and (3.5), the right-hand sides are of
second and higher order in the (luantities 1 —f, f„,
e, and h. We need only the asymptotic behavior of
f and v, and so we rewrite the differential e(luations
as integral equations'.

1 —f=g = J(.,(cr) f pdpIO(cp)M(p)

+I,{cr)f pdpE, {cp)M(p), (3.10)

v=P«Z, (d~)+Z, (dr) f pdpl, (dp)X(p)

(3. iS)

+I,(d~) f pdpI[. ,(dp)X( p), (3. ii)
where p is the number of flux quanta per unit cell
of the vortex lattice, and

c = ~2 «[1+ (1 —[&)(7~]'~',

d= [1 —(1-t)q„« ']'" .
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Since we are interested in the case T& T„x= I/v2,
we may expand c and d in powers of (1 —t), obtain-
lllg

c = ~2m[1+-2 (1 —t)g~],

d= 1 ——, (1 —t)q4, K

(3. 14)

The asymptotic behavior of f and v is easily found
from Eqs. (3.10) and (3. 11) to be

1 —f=@=aKO(cr),

v = bK, (dr),

where

a= f pdpIO(cp)M(p),

b = p~, '+ f pdp I, (dp)N( p) .

(3.16)

(3.17)

(3.18)

Our derivation of Eq. (3.16) is correct'3 only for
y&W2 at T=T„near T=T„Eq. (3. 16) is correct
when

c( 2d (3. 20)

—= ac K,(cr),d (3.22)

b= bdKO(dr) . (3.23)

IV. VALUE OF If: FOR ATTRACTIVE INTERACTION

Thus armed with the knowledge off and v at large
distances, we find, on using Eqs. (3. 16), (3. 17),
(3. 22), and (3. 23) in Eq. (2. 9), that aG is given by

4m&G» ——4z dy cos8H' y'
0

x(b~dKO(dr)K&(dr) [1+& (1 —t)q4, ]

—a cKO(cr)K~(cr)v [1+(1 —f)

x (q„—2p —4q, ~
—12q4,) ]j . (4. 1)

or, according to Eqs. (3.14) and (3. 15), when

g & W2[1 —(1 —t)(Q q+, + l~r+4g —
4 2 q~)] . (3.21)

One can easily show that this restriction on the
value of a for the validity of Eq. (3.16) does not
affect our conclusions. Equation (3. 17), on the
other hand, is correct for all values of ~.

From Eqs. (3. 16) and (3.17) one finds

K~KC6 y

where ~,6 is a critical value of ~ defined by

(4. 3)

~cg (I/~~) [1+(1 t) ( 0 4 148 4}4c+~2')] i

(4. 4)
1(i 6 is independent of the fluxoid lattice and of p, the
number of flux quanta per vortex.

To analyze our result for w,6, we extrapolate to
&=O'K and compare, in Table I, ~,6 with the values
of + f + 2, ~,3, &,4, and ~c5 cal culated previously,
and extrapolated to &= 0 in a similar fashion; ~„,

and t&,& are the values of z for which

z& = I/v 2, zm = I/v 2, H,~
= If, for initial flux pene-

tration in the form of an isolated vortex with p = 1,
&,&

= &, for initial flux penetration in the form of
an isolated vortex with p=2, and 0» =0. The dif-
ferences between the ~,&

for i = 1-5 have been ana-
lyzedpreviously'; it was concluded that the critical
value of a' for type-II superconductivity was ~„ for
n- 50 and tc,3 for u- 50. Another result of this
analysis was the prediction of a first-order transi-
tion at the lower critical field for materials with
Ii = I/W2 and not too small a mean free path l; it
was conjectured that the initial flux penetration
was in the form of a lattice of singly quantized
vortices with finite spacing. Table I shows that the
inequalities K,6& I(,3& a,z hold for 0'-50, and thus
provides strong support for the conjecture. If we
had found instead that e„&~,6, there would exist
type-II materials for which the initial flux penetra-
tion was not in the form of a singly quantized iso-
lated vortex and the interaction between widely
spaced vortices was repulsive.

Because of the approximations used in the deriva-
tion of Eq. (4. 1), we can at present say very little
about the form of the initial flux penetration; we

TABLE I. Values of v, extrapolated to T =O'K as func-
tions of 0'=0. 882 $p/E Kcg K«are defined in the text.

attractive. The condition for an attractive interac-
tion is then c &d, or

(4. 2)

or

We remark again that Eq. (4. 1) is valid only at the
field of flux penetration in the form of an isolated
vortex; this field depends on p, the number of flux
quanta carried by each vortex. Of the quantities
a, b, c, and d, only a and b depend on p.

In this article we use Eq. (4. 1) only to deter-
mine if the interaction can be attractive. For
T = T, and x = 1/v'Y, the hv term dominates at
large distances when c is greater than d and the
interaction is repulsive; the (f 1)f, term domi--

nates when c is less than d and the interaction is

0
0.2
0.5
1.0
2
4

10
20
50

100

KCi

0. 419
0.456
0.494
0.531
0. 568
0.595
0. 615
0. 621
O. 624
0. 624
0.623

KC2

0. 062
0. 185
0.306
0.424
0.515
0. 584
0. 610
0. 625
0. 629
0.633

KC&]

0.773
0.746
0. 721
0.697
0.673
0.654
0. 637
0.630
0.623
0.620
0.616

KC

0. 750
0.728
0.706
0.686
0.666
0. 650
0.636
0, 629
0.623
0.621
0. 617

KC5

0.688
0.677
0.667
0.657
0.648
0.640
0.632
0.627
0. 623
0.621
0.618

KC6

1.382
1.247
1.113
0.982
0. 854
0.756
0.676
0. 644
0.622
0.614
0.604
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~1k'
A(g) = C dk

+
(5. 1)

where C is a constant and Z(k) is the BCS kernel.
The integral ean be put into a more convenient form
by means of a contour integration. ' The singulari-
ties of the integrand are poles from the complex
zeros of the denominator and a branch cut arising
from the arctangent function in the kernel; the con-
tributions are A~(») and Aa(»), respectively, so that

A(») =Aq(s)+A2(s) . (5. 2)

The contribution Aa(z) is always negative and de-
creases in magnitude in an approximately exponen-
tial fashion as z goes to infinity; the decay length
is approximately ", where

The nature of A, (z) depends on the value of PX
where X is the penetration depth of the local theory.
For -"/X less than about unity, there is one pole on
the imaginary axis in the upper half plane and A~(z)
decays exponentially with a decay length between

have shown here only that the interaction between
widely separated vortices with arbitrary P is at-
tractive at the applied field for which the Meissner
state is unstable with respect to flux penetration in
the form of an isolated vortex, for materials with
»= I/W2 and $,/I 50. It is likely that the initial
Qux penetration is in the form conjectured in Hefs.
3 and 9, but we have not proven this to be the ease.
It is hoped to extend the above work to determine
the optimum value of P and the most favorable lat-
tice, and to calculate the applied field at which Qux
penetration takes place and the magnitude of the
drop in the absolute value of the magnetization at
the first-order transition. The simplest way to
determine the form of the first Qux penetration is,
however, probably by means of experiment.

V. FIELD REVERSAL AND THE WORK OF
EILENBERGER AND BCTTNER

When nonlocal effects are taken into account, the
penetration of a magnetic field into a superconduc-
tor is no longer governed by an exponential decay
law. For IQatex'lais with sufflclently small values
of I{.', the nonlocal effects lead to a change in the
sign of the field at large distances into the super-
conductor; this phenomenon is called field rever-
sal. ~ A detailed study of the effect, using the
BCS kernel instead of the approximate Pippard
kernel, has recently been made by Halbritter
we give, in the next paragraph, a brief summary
of the results which are of most interest here.

The vector potential A(8), where & is the coordi-
nate normal to the metal-vacuum interface at 8= 0,
is given, in the case of specular reflection, by

X(:"/X«1) and:(:-/X= 1). For ./X greater than
about unity, there are two poles symmetrically
located about the imaginary axis and the contribu-
tion A, (») in this case displays damped oscillations
which are, however, very small; these oscillations
are, moreover, swamped at lalge distances by the
contribution from the branch cut. The net effect
of these two contributions is that the magnetic fieM
for large z is negative for "/X greater than about
unity and positive for -./X less than about unity.

The phenomenon of field reversal may occur in
the mixed state of type-II superconductors as well,
although the author knows of no evidence for this;
if the effect exists here, it might lead to an at-
tractive interaction between vortices in the follow-
ing way. Close to the axis of the vortex, h and e
are both positive, whereas far from the axis h and
v would both be negative; in both cases, Eq. (2. 9)
shows that the interaction energy is positive if the
kv term dominates. At intermediate (but large)
values of r, however, the product hv is negative
and the interaction term is negative if the hv term
dominates. Equation (2. 9) is, however, valid only
near &= &„and one cannot be certain that field
reversal, if it exists in the mixed state, can result
in an attractive interaction; a theory of the interac-
tion of vortices at arbitrary temperatures is re-
quired.

If fieM reversal takes place in the mixed state,
the requirement for its occurrence shouM be much
the same as in the field penetration problem,
namely, "~X. Since X diverges at &„while "
[defined by Eq. (5. 2)] remains finite as 7- &„ this
condition cannot be satisfied near &, for materials
with» =1/W; thus field reversal has nothing to do
with an attractive interaction between vortices in
type-II materials near &= &,: We find above an
attractive interaction between vortices with a
g(= 1 -f) and a v which decreased monotonically at
large distances.

It is perhaps worth pointing out that our result
(2. I'I) for the asymptotic v(r) in the isolated-vortex
geometry corresponds, in the field-penetration
problem, to considering nonlocal effects only inso-
far as they affect the temperature dependence of
K(k); the contribution from the branch cut is ig-
nored. To show this, we apply the Neumann-
Tewordt theory to the fieM-penetration problem,
obtaining very easily

v(z) = v(0) e "i", (5. 4)
where

(5. 5}

and s is in ordinary units. If, on the other hand,
we expand the kernel K(k) in powers of k about k
=0, we find

(5. 5)
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where

s= -q4, ~ '(1 —t); (5. V)

the expansion of Z(k) in powers of k ignores, of
course, the contribution from the branch cut. A
trivial integration then yields

A(z) = v C X d' e

where

d'= (1 s)-»'= [1+(] t) YJ
g-']- ~

(5. 8)

(5. 9)

The exponents d and d' in Eqs. (5. 4) and (5. 8) are,
from Eqs. (5. 5) and (5. 9), identical to first order
in 1 —f, provided that 1(1 —f) rj«z I & 1 so that an
expansion in (1-f) is valid. Since d and d' are not
identical, the Neumann- Tewordt theory does not
correspond exactly to expanding X(k) in a power
series about k= 0. In particular, since g4, & 0 for
all finite to/l, d diverges as ~-0 for fixed T less
than &„whereas d' becomes imaginary in the same
limit; both expansions are invalid at any tempera-
ture less than &, for sufficiently small ~ since the
correction" terms, the terms proportional to I

—&/&„dominate as a-0.
We turn now to the work of Eilenberger and

Buttner. As part of a program to determine the
structure of a vortex at arbitrary temperatures
less than &„ they calculated the decay lengths of
the order parameter and the superfluid velocity,

obtaining the surprising result that these decay
lengths were not real quantities for small values
of z at low temperatures; they postulated that this
behavior could result in an attractive interaction
between vortices. Near &= &„however, Eilen-
berger and Buttner found real values for the decay
lengths of g= 1 -f and v; hence their results are
not related to an attractive interaction between
vortices in type-II materials near &= T,.

The significance of the results of Eilenberger
and Biittner at low temperatures is not clear, and
it is important to determine the origin of the com-
plex decay lengths, particularly since, as Halbrit-
ter ' has pointed out, the ranges of z values for
which (i) g and v have complex decay lengths, '0 (ii)
field reversal is found in the field-penetration
problem, ~' and (iii) the intermediate mixed state is
observed, ' are very close numerically; these
ranges are I(. ~ I. 6, &~ I. 73, and v~1. 7, respec-
tively, for pure or moderately pure superconduc-
tors. Perhaps the applicati. on of the method of
Eilenberger and Buttner to the field-penetration
problem would clarify the situation.
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