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From a consideration of several different definitions of the critical value of ~ for type-II
superconductivity at temperatures below T~, it is proved that the initial flux penetration is not
in the form of a singly quantized isolated vortex for pure to rather dirty materials with t&

values near 1/W2 at temperatures below T,. It is predicted that the initial flux penetration
in such materials is in the form of a vortex lattice with finite spacing; the transition at the
field of first flux penetration would be first order in such materials, with a discontinuity in
the magnetization and a latent heat. Recent experimental evidence supporting this prediction
is discussed. A similar analysis leads to the prediction that the transition from the mixed
state to the normal state is first order for very dirty materials (l (0/~o) with ~ values near
1/V2, in qualitative agreement with the experimental results of Ehrat and Rinderer. Finally,
it is shown by both qualitative and quantitative arguments that. a negative normal-supercon-
ducting wall energy is only a sufficient condition for type-0 superconductivity, and not a
necessary one.

I. INTRODUCTION

The Qinzburg- Landau-Abrikosov- Qor'kov
(GLAG) theory of the properties of bulk supercon-
ductors in the presence of a magnetic field is now

well established both theoretically4 and exper imen-
tally. ' If a magnetic field is applied to a type-I
superconductor, the flux is completely excluded
(except near the surface) for all values of the ap-
plied field H, less than the thermodynamic critical
field H„ there is a first-order transition at H, =H,
from the Meissner state to the normal state as H,
is increased through H, . For a type-II supercon-
ductor, flux exclusion from the bulk of the sample
is complete for small values of H„but at H,
=H,&

& H, flux begins to penetrate. The initial flux
penetration is in the form of an isolated vortex
carrying one quantum of flux. It has been shown '

that the interaction between isolated vortices is re-
pulsive at H, =H, j and hence the magnetization curve
is continuous and the transition is of second order.
Because the vortex-vortex interaction is exponen-
tially weak at large distances, however, it is possi-
ble to accommodate many vortices in the sample at
applied fields slightly larger than H, ~ and the mag-
netization drops rapidly; the slope of the magnetiza-
tion curve at H, =H,j+0 is in fact predicted to be
infinite. As H, is increased beyond H,j, the mag-
netization decreases in magnitude and goes linearly
to zero at H, = H,2 & H„at which point the sample be-
comes normal; like the transition at H, j, the tran-
sition at H,~ is predicted by the QLAQ theory to be
second order-the magnetization is continuous and
there is no latent heat. For applied fields between

H, j and H,a, then, the flux penetration is incom-
plete, the microscopic magnetic field and the su-
perconducting order parameter are functions of

position, and the sample is said to be in the mixed

state.
The quantity of the QLAQ theory which deter-

mines if a given sample will show type-I or type-II
behavior is w, the ratio of the penetration depth to
the Ginzburg-Landau (GL) coherence length; x is
defined more precisely below. In Sec. 0 we re-
view the well-known reasons why the critical value
of ~ for type-II superconductivity is I/&2 in the
GLAG theory; if g is less than I/v 2, the sample is
'type I and if K is greater than 1/&2 it ls 'type

II.
The GLAQ theory is, however, strictly valid

only at T = T, and it is of interest to calculate g„
the critical value of z for type-II superconductivity,
at lower temperatures. In Sec. III we use Te-
wordt' s extension of the QLAQ theory to lower
temperatures to calculate the first-order correc-
tion in 1 —T/7, to the GLAG result ~, = I/v 2. We

find, in contrast to the situation at 7 = 7, where
several different criteria gives, = I/H2, that these
same criteria give different results for ~, at lower
temperatures. For materials with K= I/&2 and

large mean free paths, we show that the initial flux
penetration at H, z is not in the form of a singly
quantized isolated vortex and predict that it is inthe
form of a vortex lattice with finite spacing; the
transition at H, would then be first order, with a
discontinuous magnetization curve and a nonzero
latent heat. For materials with e= 1/H and very
short mean free paths, we predict that the transi-
tion at the upper critical field H,a is first order,
again with a discontinuous magnetization curve and

a nonzero latent heat. Finally, we show on both
qualitative (Sec. II) and quantitative (Sec. 111)

grounds that a negative value for the normal-super-
conducting wall energy g» in a given superconduc-
tor at H, =H, is only a sufficient condition for type-
II- superconductivity, and not a necessary one:
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There is a range of parameter values such that
0» &0, but the sample displays type-II behavior;
on the other hand, when g»& 0, there is no range
of parameter values where the sample displays
type-I behavior. Section III constitutes an expanded
version of work presented in a previous publica-
tion.

In Sec. IV, we discuss previous work related to
first-order transitions at H„and H,&, it appears
that both have been observed. The prediction~ and
the observation of the first-order transition at H,j
were independent and essentially simultaneous.
Previous theoretical work was speculative and has
not been shown to be indicative of a first-order
transition; previous experimental work was incon-
clusive. The observation' of the first-order
transition at H,& preceded Ref. 9; as a result, the
theoretical work on the transition at the upper crit-
ical field presented in the previous and the pres-
ent articles should perhaps be regarded not as a
prediction, but rather as an explanation or a ver-
ification. The author became aware of the work of
Ehrat and Rinderer ' only very recently.

II. CRITICAL VALUE OF K AT T = T,

than I/W2, the material is type I, and when K is
greater than I/&2, it is type II; there are at least
four different reasons why the critical value of z is
I/W and we now review them.

(a) Near H, = H,a the flux penetration is almost
complete; the supereonducting order parameter is
small and the microscopic magnetic field is almost
constant and almost equal to the applied field. On
linearizing the first GL equation for the order pa-
rameter and substituting A = H,xy, one findsa that
the largest value of II, for which bounded solutions
of the linearized equation exist is H, =H,2, where

H,a=&2KH, . (7)

—1 (H, -H,a) (8)

Thus the inequality (2) is satisfied only when
K & I/W2.

(b) The requirement that bounded solutions exist
is necessary for a second-order transition but is
not sufficient; one must also demand that the su-
perconducting solutions have lower free energy than
the normal-state solutions. A somewhat involved
calculation ~ gives the result (valid near H, =H, )a

From the discussion in Sec. I, it is clear that
the requirements

Hj«

H~2 &H~ (2)

must both be satisfied for a type-II superconductor;
the initial flux penetration (the transition from the
Meissner state to the mixed state) must take place
at a field less than H, and the completion of the
flux penetration (the transition from the mixed
state to the normal state) must take place at a field
greater than H, . In the GLAG theory, the values
of H„/H, and H,a/H, are completely determined
by specifying a single mean-free-path-dependent
parameter g which is to be calculated from'

where

K Kygpe 7g (3)/8S 2g y (3)

K,„,.=4y[—", K(3)] '~ ~,(0)/vg(0)

(4)

S), =Z (2n+ 1)" (2n+ 1+ o) ~,

o.'=v$ (0)/2yl = 0. 882$(0)/l, (8)

$(0) is the BCS coherence length at zero tempera-
ture [$(0)=hv~/vb, (0)], X~(0) is the London pene-
tration depth at zero temperature, f is the Riemann
f function, y is Euler's const'ant (y = 1.781), and l
is the electronic mean free path. Vfhen g is less

where P„depends only on the structure of the vor-
tex lattice; the magnetization near H,2 is given by

—4' = (H,a —H, )/(2K —1)pq

Equation (8) shows that the superconducting state
has lower free energy than the normal state when
K & I/v 2.

(c) The third reason for K, = I/v 2 is that if the
initial flux penetration is assumed to be in the form
of an isolated vortex, then the lower critical field
H, j obeys the inequality (1) only when K& I/v 2. It
has been shown analytically that H„=H, for K

= I/W2, independent of p, the number of flux quanta
carried by the isolated vortex. " For K& 1/W2, H„
is calculated by inserting numerical solutions of the
cylindrically symmetric GL equations into the GL
free-energy expression and demanding that the
Gibbs free energy of the sample containing a single
vortex be equal to the Gibbs free energy of the
sample in the Meissner state. The calculations for
p = 1 and p = 2 have been carried out by Harden and
Arp'~ and by Matrieon, "respectively. Since
H„/H, for p = 1 is less than H,~/H, for p = 2 when
K& 1/W2, the initial flux penetration is in the form
of a singly quantized isolated vortex rather than a
doubly quantized isolated vortex. Since the free
energy of an array of vortices is greater than that
of an isolated vortex at H, = H„, one concludes that
the interaction between vortices is repulsive, that
the transition at H„ is of second order, and that the
initial flux penetration is in the form of a singly
quantized isolated vortex.

(d) In their paper on the phenomenological theory
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of superconductivity, QL' considered the problem
of a superconductor in an applied field JJ, =H, and
calculated g„~, the energy of formation of a normal-
suyerconducting wall. They showed analytically
that g»&0 for ~«1 and that cr»&0 for g»1 and
numerically that g„d = 0 for z = I/M2; an analytic
proof that@„d=0 for g= I/M2 has recently been
given. 1~ These results suggest that it is energeti-
cally favorable for superconductors with z & I/M
to split up into normal and superconducting regions
so that the flux penetrates thermogeneously.
Clearly 0 „8&0 is a sufficient condition for type-D
superconductivity but it is not obviously a neces-
sary one; this qualitative comment is justified
quantitatively in See. DI.

In conclusion, then, for z & I/W2 the GLAG theory
predicts a second-ordex transition at EI„ from the
Meissner state to the mixed state with a singly
quantized isolated vortex and a second-order tran-
sition at H,a from the mixed state to the normal
sta'te' fol' K & I/v 2 tllel'8 18 a fll'st-ol'del' 'tl'allsltloll
at H, from the Meissner state to the normal state.
The QLAQ theory is strictly valid only at T = T, but
it is genexally believed that its predictions are only
quantitatively and not qualitati. vely modified at
lower temperatures; in Sec. III it is shown that for
superconductors with e = I/W2, Ilualitatively differ-
ent results are obtained.

III. CRITICAL VALUE OF rc FOR T & T,

The QLAG theory discussed in Sec. II 1s a highly
idealized model of inhomogeneous superconductors;
it is restricted to temperatures very close to T,
and it neglects many "xeal metal" effects. There
has been considerable activity aimed at extending
and modifying the theory to describe real metals
at all temperatures; progress in this direction has
recently been reviewed. ~ In this article, however,
me mill consider only the simplest model at temper-
atures just below T„more pxecisely, me treat only
the first-order correction (in 1 —T/T, ) to the GLAG
theory.

The first exact calculation for general mean free
paths of a property of interest in the theory of the
mixed state at temperatures below T, was Tewordt's
calculation" of H,3. This work mas follomed by the
calculation of the correction term to the GL free
energy" (obtained from Tewordt's earlier workld),

the derivation of the differential equations for the
corrections to the solutions of the QL equations for
the isolated vortex geometry, ' the calculation of

H„/H, as a function of a and n for p = 1,"and the
calculation of the slope of the magnetization curve
nea, r B,2.'7 This author'8 has recently obtained the
correction term to the QL free energy as an ex-
plicit function of the microscopic magnetic field,
the order parameter, and the superfluid velocity
for an geometries, and has derived the differential

~I = ~[1+(1- t) (y —n, + nl ndd en-4. )],-(11)
where f = T/T, and p and the various q'8 are defined
in Refs. 15 and 18. As in the QLAQ theory, H,& is
the largest value of the applied field for which
bounded solutions of the linearized equation for the
order parameter exist. Unlike the situation at
T = T, where the mean free path dependence of
quantities such as H,2 appears only in the quantity

g, at lomex temperatures one obtains an explicit
dependence on the mean free path. If we expand

Kc as

ll', = —- (I- f) - --'- + O(1- f)',1 K~
d dt gg

and calculate g, from 8,3 =H„we find

(12)

decl 0 le+ 4 74d 694e (IS)dt 4m& vY

from our first definition of g, .
(b) The generalizations of Eqs. (8) and (9) to lower

temperatures are
-1 (H, —H„)'

Gmi xed (Ha) Gnormal (Hd)
g I2 27I (2vd —1)P„

—4' = (H,2- H, )/(2gal —1)p„;
me have used the Neumann- Tewordt definition for

KR
iv The expresslonfor Kanear T T isiv

~I = ~ (1+(1- f )[y- 2q, + —,
'

Ii„+—,'Ii —2Ii4,

+(-,'~ '-12)II4, ]),

equations for the corrections to the solutions of the
GL equations for all geometries. In the important
cases of the mixed state in type-II superconductors
and the normal-superconducting-mall problem, it
was yossible to express the correction to the GL
free energy solely in terms of the solutions of the
QL equations; for these two imyorta, nt geometries,
then, in some calculations one can avoid the heavy
numerical work associated with solving the differ-
entia, l equations referred to above. This formula-
tion has been usedld to calculate H„/H, for isolated
vortices with p = 1(where agreement withthe results
of Neumann and Tewordt'5 was found) and p= 2, and
to calculate pN&.

In the QLAG theory, the critical value of g is v,
= I/W2; in this section, we address ourselves tothe
question of hom g, is changed as the temperature is
decreased from 7 = T, . The procedure is the same
as that used in Sec. II to show that a, =I/&2 at
T Tc 0

(a) The generalization of EII. (7) to lower tem-
peratures is

H„=a 2 ~IH, ;
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d~„5,(1&2, n)
dt t y Kg

where

(19)

d H,
d~ Hc ~='

at f=l, ~=lv2; (2o)

the result of a separate calculation is K, = —0. 8628.
The quantity H„/H, for p = 2 has been calculated

in Ref. 18 and the results expressed as

H„/H, =(H„/H, )
~

[1+(1-f)5q(g, o)]; (21)

53 has been tabulated. ' As the fourth definition of
g, we use H, &

= H, for p = 2 and find

d~„53(l/W2, n. )
dt t z Kq

where

(22)

X = — ' at t= 1 t(=1/WdHg '

dry H (23)

the numerical value is E3= —0. 6469.
(d) The normal-superconducting wall energy o„~

has been calculated as a function of o. for a = lv 2 in
Ref. 18, the results being given in the form

4vo„,/H,'X =go(~)+ (1—t)g, (», o). (24)

As the fifth definition of ~, we take 0~= 0; the re-
sult is

da„g,(1/W2, o.)
dt tg K

where

lf, =—go (v) &= —1.0965. (25)

Equations (13), (17), (19), (22), and (25) to-
gether with

where g is defined in Refs. 15and 18. As our sec-
ond definition of z, we define g,a as that value of K

for which the slope of the magnetization curve at
H,~ is infinite or, equivalently, as the lowest value
of y for which the free energy of the superconduct-
ing solutions of the linearized equation is less than
the free energy of the normal state; we find

dy, a Q —2q, + ~ g~+ 4q„—2q4d —lip~, ( )
df ~ i VY

(c) Neumann and Tewordt have expressed their
result for H,&/H, for p= 1 as

H„/H, = (H„/H, ) i, [1+(1- f) 5,(~, o)];

5, has been tabulated as a function of g and n. 5'

As the third definition of ~, we use H„=H, for
p = 1 and find

1 dK~~„=~- (1 —f)v2 t-"1
(2V)

TABLE I. d&,/d(T/T, ) at T=T, as a, function of 0' for
five different definitions of v~.

ff:( = 1/W2 ff:q =1/v 2
H g=H

p=1 p=2 +NS

0 0.2881
0. 2 0.2506
0. 5 0, 2131
1.0 0. 1758
2. 0 0. 1394
4 0. 1118
10 0. 0922
20 0. 0861
50 0. 0834

100 0. 0831
0. 0838

0.7694
0. 6456
0.5226
0.4012
0.2827
0. 1920
0. 1228
0.0976
0. 0826
0.0779
0.0740

—0. 0654
—0. 0393
—0. 0140
+0. 0104

0. 0341
0. 0530
0. 0697
0. 0776
0. 0840
0. 0869
0. 0910

—0. 0424
—0.0205
+ 0.0007
+ 0.0212

0. 0410
0. 0568
0. 0712
0. 0782
0. 0840
0. 0866
0. 0906

0. 0191
0. 0300
0. 0403
0. 0500
0.0593
0. 0670
0.0751
0.0797
0.0839
0.0860
0. 0893

give five independent estimates of the correction to
K = 1/W2 for temperatures below T, . lnTable I we

give the numerical values of d~„/dt at f = 1 for
these five criteria as functions of n = 0. 8&2/(0)/l.
As in Ref. 9, we extrapolate our results for g„
near T= T, to T=O'K to get an order-of-magnitude
estimate for the maximum size of the effects; the
table then gives the values of 1/v 2 —~„extrapolated
to T =O'K. As a result of the extrapolation, the nu-
merical values given below are only approximate.
The table has five interesting features, which we
now list.

(i) Unlike the situation at T = T„ the five differ-
ent criteria give different results for K, .

(ii) For o. ~ 50, g„ is greater than y,4. For ex-
ample z,3=0. VV25 and g,4=0. V495 for a=O; this
means that a sample in the Meissner state with a
g value of 0. V6 would be unstable with respect to
flux penetration in the form of a doubly quantized
isolated vortex at some applied field less than H,
but mould be stable with respect to flux penetration
in the form of a singly quantized isolated vortex
for all applied fields less than H, . Thus the initial
flux penetration in such a sample is not in the form
of a singly quantized isolated vortex. As will be
discussed below, however, we do not suggest for
any material that the initial flux penetration is in
the form of a doubly. quantized isolated vortex.

(iii) For n-40, we have the inequalities ~,3& K

& z,4, the case n = 0 is typical and we discuss it in
detail. For z &0.4190, there are no bounded solu-
tions of the linearized order parameter equation for
applied fields greater than H„ the sampl, e is stable
with respect to flux penetration in the form of sin-
gly and doubly quantized isolated vortices for all
fields less than H„and the normal-superconducting
wall energy is positive; we conclude that the sample
is type I. For 0.4190 & g &0. V495, the bounded solu-



tions exist for applied fields greater than H, and are
stable with respect to the normal-state solutions;
hence the sample is in the mixed state for a range
of applied field values greater than H, . For this
range of ~ values, however, H,& is greater than H,
if the initial flux penetration is assumed to be in the
form of a singly or doubly quantized isolated vor-
tex. But, since the area under the magnetization
curve gives the free-energy difference betmeen the
supereonducting and normal states, the initial flux
penetration must take place at an applied field less
than H, if the flux penetration is incomplete for a
range of applied field values greater than H„hence
the initial flux penetration is not in the form of a
singly or doubly quantized isolated vortex. There
are many possibilities for the form of the initial
flux penetration but a lattice of singly quantized
flux lines with finite spacing is the most likely; this
interpx etation requires that the state with an iso-
lated vortex be unstable with respect to the forma-
tion of a vortex lattice of' finite spacing. It should
be possible to extend the theory of the interaction of
vortices at T = T,"' to temperatures less than T,
to see if the above conjecture is correct; work on
this pxoblem is in progress. If the above interpre-
tation is correct, the transition at H,& would be first
order and there would be a nonzero latent heat. For
g&0. 7725, we have H, j &H, for p=1 and H,a&H„
hence there is no contradiction. It is likely, how-

ever, that the conjectured first-order transition at
H,i extends to z values somewhat greater than the
largest value for which a contradiction is obtained.
The contradiction between a, defined from v, = I/P2
and H,j —-II, for p= lmas first noticed by Tewordt.
See Added Note,

(iv) For n~ 50, one finds the inequalities z„&g4
& z,z& x,a,. the first of these implies that the flux
penetration is in the form of a singly quantized
rather than a doubly quantized isolated vortex. The
case a = ~ is typical and we discuss it in detail;
then g„=O.6161, g„=O. 6233, and g,2=0. 6331. For
g & 0. 6161, we have type-I behavior. For 0. 6161
& x & 0. 6233, H,j is less than H, for p = 1 and hence
the flux exclusion is incomplete for a range of
fields less than H„. bounded solutions of the lin-
eax'ized order Parameter equRtion do noty howevers
exist (and would not be stable if they did exist) for
any applied field greater than H, . The flux pene-
tration must be incomplete for some range of fields
greater than H„however, and we conclude that
there is a first-order transition at H,a. For 0. 6233
&x&0. 6331, H, & is less than H, and the bounded so-
lutions exist but they are unstable; if one considers
the shape of the magnetization curve as z is de-
creased through ~ = 0. 6331 by varying the g of the
pure superconductor, one is led by a continuity ar-
gument to the conclusion that the transition at H, a

is first order. Experimental difficulties make it

unlikely that the predicted first-order transition can
be observed in simple materials; it is difficult to
make high-quality sRIQples with the vex'y short IQean
free paths required and the range of g values for
which the first-ordex transition occurs is quite
small. Moreover, samples with slightly greater g

values would have quite steep IQagnetization curves,
making it difficult to distinguish a first-ordex tran-
sition from a second-order transition. As we dis-
cuss in Sec. IV, homever, the first-order transi-
tion a,t H,2 has been observed'; a "real metal" ef-
fect (strong coupling) makes the observation possi-
ble.

(v) An inspection of Table I shows that for every
VRlue of Q there exists R rRnge of K VRlues such that
o„s&0, but the sample shoms type-II behavior be-
cause either H,a & H, or H„&H, . For e = 0, for
example, 0.~ is greater than zero for g less than
0. 6280 but bounded solutions of the linearized order
parameter equation exist for H, &H, and are stable
with respect to the normal-state solutions when g

is greater than 0.4190. Thus gus&0 is a sufficient
condition for type-II superconductivity, but not a
necessary one, in agreement with the qualitative
argument in Sec. II.

IV. REVIEW OF RELATED WORK

In his article on flux penetration in type-II super-
conductors, Abrikosova noted that if the transition
at H,&

were of first order, then one would expect to
find an intermediate mixed state in samples with a
nonzero demagnetizing coefficient D for some range
of applied fields greater than (1—D) H,~; an experi-
ment to obsex ve this state was suggested by Gay-
ley, 0 but was not carried out. By the "intermedi-
ate mixed state" we mean that the sample is divided
into flux-free regions in the Meissner state and

flux-carrying regions consisting of an array of
vortices (rather than a homogeneous normal region
as in the intermediate state in type-I materials).
As discussed above, however, the transition at H,&

is predicted by the GLAG theory to be of second
order for all z values greater than I/&2; when a
sample of type-II material with nonzero demagne-
tizing coefficient is placed in a magnetic field
greater than the field of first flux penetration, the
GLAG theory predicts a uniform distribution of
vortices. In 1966, magnetization measurements on

pux 6 Nb wex 6 thought to indicate R fixst-oxdex
transition at II„,"but Serin' states that the data
are consistent with the GLAG theory. Somewhat
earlier, an approximate calculation of the mag-
netization curve between H, & and H,& at T = T, gave
a first-order transition at H„, but it was later found

that this result mas in error and that the transition
was indeed of second order. 3

The intermediate mixed state as defined above
has, homevex, been observed in Pb-In alloys by
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Trauble and Essmann in contradiction to the pre-
dictions of the GLAG theory; these results have
been interpreted in terms of an attractive interac-
tion between vortices, and the conclusion has been
drawn that such materials would have a first-order
transition (with the accompanying discontinuity in
the magnetization curve and latent heat) at H, = H, &

in samples with zero demagnetizing coefficient. ~~ At
about the same time, theoretical work 6 on the
structure of an isolated vortex at low temperatures
indicated that the order parameter and the mag-
netic field displayed damped oscillations far from
the center of the vortex for small z, and it was
postulated that this behavior could result in an at-
tractive interaction between vortices. The results
of Ref. 26 have been critized by Cleary, "however,
and the relevance of the work of Eilenberger and
Buttner 6 to the possibility of a first-order transi-
tion at H„ is not clear.

Another unusual phenomenon in superconductors
with small values of z is that of field reversal28 in
the penetration of a magnetic field into a supercon-
ductor. The effect has been considered in detail by
Halbritter'; for pure materials at low tempera-
tures, it is found that the magnetic field changes
sign deep inside the superconductor when ~ 1.6.
Further work is required to determine how (if at
all) the work of Eilenberger and Biittner, M the
phenomenon of field reversal, and the work of
this paper are interconnected. See Added Note.

Further experimental results on the intermediate
mixed state have been obtained and a brief review
of this wo», with references, has been given';
Krageloh" has described more recent work and
Seeger' has commented on the present situation.
Both Krageloh and Seeger state that a first-order
transition at H, & has been observed, "but give no
details; these articles were published after the
submission of the manuscript of Ref. 9. In related
work, Aston, Dubeck, and Rothwarf' have ob-
served linear regions in the magnetization curves
of Pb-2-at %-In and In-1. 5-at. /o-Bi samples with
nonzero demagnetizing coefficient.

It appears then that the first-order transition at
H, & predicted in Ref. 9 has been observed. Further
experiments would, however, be desirable to test
the mean free path and temperature dependence of
the effect. In samples with z less than I/&2, the
discontinuity (in units of H, ) in the magnetization
curve should increase with increasing temperature
until at some temperature less than T, the sample
displays type-I behavior. In samples with v greater
than I/&2, the discontinuity should decrease with
increasing temperature until, at some temperature
less than T„ the sample displays the usual GLAG
behavior; in Ref. 32, it is stated that the latter be-
havior has been observed.

On the theoretical side, the theory of the inter-

action of vortices~'6' should be extended to temper-
atures less than 7, to verify the conjecture that the
state with an isolated vortex is unstable with re-
spect to formation of a vortex lattice (or, more
crudely, to verify that the interaction of vortices
can be attractive) for the applied fields and z values
of interest. To calculate the field of first flux pene-
tration may require a theory of the mixed state
with finite vortex spacing; perhaps the best way to
do this is to extend the Wigner-Seitz method of
Marcus to lower temperatures. The attractive
interaction between vortices required to explain the
intermediate mixed state is very likely related to
the attractive interaction between vortices for
v & 1/H2 found in the GLAG theory, modified at
lower temperatures where the critical value of g is
no longer I/H and additional terms in the free en-

ergy must be considered. There is no reason to
expect this attractive interaction to have a signifi-
cantly longer range than the repulsive interaction.
See Added Note.

It is of interest to interpret the results of a re-
cent calculation'4 of H„/H, at T = 0 'K in the light
of the results of Sec. III. In Ref. 34, it was as-
sumed that ~, calculated from H,& =H, was identical
with z, calculated from H, & =H, for initial flux pen-
etration in the form of an isolated vortex with p = 1.
For pure super. conductors at 0 K, g, from H,G=H,
is 0. 56, while v, from H,j=H, is 0. 74; to account
for this difference, it was assumed that the vari-
ational functions used in the calculation of the free
energy were not good representations for the exact
order parameter and magnetic field. It is now
clear that the assumption that the two ~,'s are iden-
tical is incorrect and the variational functions of
Ref. 84 are probably very good; for T= T„H,~/H,
calculated using these functions differs by less than
2% from the exact values for z between 1/v2 and
5o. The conclusion "as the temperature is de-
creased from 7'„ the reduced lower critical field
H„(T)/H, (T) for a given value of ~ first increases
above the GL value and then decreases below it"
must also be changed; there is no evidence that
H„/H, decreases below the GL value at low tem-
peratures.

We now turn our attention to the transition at
H,2. As we have discussed, it is unlikely that the
first-order transition can be observed in the sim-
ple materials for which Tewordt's extension of the
GLAG theory is valid; the theory neglects strong
coupling, Fermi-surface anisotropy, spin para-
magnetism, spin-orbit coupling, anisotropic defect
scattering, multiple bands, and perhaps other "real
metal" effects. In work overlooked in our previous
article' on this subject, Ehrat and Rinderer' have,
however, observed (in a Pb-2-at. /o-In alloy with
x =0. V2) a discontinuity in the magnetization, in in-
creasing field at constant temperature, at H,~, as
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well as a high, narrow peak in the specific heat, at
constant field in increasing temperature, at the
temperature at which the mixed-state-normal-state
phase boundary is crossed. Because the latent
heats calculated from the magnetic and calorimetric
measurements agree to within 10%, we believe
these observations to be bulk effects indicative of a
first-order transition at H,» we do not believe the
suggestion ' that "a discontinuity in the magnetiza-
tion in increasing field ~ ~ can be due to a sharp dif-
ference in surface pinning at H~" to be applicable
to the measurements of Ehrat and Rinderer. The
first-order transition is observable in the relatively
clean samples of Ehrat and Rinderer because of
strong-coupling effects. '6 Fischer and Usadel'
have used arguments similar to those used in Ref.
9 and Sec. III above to explain the results of Ehrat
and Rinderer. Our arguments are, however, more
complete in that, by showing that H, z is less than
H„we have proved the existence of the mixed state
in the materials under consideration; since the ef-
fects of strong coupling on H,q have not been calcu-
lated, the corresponding demonstration was not
carried out by Fischer and Usadel, leaving open
the possibility that the material is actually type I.
The work of Fischer and Usadel and this au-
thor on the nature of the transition at H, 2 was in-
dependent and essentially simultaneous.

Finally, we mention that first-order transitions
at H,2 have been predicted by Sarma" for a uniform
exchange field acting on the conduction- electron
spins and by Maki for a superconductor with large
Pauli-spin paramagnetism relative to the spin-orbit
coupling. The discussion of Maki's work by Fetter
and Hohenberg4 is similar to our argument for a
first-order transition at H,&. The work of Sarma
and Maki is, however, unrelated to the results of
Sec. III.

Added Note. The interaction between widely
separated vortices at temperatures below T, has
been examined theoretically39 and has been found to
be attractive for g near 1/W2and small to moder-

ately large values of $0/I, in agreement with our
comments above; an extrapolation to T =O'K pre-
dicts, for example, an attractive interaction for
K & l. 382 and $0/l = 0. The attractive interaction is
just the attractive interaction found by Kramer in
the GLAG theory for v & 1/v 2, modified at lower
temperatures. In Ref. 39 it is argued that the phe-
nomenon of field reversal and the work of Eilen-
berger and Buttner are got related to an attractive
interaction between vortices in type-II materials
near T„although the situation at lower tempera-
tures is not clear. A mechanism by which field
reversal might lead to an attractive interaction at
lower temperatures is suggested in Ref. 39.

In work published very recently, Kumpf 40 has re-
ported observation of steep linear regions near H,&

in the magnetization curves of Pb-Tl alloys and,
with reservations, in Nb single crystals; the de-
magnetizing factor in these experiments was 0. 02
and there is little room for doubt that the transition
is first order. Similar results were obtained ear-
lier by Aston, Dubeck, and Rothwarf, ' but in
samples with a much larger demagnetizing factor
(-0.45). Whether the observations of Ref. 21 were
the first indication of a first-order transition atH, ~

is a question which we do not attempt to answer
here. Although a pure, simple metal with the same
a value as Nb (0. 78)2' should have a first-order
transition at H, &

at sufficiently low temperatures,
the neglect of real metal effects may be serious,
and one cannot apply with confidence the theory de-
veloped above to such a material.
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The theory of Muller-Hartmann and Kramer for the interaction of widely separated vortices
is extended to temperatures immediately below Tc. The interaction is found to be attractive
below Tc for type-II materials with tt:= 1/~2andnottoosmall a mean free path, in agreement
with experimental observations on such materials. The phenomenon of field reversal and the
work of Eilenberger and Buttner are shown to be unrelated to an attractive iriteraction between
vortices and the consequent first-order transition at the lower critical field, at least for tem-
peratures near T,; it is shown how field reversal, if it occurs in the mixed state, might result
in an attractive interaction at lower temperatures.

I. INTRODUCTION

In the Ginzburg-Landau theory, the interaction
between vortices, at the applied field at which flux
penetrates in the form of an isolated vortex, has
been shown to be repulsive'2 for ~ & I/v 2 and at-
tractive for v& 1/v2 . Since the critical value of
z for type-II superconductivity is I/v2 in the
Ginzburg-Landau theory, the interaction is repul-
sive for type-II superconductors. This is not con-
clusive evidence that the phase transition at the
field of first flux penetration is of second order,
but it is highly suggestive; a proof that the first flux
penetration is in the form of a singly quantized
isolated vortex requires a demonstration that the
free energy for each and every possible form of
flux penetration be greater than that of a singly

quantized isolated vortex.
The Ginzburg-Landau theory is, however, strict-

ly valid only at T= T„and the nature of the initial
flux penetration at lower temperatures is an open
question. Recently, both theoretical and experi-
mental evidence has been obtained for a first-order
transition at the field of first flux penetration, and
hence for some materials (v = I/W2 and mean free
path I not much smaller than (~) the first flux pen-
etration is not in the form of a singly quantized
isolated vortex. The experimental evidence has
been partially reviewed in a previous article.
The most direct evidence is the observation of a
first-order transition by Krageloh, Kumpf, and
Seeger; this work is unpublished at the time of
writing, and Krageloh and Seegers merely state
that the first-order transition has been observed,


